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Abstract A new indirect quadrangular mesh generation

algorithm which relies on sequential decision-making

techniques to search for optimal triangle recombinations is

presented. In contrast to the state-of-art Blossom-quad

algorithm, this new algorithm is a good candidate for

addressing the 3D problem of recombining tetrahedra into

hexahedra.

Keywords Finite element mesh generation �
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1 Introduction

Finite element methods are numerical techniques largely

used for solving physical problems governed by partial

differential equations (PDEs). Those methods require the

domain of interest to be discretized into a mesh, i.e. a set of

discrete subdomains called elements [21]. In 2D, those

elements are triangles or quadrilaterals.

Triangular meshes are largely used in finite element

simulations because of the existence of fast, robust and

automatic techniques to generate high-quality elements,

even with size constraints. However, quadrilateral meshes

are sometimes considered as superior to triangular meshes

[5]. Nonlinear mechanics in particular have element mod-

els that only work with quadrangular meshes; in fluid

dynamic simulations, quads are also often sought after to

discretize boundary layers.

Automatic generation of quad meshes is not an easy

problem. For a long time, existing techniques either were

complex or produced poor-quality elements (quadrangles

with very acute or obtuse angles and/or quadrangles that

are poorly aligned with desired directions)—often in areas

of the domain where good meshes were critically needed.

At present, there are essentially two approaches for

automatically generating quad meshes with size con-

straints: direct methods and indirect methods. With direct

methods, quadrilaterals are constructed at once, either by

using advancing front techniques [2], using regular grid-

based methods (quadtrees) [6] or partitioning the domain

[10]. Indirect methods, on the other hand, rely on an initial

triangular mesh (Fig. 1a) and apply merging techniques to

recombine the triangles of the initial mesh into quadrangles

(Fig. 1b) [3, 11]. Other more sophisticated indirect meth-

ods use a mix of advancing front and recombination

techniques [16, 20].

The performance of such indirect methods crucially

depends on the technique used to generate the initial tri-

angular mesh. Indeed, triangular mesh algorithms usually

aim at producing close to equilateral triangles, which is not

optimal for recombination [17]. One recent original

approach relies on Delaunay-frontal algorithms in L1-

norm to generate close to right-angled triangles, facilitating

the construction of high quality quadrangulations [12, 17].

The main shortcoming of classical recombination tech-

niques is the difficulty of generating globally high quality

meshes [13, 20]. Greedy recombination of triangles into

quads (that merges triangles leading to the best quad first,

then continues with the remaining triangles) always leads
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to orphaned triangles which have to be subdivided into

poor-quality quads. Other techniques using advancing

fronts produce poor-quality elements at meeting fronts.

Blossom-quad proposed an elegant solution by using a

minimum-cost perfect matching algorithm [18]. Blossom-

quad guarantees that if a triangle-to-quad recombination

exists, it will generate a full quad mesh that is optimal

according to a quality functional. However, the best

implementation of this algorithm is Blossom V [9], which

runs in Oðn2
M
Þ where nM is the number of triangles.

Moreover, Blossom-quad does not allow for any other

‘‘action’’ than the merging of two triangles into a quad, and

it cannot be extended to 3D meshes (to recombine tetra-

hedra into hexahedra).

In this paper we propose a new indirect method for

generating quads. This method can in principle work with

any initial triangular mesh, and allows for the use of a great

variety of topological and geometrical operations to gen-

erate high quality quadrangulations. The time complexity

is OðnMÞ and there are a priori no difficulties to extend it to

the 3D problem. The conceptual basis of the method relies

on looking at the recombination problem as an optimal

sequential decision-making problem.

The paper is organized as follows: After stating the

problem in Sect. 2, we formulate it as a sequential deci-

sion-making problem in Sect. 3. In Sects. 4 and 5, we

present two ways of solving the sequential decision-making

problem by using look-ahead trees. Finally, the results are

presented in Sect. 6 and we conclude in Sect. 7.

2 Problem statement

The goal of the mesh generation process in which the

recombination algorithm takes part is, starting from a tri-

angular mesh, to create a mesh made of quadrilaterals that

has controlled element sizes and shapes. We assume that

the initial triangular mesh fulfills the size requirements. In

this paper, we only consider the topological operation of

recombining two triangles into one quadrangle and no

other topological (swap, collapse) or geometrical

(smoothing) operations. This algorithm does not alter the

size of edges, so the aim of the recombinations is to pro-

duce quadrangles with the best shape quality.

There exist many different shape quality definitions for

quadrangles in the literature. The method we propose is not

specific to a particular definition, and we will not enter into

the debate about which shape quality measure should be

used. In this paper, we will use the definition given in [3].

