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Abstract: A new method is proposed for simultaneous optimization of shape, topology and cross-

section of plane frames. Compliance against specified loads is minimized under constraint on 

structural volume. Difficulties caused by the melting nodes can be alleviated to some extent by 

introducing force density as design variables for defining the geometry, where the side constraints 

are assigned for force density to indirectly avoid the existence of extremely short members. Force 

density method is applied to an auxiliary cable net model with different boundary and loading 

conditions so that the regularity of force density matrix is ensured by positive force densities. 

Sensitivity coefficients of the objective and constraint functions with respect to the design variables 

are also explicitly calculated. After the optimal geometry of the frame is obtained, the topology is 

further improved by removing the thin members and combining closely spaced nodes. It is 

demonstrated in the numerical examples of three types of frames that rational geometry and topology 

can be achieved using the proposed method, and the effect of bending moment on the optimal 

solution is also discussed. 

Keywords: Shape and topology optimization; force density method; sequential quadratic 

programming; compliance minimization; plane frame. 

 

1. Introduction 

Geometry and topology optimization of truss-like structures is one of the standard topics in structural 

optimization, and has received considerable attention since the pioneering work by Maxwell [1] and 

Michell [2]. Valuable contribution has been made in the past decades to the development of 

mathematical formulations and optimization methods in this field; see the review articles [3, 4] and 

text books [5, 6] for a comprehensive survey of optimization of truss-like structures, and the recent 

development of optimization of truss-like continua is summarized in Ref. [7]. 

Generally, optimization of truss-like structures can be classified into three categories; namely, 

sizing, geometry (or shape) and topology optimization. Among them, sizing optimization, which 

aims at finding the optimal cross-sectional properties of members, is commonly included in 

geometry and topology optimization, and the change of structural topology can be achieved in the 

standard framework of sizing optimization problem [8, 9]. Based on the well-established ground 

structure method [10], the optimal topology of a truss-like structure is obtained by removing the 

unnecessary members from the set of potential connections of nodes with fixed locations and 

retaining the members with positive cross-sectional properties. However, since the nodal locations 

are unable to vary during the optimization process, it is necessary to work with as many nodes and 
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members as possible, resulting in large number of design variables. On the other hand, if the locations 

of nodes are also considered as design variables in the optimization problem, one can start from a 

sparse ground structure instead, because the adjustment of nodal locations can usually lead to 

effective improvement of objective function value [11–13].  

When geometry optimization is involved, however, one of the main difficulties is the existence 

of melting nodes, or coalescent nodes, resulting in extremely short member in the structure and 

making the stiffness matrix singular [14–16]. Moreover, the derivative of the objective function with 

respect to the nodal coordinates becomes discontinuous due to existence of extremely short members. 

The nodes should be allowed to move in a wide range of the design space to obtain the global optimal 

solution; however, undesirable intersection and overlapping of members may occur in the search 

process. 

Czarnecki [17] solved a shape and topology optimization problem of truss structure, where the 

equilibrium equation is transformed such that the sensitivity analysis can be more easily and 

efficiently implemented in geometry linear and nonlinear condition. Sokol [18] transformed the truss 

optimization problem under compliance constraint into an equivalent formulation in which axial 

forces in members are the only state variables. However, since the stiffness matrix of rigidly jointed 

frame structure is different from that of pin-jointed truss structure, such transformation cannot be 

applied to the compliance minimization problem of frame structure. 

Force density method (FDM) is primarily applied in the form-finding process of cable nets and 

tensegrity structures, where the nonlinear equilibrium equations with respect to the unknown nodal 

coordinates is converted to a set of linear equations by prescribing the force density which is defined 

as the ratio of member force to its length [19, 20]. Recently, Ohsaki and Hayashi [21] explored the 

merit of FDM to shape and topology optimization of pin-jointed trusses, in which the objective and 

constraint functions are expressed explicitly by force density only; thus, the problem caused by 

melting nodes is alleviated. Kimura et al. [22] optimized the shape of shear wall consisting of latticed 

block where force density is used as an auxiliary parameter for arrangement of lattice element. 

Descamps and Coelho [23] used force density as an intermediate variable in the formulation of 

compliance minimization problem. However, since shear force and bending moment exist in frames, 

the FDM for cable nets and trusses cannot be directly applied to frames. 

In this paper, a new method is presented for geometry and topology optimization of plane frame 

structures, in which the FDM is used to prevent the generation of extremely short members. The 

unique feature of the proposed method is that the FDM is utilized only for generating feasible shape 

and topology; thus, the loading and boundary conditions of the truss or cable net for applying FDM 

are not related to the true conditions for the frame to be optimized. Therefore, the variables of the 

optimization problem are the force densities of the members of the auxiliary pin-jointed structure, 

and the parameters defining the cross-sectional properties of the frame members. It is shown in the 

numerical examples that enforcing small positive lower bound for force density enhances 

convergence property to obtain an optimal frame without melting nodes and intersecting members. 

