Abstract
The implementation of periodic boundary conditions (PBCs) is one of the most important and difficult steps in the computational analysis of structures and materials. This is especially true in cases such as mechanical metamaterials which typically possess intricate geometries and designs which makes finding and implementing the correct PBCs a difficult challenge. In this work, we analyze one of the most common PBCs implementation technique, as well as implement and validate an alternative generic method which is suitable to simulate any possible 2D microstructural geometry with a quadrilateral unit cell regardless of symmetry and mode of deformation. A detailed schematic of how both these methods can be employed to study 3D systems is also presented.










Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Evans KE, Nkansah MA, Hutchinson J, Rogers SC (1991) Molecular network design. Nature 353:124
Baughman RH, Shacklette JM, Zakhidov AA, Stafstrom S (1998) Negative Poisson’s ratios as a common feature of cubic metals. Nature 392:362–365
Lakes R (1987) Foam structures with a negative Poisson’s ratio. Science 235:1038–1040. https://doi.org/10.1126/science.235.4792.1038
Wojciechowski KW (1989) Two-dimensional isotropic system with a negative poisson ratio. Phys Lett A 137:60–64. https://doi.org/10.1016/0375-9601(89)90971-7
Sigmund O (1995) Tailoring materials with prescribed elastic properties. Mech Mater 20:351–368
Ishibashi Y, Iwata M (2000) A microscopic model of a negative Poisson’s ratio in some crystals. J Phys Soc Jpn 69:2702–2703. https://doi.org/10.1143/JPSJ.69.2702
Dudek MR, Grabiec B, Wojciechowski KW (2007) Molecular dynamics simulations of auxetic ferrogel. Rev Adv Mater Sci 14:167–173
Lakes RS, Lee T, Bersie A, Wang YC (2001) Extreme damping in composite materials with negative-stiffness inclusions. Nature 410:565–567
Baughman RH, Stafstrom S, Cui C, Dantas SO (1998) Materials with negative compressibilities in one or more dimensions. Science 279:1522–1524. https://doi.org/10.1126/science.279.5356.1522
Nicolaou ZG, Motter AE (2012) Mechanical metamaterials with negative compressibility transitions. Nat Mater 11:608–613
Lakes R, Wojciechowski KW (2008) Negative compressibility, negative Poisson’s ratio, and stability. Phys Status Solidi Basic Res 245:545–551. https://doi.org/10.1002/pssb.200777708
Mizzi L, Attard D, Casha A, Grima JN, Gatt R (2014) On the suitability of hexagonal honeycombs as stent geometries. Phys Status Solidi B 251:328–337. https://doi.org/10.1002/pssb.201384255
Gatt R, Attard D, Farrugia PS, Azzopardi KM, Mizzi L, Brincat JP et al (2013) A realistic generic model for anti-tetrachiral systems. Phys Status Solidi B 250:2012–2019. https://doi.org/10.1002/pssb.201384246
Mizzi L, Azzopardi KM, Attard D, Grima JN, Gatt R (2015) Auxetic metamaterials exhibiting giant negative Poisson’s ratios. Phys Status Solidi Rapid Res Lett 9:425–430. https://doi.org/10.1002/pssr.201510178
Mizzi L, Mahdi EM, Titov K, Gatt R, Attard D, Evans KE et al (2018) Mechanical metamaterials with star-shaped pores exhibiting negative and zero Poisson’s ratio. Mater Des 146:28–37. https://doi.org/10.1016/j.matdes.2018.02.051
Taylor M, Francesconi L, Gerendás M, Shanian A, Carson C, Bertoldi K (2014) Low porosity metallic periodic structures with negative Poisson’s ratio. Adv Mater 26:2365–2370
Shan S, Kang SH, Zhao Z, Fang L (2015) Design of planar isotropic negative Poisson’ s ratio structures. Extrem Mech Lett 4:96–102. https://doi.org/10.1016/j.eml.2015.05.002