Consider a quadrilateral element Q and its four internal

angles ak; k ¼ 1; 2; 3; 4 (Fig. 2). The shape quality gðQÞ of
Q is defined as:

gðQÞ ¼ max 0; 1� 2

p
max
k

p
2
� ak

�
�
�

�
�
�

� �� �

: ð1Þ

This quality measure is equal to 1 if the element is a

rectangle and 0 if one of those angles is either � 0 or � p.
We define the global quality q of a mesh M as the sum

of shape quality of every quadrangle:

qðMÞ ¼
X

Qi2Q
gðQiÞ; ð2Þ

where Q is the set of quadrangles of M. With this defi-

nition, the initial triangular mesh has a global quality of

zero.

The problem that we want to solve is the following:

from an initial triangular mesh M0, find, by recombining

all triangles into quadrangles, a mesh M� that maximizes

q, i.e. qðM�Þ� qðMÞ; 8M. Note that we only consider

initial triangular meshes that can be fully recombined into

quads.

The dual graph of the mesh is the graph GðV;EÞ for

which every vertex vj is a triangle Tj and every edge eij
represents the adjacency of two neighbour triangles Ti and

Tj. It has been shown that the problem of recombining

triangles is connected to the problem of finding a matching

in the dual graph [18], i.e., a subset of edges that do not

a

→

b

→

c

Fig. 1 The triangles can be

recombined in order to get

quadrangles. After that, a

smoothing operation can be

applied in order to relocate

nodes in better places (b ! c)

α1

α2

α3
α4

Fig. 2 Quadrilateral with its

four internal angles
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share any vertices. Let us consider a mesh of a closed

surface with zero genus, for which every triangle has three

neighbours. This is among the worst cases in terms of the

ratio between the number of possible recombinations over

the number of triangles. The dual graph of such a mesh is a

cubic planar graph, i.e. all vertices have degree three and it

can be drawn on a plane in such a way that its edges do not

intersect. In this case it has also been proven that the

number of perfect matchings N (matchings which do not

leave any unmatched vertex in the graph) grows expo-

nentially with the number of vertices in that graph [7]:

3unM=72 �N� 2nM ;

where u is the golden ratio (’ 1:62). As a result, the

number of possible solutions also grows exponentially with

the size of the mesh.

Among all the possible solutions, Blossom-quad [18]

allows to find the one that maximizes q in polynomial time.

However, as stated in the introduction, Blossom-quad

cannot be extended to the 3D problem of recombining

tetrahedra into hexahedra. Indeed, the formulation of the

problem as a minimum-cost perfect matching works in 2D

where a pair of triangles forms a quadrangle. In 3D, at least

five tetrahedra are required to form a hexahedron. This

motivates the formulation of the problem as a sequential

decision-making problem.

3 Formulation as a sequential decision-making

problem

Recombinations can be seen as actions that are applied step

by step to the mesh. This implies that the overall problem

can be seen as a discrete-time system for which one seeks a

sequence of actions at (the recombinations) that maximizes

the sum of the rewards rðatÞ defined as the shape quality of

the created quadrangles Qt, i.e. rðatÞ ¼ gðQtÞ 2 ½0; 1�. The
generic dynamics of this discrete system is given by

equation Mtþ1 ¼ f ðMt; atÞ, where the mesh Mt 2 X is a

state of the system and where at 2 AðMtÞ. X is called the

state space and AðMtÞ is called the action space. We define

Xf � X as the set of final states (meshes for which no

allowed recombination remains).

Definition 1 The ‘‘polder set’’ containing a triangle T ,

denoted PðT;MÞ, is the set of triangles containing at least

T for which the dual graph is a connected component of the

dual graph of the whole mesh.

Definition 2 Recombination criterion: a recombination

between a triangle T and one of its neighbours is forbidden

if it separates the set PðT ;MÞ into two odd-cardinality

disjoint polder sets.

In practice, it is easy to understand that an action that

leads to a mesh with isolated triangles (or leftover cavities

that have an odd number of edges on their boundary) is

highly suboptimal. Therefore in the following, we will

exclude these actions by taking AðMtÞ as being equal to

the set of actions of Mt that do not violate the recombi-

nation criterion (see Definition 2). As a consequence, X is

restricted to the set of all meshes obtained by recombining

triangles of the initial mesh and for which there is no odd-

cardinality polder set.

With this formulation, the optimal solution could be found

by computing the tree for which every node corresponds to a

state M 2 X and every edge corresponds to a possible

transition. The leaves of the tree would be the final states and

among them we could find the optimal solution. But we

showed in Sect. 2 that the size of Xf grows exponentially

with the number of initial triangles, and so does the size of the

tree. In the next section, we propose an algorithm for navi-

gating into these large trees efficiently. We also relax the

original problem statement to allow for non-fully recom-

bined meshes, in which case we consider the percentage of

recombinations with respect to the optimal solution as a

criterion to evaluate the performance of a the algorithm.