The paper is organized as follows: Section 2 introduces some notations of finite element method, 

which are used in the optimization procedure, and the basic idea of FDM is briefly described in 

Section 3. Section 4 formulates the optimization problem of frame structure in terms of force density 

and cross-sectional properties, and the side constraints on member length are assigned in terms of 

the constraints on force density. Section 5 derives the sensitivity coefficients for objective and 

constraint functions so as to reduce computation efforts, and a further optimization is given in 
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Section 6 to improve the optimization result. Three numerical examples are investigated in Section 

7 to verify the effectiveness of the proposed method. Finally, some conclusions are drawn in Section 

8.   

2. Plane frame model 

Consider a plane frame structure discretized by Euler-Bernoulli beam element [24]. The global 

coordinates, node numbers and local displacement numbers of the ith beam element are shown in 

Fig. 1, and each element has six degrees of freedom due to the consideration of bending deformation. 
 

 

Fig. 1 Definition of displacement/force components and local coordinates of ith beam element 

 

Let α be the angle between the -axis of the beam element and the x-axis of the global coordinates, 

where -axis is directed from node 1 to node 2. The local stiffness equation of ith element can be 

written as  

i i ik u f   (1) 

 

where 
6 6

i R k , 
6

i Ru  and 
6

i Rf  are the stiffness matrix, nodal displacement vector and nodal 

force vector, respectively, with respect to the local coordinates. Note that the components in if  have 

the same order as those in iu , which are specified in Fig. 1. By introducing transformation matrix 
6 6

i R t  for the ith element, the relation between the local stiffness matrix and the global stiffness 

matrix of ith beam element can be obtained as 

T

i i i ik t k t  (2) 

 

where 6 6

i R k  represents the element stiffness matrix with respect to the global coordinates. 

The vectors of nodal displacement and nodal force with respect to the global coordinates are 

denoted by 6

i Ru  and 6

i Rf , respectively. Relation between ui and fi can be expressed using ki as  

i i ik u f  (3) 

 

Assembling all the elements of ki, we can derive the s×s overall stiffness matrix K of the frame 
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structure, where s is the number of degrees of freedom of the structure with appropriate boundary 

conditions. Accordingly, the nodal force vector 
sRF  and the nodal displacement vector sRU  

can be constructed by assembling fi and ui. Therefore, U is obtained by solving the following stiffness 

equation: 

KU = F   (4) 
 

3. Force density method 

FDM is widely used in the form-finding process of cable nets and tensegrity structures, where the 

force density is defined as the axial force divided by the length of a member. In this paper, the FDM 

is applied to an auxiliary pin-jointed structure to define the nodal locations of the frame that is to be 

optimized. Therefore, it is important to note again that the structure considered in this section is a 

pin-jointed truss or a cable net. 

Let m and n represent the numbers of members and nodes of the auxiliary pin-jointed structure, 

respectively. If member i connects nodes j and k (j ≠ k), the m×n connectivity matrix C can be 

constructed by defining each entry as [20] 

 ,

1

1

0 other case

i p

p j

C p k




  



     (i=1,2, …, m;  j, k=1, 2, …, n) (5) 

 

Let xfree, yfree and xfix, yfix denote the x- and y-coordinate vectors of free nodes and fixed nodes, 

respectively. The force density qi of the ith member is defined as 

i
i

i

N
q

L
  (6) 

 

where Ni and Li are the axial force and the length of the ith member, respectively. Accordingly, the 

force density vector is denoted by  1 2, , m

mq q q R q , and the m×m force density matrix Q is 

given as [21, 25]  

 diagTQ C q C  (7) 

 

where diag(q) represents the diagonal matrix that have the components of vector q in the diagonal 

terms. The columns of connectivity matrix C are arranged so that the columns corresponding to the 

free nodes precede those corresponding to the fixed nodes, i.e., C = (Cfree, Cfix). Then, Eq. (7) can be 

rewritten as 

    
   

   
free free free fix

free fix free fix

fix free fix fix

diag diag
, diag ,

diag diag

T T
T

T T

C C

C C

 
   

 

C q C q
Q C C q C C

C q C q
 (8) 

 

and the equilibrium equations of free nodes and fixed nodes of a pin-jointed structure are written as 

follows [21]: 
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   

   

   

   

free free free free fix fix ,free

free free free free fix fix ,free

fix free free fix fix fix ,fix

fix free free fix fix fix ,fix

diag diag

diag diag

diag diag

diag diag

T T

x

T T

y

T T

x

T T

y

 

 

 

 

C q C x C q C x P

C q C y C q C y P

C q C x C q C x P

C q C y C q C y P

 (9) 

 

where Px,free and Py,free are the vectors of external nodal loads applied at the free nodes in x- and y-

directions, respectively, and Px,fix and Py,fix are the vectors of reaction forces at the fixed nodes. For 

a structure at self-equilibrium state, i.e., no external load applied at the free nodes, Px,free and Py,free 

are zero vectors.  

Remark 1 For the conventional FDM, the free nodes and fixed nodes are determined in accordance 

with the support conditions. However, in this paper, the fixed nodes consist of the supported nodes 

and loaded nodes, as well as the nodes for specific reason, e.g. requirement of structural shape, that 

are not allowed to move during the optimization process 

If the force densities are given for all members in the structure and the locations of fixed nodes 

are assigned, then the locations of free nodes can be obtained from Eq. (9), that is 

   

   
free free free free fix fix ,free

free free free free fix fix ,free

diag = diag +

diag = diag +

T T

x

T T

y





C q C x C q C x P

C q C y C q C y P
 (10) 

 

Therefore, xfree and yfree can be regarded as functions of q. 