Hassan MR, Scarpa F, Ruzzene M, Mohammed NA (2008) Smart shape memory alloy chiral honeycomb. Mater Sci Eng A 481–482:654–657. https://doi.org/10.1016/j.msea.2006.10.219
Carta G, Brun M, Baldi A (2016) Design of a porous material with isotropic negative Poisson’s ratio. Mech Mater 97:67–75. https://doi.org/10.1016/j.mechmat.2016.02.012
Bezazi A, Scarpa F, Remillat C (2005) A novel centresymmetric honeycomb composite structure. Compos Struct 71:356–364. https://doi.org/10.1016/j.compstruct.2005.09.035
Shen J, Zhou S, Huang X, Xie YM (2014) Simple cubic three-dimensional auxetic metamaterials. Phys Status Solidi B 251:1–8. https://doi.org/10.1002/pssb.201451304
Jopek H, Strek T (2015) Thermal and structural dependence of auxetic properties of composite materials. Phys Status Solidi B 252:1551–1558. https://doi.org/10.1002/pssb.201552192
Alderson A, Alderson KL, Attard D, Evans KE, Gatt R, Grima JN et al (2010) Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading. Compos Sci Technol 70:1042–1048. https://doi.org/10.1016/j.compscitech.2009.07.009
Xia Z, Zhang Y, Ellyin F (2003) A unified periodical boundary conditions for representative volume elements of composites and applications. Int J Solids Struct 40:1907–1921. https://doi.org/10.1016/S0020-7683(03)00024-6
Xia Z, Zhou C, Yong Q, Wang X (2006) On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites. Int J Solids Struct 43:266–278. https://doi.org/10.1016/j.ijsolstr.2005.03.055
Gao L, Wang C, Liu Z, Zhuang Z (2017) Theoretical aspects of selecting repeated unit cell model in micromechanical analysis using displacement-based finite element method. Chin J Aeronaut 30:1417–1426. https://doi.org/10.1016/j.cja.2017.05.010
Mizzi L, Gatt R, Grima JN (2015) Non-porous grooved single-material auxetics. Phys Status Solidi B 252:1559–1564. https://doi.org/10.1002/pssb.201552218
Poźniak AA, Wojciechowski KW, Grima JN, Mizzi L (2016) Planar auxeticity from elliptic inclusions. Compos Part B Eng 94:379–388. https://doi.org/10.1016/j.compositesb.2016.03.003
Gatt R, Brincat JP, Azzopardi KM, Mizzi L, Grima JN (2015) On the effect of the mode of connection between the node and the ligaments in anti-tetrachiral systems. Adv Eng Mater 17:189–198. https://doi.org/10.1002/adem.201400120
Grima JN, Evans KE (2000) Auxetic behavior from rotating squares. J Mater Sci Lett 19:1563–1565
Gibson LJ, Ashby MF, Schajer GS, Robertson CI (1982) The mechanics of two dimensional cellular materials. Proc R Soc A Math Phys Eng Sci 382:25–42
Abd El-Sayed FK, Jones R, Burgess IW (1979) A theoretical approach to the deformation of honeycomb based composite materials. Composites 1979:209–214
Masters IG, Evans KE (1996) Models for the elastic deformation of honeycombs. Compos Struct 35:403–422
ANSYS® Academic Research Mechanical, Release 13.0 (2013)
Sigmund O, Torquato S (1999) Design of smart composite materials using topology optimization. Smart Mater Struct 8:365–379. https://doi.org/10.1088/0964-1726/8/3/308
Grima BJN, Gatt R (2010) Perforated sheets exhibiting negative Poisson’s ratios. Adv Eng Mater 2010:460–464. https://doi.org/10.1002/adem.201000005
Grima JN, Alderson A, Evans KE (2004) Negative Poisson’s ratios from rotating rectangles. Comput Methods Sci Technol 10:137–145
Attard D, Grima JN (2008) Auxetic behaviour from rotating rhombi. Phys Status Solidi 245:2395–2404. https://doi.org/10.1002/pssb.200880269
Grima JN, Farrugia P-S, Gatt R, Attard D (2008) On the auxetic properties of rotating rhombi and parallelograms: a preliminary investigation. Phys Status Solidi 245:521–529