4 Uniform look-ahead tree

The uniform look-ahead tree (LT) can be seen as a com-

putationally efficient way for exploring the tree made of all

possible sequences of actions. A uniform LT T hðMtÞ
expanded from the mesh Mt with a horizon h is a tree for

which the root y0 is Mt and every node of depth d 2
f0; . . .; hg corresponds to a state that is reachable from Mt

after d transitions (see Fig. 3). Let yleafk , k ¼ 1; 2; . . .;Nleaf

y0

y1 y2 y3 y4

y
n
+
1

y
n
+
2

y
n
+
3
...

= xt – d = 0

– d = 1

– d = 2

Fig. 3 Uniform look-ahead tree

of horizon 2 where n is the

number of nodes at depth 1 (i.e.

the size of the action space

AðMtÞ )
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denote the leaf nodes, i.e. the nodes that are at depth h. At

each leaf node yleafk is associated the sequence of h actions

aks; s ¼ t; . . .; t þ h. We define the optimal sequence of

actions as the one that corresponds to maxk
Ptþh

s¼t rðaksÞ.
The action that is applied at time t, at, is then taken as the

first action of the optimal sequence.

The uniform LT has been applied to the mesh of a

sphere that contains 2,152 initial triangles (see Fig. 4).

We compute the quality of the final state as a percentage

of the quality obtained with Blossom-Quad [18]. For a

horizon of 1, we obtain a quality of 87.6 % in 0.16 s.

For a horizon of 2, the quality is poorer with 85.1 %,

and the computation time is much greater with 225.6 s.

Thus the result is worse in both quality and time. Note

that on our computer (Macbook Pro Retina, Mid 2012)

we have been unable to test the uniform LT for larger

horizons.

One explanation for the lack of performance is the fact

that with such small horizons the uniform LT algorithm

behaves almost similarly to the greedy algorithm that

recombines at each step the two triangles leading to the

best quad. The fast increase in computation time is

explained by the high branching factor, which is of the

order of the number of remaining triangles.

In the next section, we define a different way to con-

struct the LT that gives better performances.

Fig. 4 The triangular mesh of a sphere (a) is recombined with a

uniform LT of horizon 1 (b) and 2 (c). The initial mesh contains 2,152

triangles. With horizon 1, 1,850 triangles are recombined for a

quality of 87.6 %. With horizon 2, 1,780 triangles are recombined for

a quality of 85.1 %

y0

y1 y2 y3

y4 y5 y6 y7 y8 y9

= xt

Fig. 5 Selective look-ahead tree of horizon 2. In this example, the

triangle selected for y0 has three possible recombinations, so the root

has 3 branches. Triangles selected at depth 1 have all two possible

recombinations

Fig. 6 The triangular mesh of the sphere (Fig. 4) is recombined with

the selective LT of horizon 3. On the 2,152 initial triangles, 2,120 are

recombined for a quality of 93.8 %

Table 1 The uniform and selective LT are compared on the test case

of the sphere

Horizon Quality % recombinations Time (s)

Uniform 1 87.6 86 0.16

2 85.1 82.7 225.6

Selective 1 91.8 98.2 0.037

2 92.8 98.3 0.084

3 94 98.7 0.146

Results for the selective LT are presented as the median of 100 runs.

The quality is presented as a percentage of the quality obtained with

Blossom-Quad. A mesh obtained with the selective LT of horizon 3 is

showed at Fig. 6
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5 Selective look-ahead tree

The tree made of all possible sequences of actions has

intrinsically a large branching factor which hinders the

performances of uniform LT techniques. In this section, we

propose to apply another form of LT that works with a

smaller branching factor allowing to exploit larger depths.

We named it selective look-ahead tree.

Let us first introduce some definitions. For a given state

y, PkðyÞ, k ¼ 1; . . .; 3 is the set of all available triangles in y
that take part in exactly k recombinations of AðMtÞ. We

define PminðyÞ as the first non-empty set, i.e. equal to PlðyÞ
if Pk\lðyÞ ¼ ; and PlðyÞ 6¼ ;, or equal to an empty set if

PkðyÞ are all empty. The construction of the selective LT is

carried out as follows (see Fig. 5):

First, we make the root y0 to be the current state Mt.

Then we randomly select a triangle T0 that has the mini-

mum of recombinations, i.e. we select T0 in Pminðy0Þ, and
we create a child for every possible recombination of T0.

For every child node yi, we compute N MðyiÞ, the set of

triangles that can be recombined and are neighbours of the

quadrangles created in the sequence from y0 to yi. There

are then two situations: either N MðyiÞ is empty and Ti is

taken in Pminðy0Þ (like the root node) or N MðyiÞ is not

empty. For the latter, we compute the first non-empty set of

PkðyÞ \ N MðyiÞ; k ¼ 1; 2 and randomly select Ti in it.