Remark 2 It has been proved by Kanno and Ohsaki [26] that the submatrix corresponding to free 

nodes in the connectivity matrix, i.e., Cfree, is non-singular if at least one node is fixed. Therefore, if 

q is a non-zero vector and location of at least one node is fixed, then the matrix CT
free diag(q) Cfree is 

non-singular and Eq. (10) has a solution for xfree and yfree. 

4. Optimization problem 

Consider an optimization problem of minimizing the compliance F, defined as follows: 

TF U KU  (11) 
 

which is equal to the external work that is converted into the form of Eq. (11) using Eq. (4). Let

 1 2, , md d dd  denote the vector of design variables defining the cross-sectional properties of 

beam members. The upper bound V is given for the total structural volume. Then, the conventional 

optimization problem with respect to the locations of free nodes and the cross-sectional properties 

as variables is formulated as follows:  

   

 

free free free free

,lower ,upper

,lower ,upper ,lower ,upper free

free free

Minimize    , , , ,

subject to  , 1,2, ,

, , 1,2, ,

                 , ,

T

i i i

j j j j j j

F

d d d i m

x x x y y y j n

V V



  

    



d x y U K d x y U

                  

d x y

  (12) 
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where nfree is the number of free nodes, di,lower and di,upper are the lower and upper bounds for di, and 

xj,lower, xj,upper, yj,lower and yj,upper are the lower and upper bounds of x- and y-coordinates of the jth 

node. Note that K is a function of d, xfree and yfree, while U is an implicit function of d, xfree and yfree, 

which is obtained by solving Eq. (4). It should be noted here that since the stiffness matrix of rigidly-

jointed frame structure differs from that of the pin-jointed truss structure, the compliance 

minimization problem (12) is not equivalent to the volume minimization under stress constraints, 

and cannot be solved by the existing methods for truss structure [17].  

We next incorporate FDM for defining the nodal locations of the plane frame structure by solving 

Eq. (10) of the corresponding auxiliary truss or cable-net structure. The side constraints for the 

locations of free nodes are assigned in problem (12) to prevent divergence in the optimization process. 

However, they are no longer needed when the nodal coordinates can be calculated by Eq. (10). 

Accordingly, the optimization problem (12) is restated as  

         

    

free free free free

,lower ,upper ,lower ,upper

free free

Minimize    , , , ,

Subject to  , , 1,2, ,

                  , ,

T

i i i i i i

F

d d d q q q i m

V V



    



d x q y q U K d x q y q U

d x q y q

  (13) 

 

where qi,lower and qi,upper are the lower and upper bounds for force density of the ith member. We can 

observe from Eqs. (12) and (13) that these two formulations of optimization problem are basically 

the same, and they will lead to the same solution if a set of q in problem (13) can define the optimal 

solution of problem (12). In other words, if the optimal solution of problem (12) is included in the 

feasible domain of problem (13), it can be found by resolving the optimization problem (13). Recall 

that in Eq. (13) the structural compliance is calculated for the rigidly-jointed frame model with Euler-

Bernoulli beam elements shown in Section 2. 

Remark 3 One of the difficulties in solving problem (12) is the existence of melting or coalescent 

nodes, which will result in the singularities in K [14]. This can be handled by adding constraints to 

limit the lower bound of the member length. However, as pointed out by Achtziger [14], directly 

introducing such constraints to avoid geometries without melting nodes will in return cause 

intractable definition of feasible region of the nodal location. By contrast, the solution space becomes 

too small if a tight bound is given for the nodal coordinates, and large bound will lead to unfavorable 

intersection of members. 

Substituting qi in Eq. (6) into the constraints on qi in problem (13), we obtain 

,lower ,upper
i

i i

i

N
q q

L
   (14) 

 

If we assume the absolute value of qi,lower is equal to qi,upper, i.e., |qi,lower| = |qi,upper| = qi,abs  (> 0), Eq. 

(14) can be simplified as 

,abs
i

i

i

N
q

L
  (15) 

 

Because the member lengths are positive, we can derive the lower-bound constraint for member 
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length, if Ni is not equal to 0, by transforming Eq. (15) to 

,abs

i

i

i

N
L

q
  (16) 

 

Since qi can have either positive or negative value, the nodal locations obtained from Eq. (10) will 

have drastic variation due to the change of sign of force density. Therefore, we next assume that 

qi,lower is a small positive value  , namely, 

,lower =iq   (17) 

 

and qi,upper is a sufficiently large real number. Then Eq. (14) can be rewritten as  

,upper
i

i

i

N
q

L
    (18) 

 

which means qi = Ni/Li for all members are positive like a cable net during the optimization process. 

Since Ni > 0 for all the members, we can reformulate Eq. (18) with respect to Li as 

,upper

i i
i

i

N N
L

q 
   (19) 

 

Hence, the length of ith member is indirectly controlled by the side constraints of its corresponding 

force density. If qi,upper is appropriately chosen and the configuration of the frame is modeled by an 

auxiliary cable net that can be at self-equilibrium state with positive forces in all the members, , then 

the existence of extremely short member can be avoided by using Eq. (19).  