Attard D, Manicaro E, Grima JN (2009) On rotating rigid parallelograms and their potential for exhibiting auxetic behaviour. Phys Status Solidi B 2044:2033–2044. https://doi.org/10.1002/pssb.200982034
Dudek KK, Attard D, Caruana-Gauci R, Wojciechowski KW, Grima JN (2016) Unimode metamaterials exhibiting negative linear compressibility and negative thermal expansion. Smart Mater Struct 25:025009
Grima JN, Gatt R, Alderson A, Evans KE (2005) On the potential of connected stars as auxetic systems. Mol Simul 13:923–934
Tang Y, Lin G, Han L, Qiu S, Yang S, Yin J (2015) Design of hierarchically cut hinges for highly stretchable and reconfi gurable metamaterials with enhanced strength. Adv Mater 2015:1–10. https://doi.org/10.1002/adma.201502559
Cho Y, Shin J, Costa A, Ann T, Kunin V, Li J et al (2014) Engineering the shape and structure of materials by fractal cut. Proc Natl Acad Sci 111:17390–17395. https://doi.org/10.1073/pnas.1417276111
Gatt R, Mizzi L, Azzopardi JI, Azzopardi KM, Attard D, Casha A et al (2015) Hierarchical auxetic mechanical metamaterials. Sci Rep 5:1–6. https://doi.org/10.1038/srep08395
Dudek KK, Gatt R, Mizzi L, Dudek MR, Attard D, Evans KE et al (2017) On the dynamics and control of mechanical properties of hierarchical rotating rigid unit auxetics. Sci Rep 7:65–69. https://doi.org/10.1038/srep46529
Prall D, Lakes RS (1997) Properties of a chiral honeycomb with a Poisson’s ratio of − 1. Int J Mech Sci 39:305–314
Parrinello M, Rahman A (1980) Crystal structure and pair potentials: a molecular-dynamics study. Phys Rev Lett 45:1196–1199
Wojciechowski KW, Branka A, Parrinello M (1984) Monte Carlo study of the phase diagram of a two dimensional system of hard cyclic hexamers. Mol Phys 53:1541–1545
Wojciechowski KW (1987) Constant thermodynamic tension Monte Carlo studies of elastic properties of a two-dimensional system of hard cyclic hexamers. Mol Phys 61:1247–1258
Suquet PM (1987) Homogenization techniques for composite media. Springer, Berlin
Miehe C, Schröder J, Schotte J (1999) Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials. Comput Methods Appl Mech Eng 171:387–418. https://doi.org/10.1016/S0045-7825(98)00218-7
Grima JN, Evans KE (2006) Auxetic behaviour from rotating triangles. J Mater Sci 41:3193–3196
Grima JN, Farrugia P-S, Gatt R, Zammit V (2006) Connected triangles exhibiting negative Poisson’s ratios and negative thermal expansion. J Phys Soc Jpn 76:025001
Kunin V, Yang S, Cho Y, Deymier P, Srolovitz DJ (2015) Static and dynamic elastic properties of fractal-cut materials. Extrem Mech Lett. https://doi.org/10.1016/j.eml.2015.12.003
Zhou XQ, Zhang L, Yang L (2017) Negative linear compressibility of generic rotating rigid triangles. Chin Phys B 26:126201
Lim TC (2017) Analogies across auxetic models based on deformation mechanism. Phys Status Solidi Rapid Res Lett 11:1600440
Alderson A, Alderson KL, Chirima G, Ravirala N, Zied KM (2010) The in-plane linear elastic constants and out-of-plane bending of 3-coordinated ligament and cylinder-ligament honeycombs. Compos Sci Technol 70:1034–1041. https://doi.org/10.1016/j.compscitech.2009.07.010
Shim J, Perdigou C, Chen ER, Bertoldi K, Reis PM (2012) Buckling-induced encapsulation of structured elastic shells under pressure. Proc Natl Acad Sci 2012:1–6. https://doi.org/10.1073/pnas.1115674109
Bacigalupo A, Gambarotta L (2014) Homogenization of periodic hexa- and tetrachiral cellular solids. Compos Struct 116:461–476. https://doi.org/10.1016/j.compstruct.2014.05.033
Ha CS, Hestekin E, Li J, Plesha ME, Lakes RS (2015) Controllable thermal expansion of large magnitude in chiral negative Poisson’s ratio lattices. Phys Status Solidi B 1434:1431–1434. https://doi.org/10.1002/pssb.201552158