Then, we branch on every possible recombination of Ti.

The rationale behind this is that if the optimal solution

corresponds to a full recombination, those selective LT,

deployed with the maximum possible depths, would also

contain an optimal sequence of actions while still having a

much smaller branching factor (bounded by 3 for the root

and by 2 for the children). Note that if the optimal solution

does not correspond to a fully recombined mesh, it may be

reasonable to assume that those new LT may still contain a

sequence of actions which is not far from the optimal one.

6 Results

6.1 Mesh of the sphere

We applied the selective LT algorithm to the mesh of

the sphere described in Sect. 4. The results are presented at

Table 1. We can see that the selective LT shows better

Fig. 7 Borouchaki test: initial

mesh and a typical solution of

our algorithm with a horizon of

5 (top, global mesh, bottom

zoom of the top right corner).

The solution has a quality of

93.17 and 98.8 % of elements

are recombined
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performances than the uniform LT on the three criterions:

quality, number of recombinations and computation time.

On the other hand, both quality and number of recombi-

nations are increased from horizon 1 to 3.

6.2 Borouchaki mesh

We present the results of the selective LT algorithm

obtained for a test case proposed by Borouchaki and Frey

[3]. The domain is a unit square with a circular hole of

radius 0.15 centred at (0.75, 0.75) with a non-uniform mesh

size field (see Fig. 7). The initial triangular mesh has been

generated with the delquad algorithm [17] and contains

34,562 triangles (Fig. 7a).

In order to make a comparison with a reference mesh,

the triangular mesh has been recombined with the Blos-

som-quad algorithm using the same quality criterion and

without making any additional topological or geometrical

optimizations. This is the optimal solution of our search

and we take the obtained quality of 10,451.61 as reference.

Quality results presented below are all given as percentages

of this reference value.

We applied our algorithm for every horizon between 1

and 10. Since triangles are taken randomly, we have, for

each horizon, run our algorithm 128 times. Quality, number

of recombined elements and computation time are pre-

sented as ‘‘box and whiskers’’ graphs in Fig. 8. The first

two graphs show that both the quality and the number of

recombined elements increase significantly when the

horizon increases from 1 to 6. In the third graph, high-

horizon values are shown to lead to an average branching

factor of 100:49=4 ¼ 1:33. The asymptotically linear

behaviour suggests that the recombination process has a

computational complexity of nMah, where a is the

branching factor.

The computation time (around 1:6 s at horizon 1 and

3:4 s at horizon 2) can be compared to the naive greedy

recombination algorithm, which simply recombines tri-

angles by selecting pairs to be recombined in decreasing

order of quality of the resulting quads. Without additional

constraint, the greedy approach takes 0:98 s to make

15,472 recombinations. Since the remaining triangles are

mostly isolated, the quality cannot be compared. The

same greedy approach, with the additional constraint of

definition 2 (which is equivalent to the uniform LT of

Sect. 4 with a horizon equal to 1), is computed in 1.32 s

and leads to a quality of 88:5 with 86 % of recombina-

tions. This confirms the usefulness of the sequential

decision-making approach, especially in view of its future

applicability to 3D problems as well as of its natural

handling of additional topological and geometrical

actions.

7 Conclusion

We designed a new algorithm to recombine triangular

meshes into quadrangular meshes that relies on decision-

making techniques. The main advantage of this new

approach is that it can produce good quality quad meshes

with size constraints in linear time. We showed that the use

of selective look-ahead trees instead of uniform look-ahead

trees greatly improves the computation time as well as the

quality of the final mesh. We also showed that the solution

is improved by increasing the horizon of the selective look-

ahead trees. The complexity of the algorithm was found
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Fig. 8 Box and whiskers plots for the Borouchaki test, with medians

as red lines, interquartile ranges (IQR) as blue boxes, and whiskers in

black. Red crosses depict outliers that are 1:5	 IQR above or below

the IQR. Whiskers only extend to the most extreme data points not

considered as outliers. 128 runs have been performed for every

horizon from 1 to 10 (colour figure online)
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experimentally to be nMð1þ ahÞ, where a� 2. Unlike

Blossom-quad, our algorithm does not guarantee that all

triangles are recombined. However, the remaining triangles

are grouped and can easily be replaced by quadrangles in

post-processing using an adaptation of Bunin’s algorithm

[4].

Ongoing research focuses on three extensions. First,

more advanced tree navigation techniques published in the

machine learning literature are investigated [8, 14]. Sec-

ond, instead of considering topological and geometrical

operations (such as edge swaps, collapses or node reloca-

tion) as post-processing operations, they could be added

directly as actions in the sequential decision-making pro-

cess. Third, the algorithm could also be extended to

recombinations of tetrahedra into hexahedra [1, 15, 19].
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