Furthermore, for the auxiliary structure of cable net without external load, nodal locations are 

determined only by the ratios of force densities, and the nodal locations do not change when the 

force densities are scaled with the same factor because the external loads in Eq. (10) vanish. 

Therefore, to prevent poor convergence of optimization process due to non-uniqueness of the 

solution, an additional norm constraint with a constant c is given for the optimization problem. 

Hence, the optimization problem is rewritten as  

         

    

free free free free

,lower ,upper ,lower ,upper

free free

2

1

Minimize    , , , ,

subject to   , , 1,2, ,

                  , ,

                  ( )

T

i i i i i i

m

i

i

F

d d d q q q i m

V V

q c




    





d x q y q U K d x q y q U

d x q y q   (20) 

 

in which  1 2, , mq q qq  and  1 2, , md d dd  are the 2m design variables, and the difficulties 

caused by the melting nodes are avoided by indirectly adding the side constraints on the force density 

vector, which in return control the upper and lower bounds of member length.  
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Note that optimization problems (13) and (20) are classified as nonlinear programming (NLP) 

problem, in which all functions are differentiable with respect to q and d. We will exploit this good 

nature to carry out the sensitivity analysis in the next section. 

5. Sensitivity Analysis 

To solve problems (13) and (20) using a gradient-based algorithm, sensitivity coefficients of 

objective and constraint functions are analytically derived for reducing computational effort [27, 28]. 

Differentiating the compliance with respect to qi, we obtain  

free
free, free,

1 free, free,

,    1,2,...,
n

j j

ji j i j i

x yF F F
i m

q x q y q

    
         
   (21) 

 

The differential coefficients ∂F/∂xfree, j and ∂F/∂yfree, j are called shape sensitivity coefficients, and 

the derivatives of the coordinates of free nodes xfree and yfree with respect to force density q can be 

computed from the equilibrium equation (10), and details can be found in Ref. [21]. Since there is 

only one response quantity, i.e. the compliance of the structure, the adjoint variable method is more 

effective than the direct differential method [6, 29] for computing the shape sensitivity coefficients.  

The shape sensitivity coefficients ∂F/∂xfree, j and  ∂F/∂yfree, j are expressed as follows: 

free

free, free, free, free,

, , 1,2, ,T T

j j j j

F F
j n

x x y y

   
    

   

K K
U U U U  (22) 

 

which are similar to the expression of design sensitivity coefficients with respect to di as 

, 1,2, ,T

i i

F
i m

d d

 
  

 

K
U U   (23) 

 

Let (x1,i, y1,i) and (x2,i, y2,i) denote the coordinates of the two end nodes of ith member. 

Differentiation of the total structural volume with respect to qi and di, respectively, leads to  

2
, ,

1 1 , ,

,   , 1,2, ,
m

j k j j k j i
j i

j ki k j i k j i i i

L x L y AV V
A L i m

q x q y q d d 

      
            
  (24) 

 

Since the locations of fixed nodes are invariant to force density, the derivatives of member length Li 

with respect to xk,i and yk,i (k = 1,2) vanish if xk,i and yk,i, respectively, are the coordinates of a fixed 

node. The sensitivity coefficients of objective and constraint functions can be computed by using 

Eqs. (21)(24). 

6. Improvement of optimal solution 

Since problems (13) and (20) may have many local optimal solutions, we solve this problem many 

times from randomly generated different initial solutions, and select the best local optimal solution 

as an optimal solution. However, the optimal solution may have closely spaced nodes and/or very 

thin members, causing ambiguity in structural layout. Therefore, we further optimize the cross-

sectional properties and nodal locations by solving the following problem: 
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   

 

free free free free

,lower ,upper

,lower ,upper ,lower ,upper free

free free

Minimize    , , , ,

ˆsubject to  , 1,2, ,

ˆ,  , 1,2, ,

                 , ,

T

i i i

j j j j j j

F

d d d i m

x x x y y y j n

V V



  

    



d x y U K d x y U

                  

d x y

 (25) 

 

where freen̂  and m̂  are the numbers of free nodes and members, respectively, after merging the 

closely spaced nodes of the optimal solution of problem (13) or (20). The same symbols in Section 

4 are used for variables for brevity, and sensitivity analysis of the functions in problem (25) can be 

carried out in a similar manner as Section 5.  

Note that in Section 4 the lower bound of member length is indirectly assigned in order to prevent 

the existence of zero-length member; however, the closely spaced nodes may still exist if the ratio 

of |Ni| to qi,abs or to qi,upper is small. The lower bound di,lower for di is a sufficiently small positive value, 

and owing to the fact that optimization problem of minimizing compliance is continuously dependent 

on the bounds of member volumes [30], optimal topology is further enhanced and obtained by 

removing some of the members whose member size reaches the lower bound di,lower.  

7. Numerical Examples 

In this section, we will present three numerical examples in order to illustrate the effectiveness of 

the proposed method. The nonlinear programming problem is solved using the sequential quadratic 

programming (SQP) algorithm in the fmincon of Optimization Toolbox of Matlab 2018a [31]. 

Each member is assumed to have solid circular cross-section, and thereby the cross-sectional 

area and second moment of inertia can be expressed by its diameter, i.e., the design variable di is the 

diameter of member i. Without loss of generality, Young’s modulus is assumed to be the same for all 

the members.  