Bettini P, Airoldi A, Sala G, Di Landro L, Ruzzene M, Spadoni A (2010) Composite chiral structures for morphing airfoils: numerical analyses and development of a manufacturing process. Compos Part B Eng 41:133–147. https://doi.org/10.1016/j.compositesb.2009.10.005
Hassan MR, Scarpa F, Mohamed NA, Ruzzene M (2008) Tensile properties of shape memory alloy chiral honeycombs. Phys Status Solidi B 245:2440–2444. https://doi.org/10.1002/pssb.200880263
Jiang Y, Li Y (2018) 3D printed auxetic mechanical metamaterial with chiral cells and re-entrant cores. Sci Rep 8:2397
Almgren RF (1985) An isotropic three-dimensional structure with Poisson’s ratio = −1. J Elast 15:427–430
Grima JN, Oliveri L, Attard D, Ellul B, Gatt R, Cicala G (2010) Hexagonal honeycombs with Zero Poisson’ s ratios and enhanced stiffness. Adv Eng Mater 2010:855–862. https://doi.org/10.1002/adem.201000140
Olympio KR, Gandhi F (2010) Zero Poisson’s ratio cellular honeycombs for flex skins undergoing one-dimensional morphing. J Intell Mater Syst Struct 21:1737–1753
Rafsanjani A, Akbarzadeh A, Pasini D (2015) Snapping mechanical metamaterials under tension. Adv Mater 2015:27
Mitschke H, Robins V, Mecke K, Schroder-Turk G (2012) Finite auxetic deformations of plane tessellations. Proc R Soc A Math Phys Eng Sci 2012:469
Pozniak AA, Wojciechowski KW (2014) Poisson’s ratio of rectangular anti-chiral structures with size dispersion of circular nodes. Phys Status Solidi B 251:367–374. https://doi.org/10.1002/pssb.201384256
Grima JN, Mizzi L, Azzopardi KM, Gatt R (2016) Auxetic perforated mechanical metamaterials with randomly oriented cuts. Adv Mater 28:385–389. https://doi.org/10.1002/adma.201503653
Mizzi L, Attard D, Gatt R, Pozniak AA, Wojciechowski KW, Grima JN (2015) Influence of translational disorder on the mechanical properties of hexachiral honeycomb systems. Compos Part B Eng 80:84–91. https://doi.org/10.1016/j.compositesb.2015.04.057
Pozniak AA, Smardzewski J, Wojciechowski KW (2013) Computer simulations of auxetic foams in two dimensions. Smart Mater Struct 2013:22. https://doi.org/10.1088/0964-1726/22/8/084009
Zhu H, Hobdell JR, Windle AH (2001) Effects of cell irregularity on the elastic properties of 2D Voronoi honeycombs. J Mech Phys Solids 49:857–870. https://doi.org/10.1016/S0022-5096(00)00046-6
Zhu HX, Thorpe SM, Windle AH (2006) The effect of cell irregularity on the high strain compression of 2D Voronoi honeycombs. Int J Solids Struct 43:1061–1078. https://doi.org/10.1016/j.ijsolstr.2005.05.008
Zhu HX, Windle AH (2002) Effects of cell irregularity on the high strain compression of open cell foams. Acta Mater 50:1041–1052
Mizzi L, Salvati E, Spaggiari A, Tan J, Korsunsky AM (2020) Highly stretchable two-dimensional auxetic metamaterial sheets fabricated via direct-laser cutting. Int J Mech Sci 167:105242. https://doi.org/10.1016/j.ijmecsci.2019.105242
Acknowledgements
K.K.D. acknowledges the financial support from the program of the Polish Minister of Science and Higher Education under the name “Regional Initiative of Excellence” in 2019–2022, project no. 003/RID/2018/19, funding amount 11 936 596.10 PLN.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Mizzi, L., Attard, D., Gatt, R. et al. Implementation of periodic boundary conditions for loading of mechanical metamaterials and other complex geometric microstructures using finite element analysis. Engineering with Computers 37, 1765–1779 (2021). https://doi.org/10.1007/s00366-019-00910-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00366-019-00910-1