Optimal solutions are found for the following Cases N and P with negative and positive lower 

bounds, respectively, of force density: 

Case N:  Solve problem (13) with 
,abs ,absi i iq q q   , qi,abs = 1000 (N/m). 

Case P:  Solve problem (20) with 
,absi iq q   , qi,abs = 1000 (N/m),   = 0.0001 (N/m). 

Note that the value of qi,abs is determined so that the lower bound of member length is around 0.001 

m for a member with the axial force about 1N.  

For the diameter, the lower bound is 0.001 m, and no upper bound is given. We select the best 

result out of 100 solutions obtained from 100 random seeds. 

7.1 Example 1  

The first example is optimization of a two-dimensional cantilever frame. The initial ground structure 

consists of a 3×2 grid, with n=12 nodes and m=27 members, as shown in Fig. 2. The frame is pin-

supported at three left nodes 1, 2, 3, and a downward vertical load P with unit magnitude 1 N is 

applied at node 11. Note that the magnitude of load is not important, because the compliance is 

proportional to the load for the same optimal solution. According to Section 2, these four nodes, i.e., 

nodes 1, 2, 3 and 11 are the fixed nodes and the remaining eight nodes are the free nodes.  
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Fig. 2 Initial ground structure of Example 1 

 

 

(a)                                                                       (b) 

Fig. 3 Optimal shapes of Example 1 with Case N and V  = 1 (m3); (a) best result of problem (13), (b) optimal solution 

after solving problem (25) 

 

Table 1. Nodal location of best result of Example 1 with V  = 1 (m3) 

Node 
Case N Case P 

x y x y 

1 0 0 0 0 

2 0 1 0 1 

3 0 2 0 2 

4 1.9065 0.3324 0.3396 0.0567 

5 1.4783 0.9906 1.5071 1.0066 

6 0.6368 1.9009 0.6521 1.8924 

7 2.9136 0.9536 1.9760 0.3278 

8 2.2941 1.4542 1.5457 1.0069 

9 1.9173 1.6558 1.9596 1.6778 

10 2.9127 1.0291 3 0 

11 3 1 3 1 

12 2.9849 1.0351 3 2 
 

First consider Case N to solve problem (13) with the upper bound volume V  equal to 1 m3. The 

best result among 100 trials is shown in Fig. 3(a) that has the compliance F = 81.957 (Nm). Note 

that the width of each member in the following figures is proportional to its diameter, which is scaled 
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appropriately for each figure. The locations of nodes are listed in Table 1, and the values of force 

density vector q, member diameter vector d and member lengths L of the best result are listed in 

Table 2. 
 

 
(a)                                                                       (b) 

Fig. 4 Optimal shapes of Example 1 with Case N and V  = 0.7 (m3); (a) best result of problem (13), (b) optimal 

solution after solving problem (25) 

 

 
(a)                                                                       (b) 

Fig. 5 Optimal shapes of Example 1 with Case N and V  = 0.4 (m3); (a) best result of problem (13), (b) optimal 

solution after solving problem (25) 

 

 
(a)                                                                       (b) 

Fig. 6 Optimal shapes of Example 1 with Case N and V  = 0.1 (m3); (a) best result of problem (13), (b) optimal 

solution after solving problem (25) 
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Table 2. Force density, diameter and length of best result of Example 1 with V  = 1 (m3) 

Member Nodes 
Case N Case P 

qi di Li qi di Li 

1 1 4 953 0.379 1.935 0.632 0.374 0.344 

2 4 7 0.114 0.364 1.183 0.131 0.373 1.658 

3 7 10 124 0.243 0.075 0.283 0.001 1.075 

4 2 5 147 0.001 1.478 0.0001 0.001 1.507 

5 5 8 0.297 0.00399 0.938 0.192 0.186 0.038 

6 8 11 274 0.001 0.839 0.125 0.001 1.454 

7 3 6 380 0.380 0.644 0.456 0.371 0.661 

8 6 9 0.509 0.382 1.304 0.227 0.371 1.325 

9 9 12 0.325 0.00554 1.235 0.339 0.001 1.089 

10 4 5 220 0.232 0.785 0.0001 0.00108 1.505 

11 7 8 0.174 0.00163 0.796 0.00284 0.240 0.804 

12 10 11 300 0.295 0.092 0.0734 0.001 1 

13 5 6 237 0.001 1.240 0.0001 0.00193 1.231 

14 8 9 331 0.365 0.427 0.0001 0.238 0.788 

15 11 12 336 0.0352 0.038 0.0533 0.001 1 

16 1 5 0.0116 0.287 1.780 0.0148 0.295 1.812 

17 2 4 0.190 0.001 2.020 0.0001 0.001 1.002 

18 4 8 752 0.001 1.187 0.0001 0.00308 1.535 

19 5 7 156 0.001 1.436 0.177 0.0121 0.825 

20 7 11 187 0.255 0.098 0.00878 0.356 1.225 

21 8 10 425 0.367 0.751 0.000574 0.001 1.768 

22 2 6 0.224 0.001 1.103 0.0001 0.001 1.105 

23 3 5 0.132 0.285 1.790 0.00141 0.296 1.805 

24 5 9 291 0.234 0.797 0.201 0.00782 0.809 

25 6 8 333 0.001 1.716 0.0001 0.00492 1.258 

26 8 12 509 0.0109 0.808 0.00253 0.001 1.761 

27 9 11 0.280 0.001 1.266 0.0343 0.355 1.241 
 

Table 3. Statistical result, final values of compliance F (Nm) and CPU time (sec) of 100 results of Example 1 with 

different V  (m3) 

V
—

 1 0.7 0.4 0.1 

Case N P  P  P  P 

Max. F 99.050 87.661 186.185 123.573 247.511 218.988 997.379 876.403 

Min. F 81.987 82.930 117.481 118.769 206.680 208.012 833.479 832.460 

Average F 86.544 83.814 123.801 119.474 215.292 210.070 847.479 845.779 

Std. Dev.  3.941 1.194 9.073 1.305 6.723 3.304 35.955 16.568 

Final F 83.095 82.796 118.721 118.650 208.412 207.949 833.855 832.267 

tave 10.95 25.22 7.71 19.36 7.80 12.87 5.83 10.18 

Converged 

Solutions 
76 86 72 83 68 79 61 72 
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It can be observed from Table 2 that none of the member length has extremely small value, and 

the stiffness matrix of the structure preserves regularity during optimization procedure. Note that no 

bound constraint for qi is active, however, the bounds for force densities are needed to prevent 

divergence of optimization process.  

In order to obtain a distinct structural shape and topology, this best result is further optimized by 

solving problem (25) with volume constraint V = 1 (m3) and di∈[0.001, +∞] (m), ˆ1,2, ,i m . The 

four nodes 7, 10, 11 and 12 are combined to a single node and members 4, 6, 13, 17, 18, 19, 22, 25 

and 27, which reach the lower bound of member diameter, are removed before further optimization. 

The optimal solution of problem (25) is shown in Fig. 3(b), with the removal of members whose di 

is equal to di,lower, its compliance is slightly increased to 83.095 Nm. As we can see from Fig. 3, the 

procedure of further optimization “filters” the result and presents a more distinct solution. 

Furthermore, we change the value of V  to 0.7, 0.4 and 0.1 (m3), and find the optimal solutions 

as shown in Figs. 4, 5 and 6, respectively, and the compliances of optimal solutions of problem (25) 

are listed in Table 3. As seen from these figures, layouts of the optimal solutions corresponding to 

different values of V are similar, although they are not the same. The optimal solution for V = 0.7 

(m3) is asymmetric, which is similar to the case of optimal truss in Ref. [21]. Since the members of 

frame are rigidly jointed, the existence of collinear members connected to one node, which may 

cause singularity in stiffness of pin-jointed structure, is permitted. Thus, once the bounds of force 

density are carefully determined, the generation of extremely short members can be prevented 

keeping regularity of the stiffness matrix of the structure.  

We further investigate the effectiveness of the proposed method of Case P with different values 

of V
—

. In this case, nodes 10 and 12, together with nodes 1, 2 and 3, are pin-supported for ensuring 

each of the member is in tension at self-equilibrium state to represent an auxiliary cable net, and no 

load is given for the cable net as the ground structure for finding the nodal location using the FDM. 

The loading condition of the frame to be optimized is the same as before.  

 

 
(a)                                                                       (b) 

Fig. 7 Optimal shapes of Example 1 with Case P and V  = 1 (m3); (a) best result of problem (20), (b) optimal solution 

after solving problem (25) 

 

Best result and optimal solution of problems (20) and (25) with V  = 1 (m3) are shown in Fig. 7, 

and the nodal locations of the best result are listed in Table 1, while the corresponding member 

diameters, force densities and member lengths are listed in Table 2. The values of F after 

improvement are listed in Table 3, denoted as Final F, and their compliance values are close to those 
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with the same values of V , respectively. Note that the optimal shapes of Case P with other values of 

V are almost the same as Fig. 7 before further optimization, and similar to those in Figs. 46 after 

further optimization. Therefore, those figures are not shown here. It is seen from Fig. 7 that the 

optimal shape is defined using some members in the auxiliary cable net with supports in left and 

right boundaries. 

Table 3 also shows the maximum, minimum, average and standard deviation of F of problem 

(20) of 100 runs for each values of V . It is seen from the table that the difference between max F 

and min F with Case N is greater than that of Case P, and the standard deviation also has larger value, 

indicating a wide range of variation in the solutions. This is mainly because if the force density is 

allowed to change from negative to positive real number or vice versa for Case N, the free nodes 

move drastically and the possibility of convergence to a local optimal solution increases. 

On the other hand, if all the members are allowed in tension only, the movement of free nodes 

become smooth due to invariant sign in force density and every node for Case P is balanced in tension. 

It is important to note for Case P that since only positive force density is allowed to exist, the 

boundary condition may be different from Case N, however it has little influence on finding the 

optimal solution of problem (20) if the optimal shape can be successfully determined by a set of 

positive force densities. Some shapes during the optimization procedure are presented and illustrated 

in Appendix for a better interpretation of the proposed method with Case N and Case P. The average 

computation time tave of Example 1 among 100 random seeds are listed in Table 3, with a computer 

configuration of Intel Core i5 processor and 4GB RAM. As explained in Appendix, Case P has 

smoother convergence property than Case N; e.g., for V = 1 (m3); therefore, nearly optimal solution 

can be easily obtained in Case P. However, the number of major iterations of SQP algorithm is 644 

for Case P and 517 for Case N, and the Case P needs more computation time than the Case N, because 

the norm constraint for force density in problem (20) is to be satisfied and the feasible region in Case 

P is smaller than Case N. Although the optimization procedure of Case P is less oscillatory, the step 

length can often be taken as a small value for satisfying the side constraints for qi, requiring more 

iterations. 

7.2 Example 2  

In the second example, we investigate the optimal shape and topology of a 2-dimensional bridge 

frame with a 6×1 grid, where the 14 nodes are connected by 31 beam members, and the initial ground 

structure is shown in Fig. 8. The structure is pin-supported at node 1 and roller-supported at node 13. 

At each of the nodes 3, 5, 7, 9 and 11, a downward vertical load with unit magnitude 1 N is applied. 

Accordingly, these seven nodes are regarded as fixed nodes during the optimization procedure. 
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Fig. 8 Initial ground structure of Example 2 

Again, V = 1 (m3) is first assigned for this example. Because the summation of entries of each 

row in force density matrix Q is zero and y-coordinates of all fixed nodes are zero, one of the trivial 

solution for yfree is 0. Therefore, we assign upward reaction force 2.5 N at the supports 1 and 13 and 

include the y-directional equilibrium equations at the supports to be solved for yfree. The best result 

of problem (13) of Case N is presented in Fig. 9(a), with structural compliance F = 1221.03 (Nm). 

Nodal locations are listed in Table 4, while the corresponding values of q, d, and L for all members 

are listed in Table 5. As seen from Fig. 9(a) and Table 5, the free nodes are separately located such 

that no extremely short member exists. 

 

(a)                                                                       (b) 

Fig. 9 Optimal shapes of Example 2 with Case N and V = 1 (m3); (a) best result of problem (13), (b) optimal solution 

after solving problem (25) 
 

Table 4. Nodal location of best result of Example 2 with V = 1 (m3) 

Node 
Case N Case P 

x y x y 

1 0 0 0 0 

2 0.0062 0.7462 0.0064 0.7583 

3 1 0 1 0 

4 1.0273 2.0677 0.7234 1.7475 

5 2 0 2 0 

6 2.6053 2.5714 1.3496 2.1902 

7 3 0 3 0 

8 3.3339 2.5842 3.0004 2.6822 

9 4 0 4 0 

10 4.978 2.0556 4.6505 2.1903 

11 5 0 5 0 

12 5.8098 1.0044 5.2764 1.7477 

13 6 0 6 0 

14 5.9893 0.5174 5.9936 0.7583 

15 -- -- 0 3 

16 -- -- 1 3 

17 -- -- 2 3 

18 -- -- 3 3 

19 -- -- 4 3 

20 -- -- 5 3 

21 -- -- 6 3 
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Table 5. Force density, diameter and length of best result of Example 2 with V = 1 (m3) 

Member Nodes 
Case N Case P 

qi di Li qi di Li 

1 1 2 2.08 0.304 0.846 0.381 0.302 0.858 

2 1 3 0.365 0.00431 1.000 0.122 0.00300 1.000 

3 1 4 343 0.00402 2.399 0.227 0.001 1.984 

4 2 3 398 0.238 1.305 0.00128 0.2341 1.312 

5 2 4 144 0.266 1.670 0.000790 0.264 1.221 

6 3 4 1.21 0.001 2.168 0.161 0.001 1.868 

7 3 5 0.706 0.207 1.000 0.102 0.203 1.000 

8 3 6 479 0.001 3.117 0.135 0.001 2.316 

9 4 5 0.0495 0.198 2.376 0.0227 0.145 2.245 

10 4 6 177 0.248 1.656 0.164 0.255 0.767 

11 5 6 276 0.001 2.739 0.000687 0.145 2.380 

12 5 7 0.111 0.244 1.000 0.203 0.244 1.000 

13 5 8 0.607 0.001 2.997 0.0164 0.001 2.956 

14 6 7 553 0.134 2.700 0.0135 0.001 2.823 

15 6 8 0.142 0.248 0.729 0.0231 0.247 1.722 

16 7 8 1.23 0.141 2.705 0.0318 0.187 2.782 

17 7 9 0.234 0.244 1.000 0.00720 0.244 1.000 

18 7 10 379 0.001 2.926 0.000117 0.001 2.823 

19 8 9 0.616 0.00424 2.766 0.00911 0.001 2.956 

20 8 10 0.224 0.247 1.727 0.000195 0.247 1.721 

21 9 10 477 0.196 2.367 0.00513 0.145 2.381 

22 9 11 0.495 0.206 1.000 0.0991 0.203 1.000 

23 9 12 0.340 0.0116 2.120 0.0759 0.145 2.245 

24 10 11 0.494 0.001 2.156 0.165 0.001 2.317 

25 10 12 181 0.261 1.340 0.219 0.255 0.767 

26 11 12 224 0.152 1.369 0.0347 0.001 1.868 

27 11 13 0.396 0.00409 1.000 0.0940 0.003 1.000 

28 11 14 0.295 0.183 1.166 0.00310 0.234 1.313 

29 12 13 2.06 0.001 1.121 0.234 0.001 1.984 

30 12 14 650 0.283 0.519 0.000239 0.264 1.222 

31 13 14 363 0.303 0.618 0.433 0.302 0.858 

32 2 15 -- -- -- 0.144 0.001 2.241 

33 2 16 -- -- -- 0.00156 0.001 2.452 

34 15 4 -- -- -- 0.270 0.001 1.446 

35 15 16 -- -- -- 0.0706 0.001 1.000 

36 4 16 -- -- -- 0.171 0.001 1.282 

37 4 17 -- -- -- 0.107 0.001 1.788 

38 16 6 -- -- -- 0.284 0.001 0.882 

39 16 17 -- -- -- 0.139 0.001 1.000 

40 6 17 -- -- -- 0.163 0.001 1.038 

41 6 18 -- -- -- 0.0498 0.001 1.838 
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42 17 8 -- -- -- 0.197 0.001 1.049 

43 17 18 -- -- -- 0.0803 0.001 1.000 

44 8 18 -- -- -- 0.0997 0.001 0.318 

45 8 19 -- -- -- 0.242 0.001 1.049 

46 18 10 -- -- -- 0.142 0.001 1.838 

47 18 19 -- -- -- 0.217 0.001 1.000 

48 10 19 -- -- -- 0.116 0.001 1.038 

49 10 20 -- -- -- 0.342 0.001 0.882 

50 19 12 -- -- -- 0.0582 0.001 1.788 

51 19 20 -- -- -- 0.222 0.001 1.000 

52 12 20 -- -- -- 0.123 0.001 1.282 

53 12 21 -- -- -- 0.251 0.001 1.446 

54 20 14 -- -- -- 0.000616 0.001 2.452 

55 20 21 -- -- -- 0.0738 0.001 1.000 

56 14 21 -- -- -- 0.166 0.001 2.242 
 

 

(a)                                                                                     (b) 

Fig. 10 Illustration of equilibrium condition; (a) pin-supported node 1 and (b) roller-supported node 31 

 

The optimal solution is obtained by solving problem (25) with V = 1 (m3) as shown in Fig. 9(b). 

After removal of thin members with di,lower = 0.001 (m), the compliance F is reduced to 1219.22 Nm. 

It should be noted that members 2 and 27 connecting nodes (1, 3) and nodes (11, 13), respectively, 

do not vanish in Fig. 9(b), making the structure globally stable. This property is different from the 

optimal shape of pin-jointed truss [14], where members 2 and 27 do not exist. This is because only 

axial force equilibrium condition has to be satisfied for truss structure; however, for rigidly-jointed 

frame structure, axial force, shear force and bending moment simultaneously exist in the member, 

leading to the slight inclination of members 1 and 31, as shown in Fig. 10. Therefore, forces in 

members 2 and 27 are not zero-force member and are necessary for satisfying the equilibrium 

conditions at supports.  
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(a)                                                                       (b) 

Fig. 11 Optimal shapes of Example 2 with Case N and V = 0.1 (m3); (a) best result of problem (13), (b) optimal 

solution after solving problem (25) 

 

Table 6. Statistical result, final values of compliance F (Nm) and CPU time (sec) of 100 results of Example 2 with 

different V (m3) 

V (m3) 1 0.1 

Case N P  P 

Max F 7898.12 1276.47 47039.81 13405.61 

Min F 1221.03 1217.43 12255.81 12232.50 

Average F 2252.89 1232.22 15520.27 12448.70 

Std. Dev. 1912.16 21.2445 6842.66 310.84 

Final F  1219.22 1217.07 12255.04 12230.92 

tave  22.65 25.99 12.47 16.01 

Converged 

Solutions 
85 97 82 93 

 

The same optimization procedure is carried out with V  = 0.1 (m3), and compliance of the 

improved optimal solution is listed in Table 6. It can be also found from Fig. 11 that no melting nodes 

exist for this case. Although the frame in Fig. 11 has only six upper nodes, members 25 and 30 

connecting nodes (10, 12) and (12, 14), respectively, are colinear, and node 12 exists on the member 

connecting nodes (10, 14). Furthermore, with the decrease of upper bound volume, the diameters of 

members 2 and 27 are closer to di,lower and these members are removed. However, the best optimal 

result is stable owing to small bending stiffness in members 1 and 31.  
 

 

 Fig. 12 Initial ground structure for Case P of Example 2 
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(a)                                                                       (b) 

Fig. 13 Optimal shapes of Example 2 with Case P and V = 1 (m3); (a) best result of problem (20), (b) optimal solution 

after solving problem (25) 

 

 
(a)                                                                       (b) 

Fig. 14 Optimal shapes of Example 2 with Case P and V = 0.1 (m3); (a) best result of problem (20), (b) optimal 

solution after solving problem (25) 

 

Optimization problems (20) and (25) for Example 2 are solved also with Case P. Seven additional 

nodes 1521 exist at the top of initial structure, as shown in Fig. 12. By fixing the locations of nodes 

1, 3, 5, 7, 9, 11, 13, 1521, we have an auxiliary cable net to define the nodal locations. In order to 

allow the free nodes to move in a wide range, the y-coordinates of the seven additional nodes have 

a large value 3 m. This way, a kind of cable net is generated for solving Eq. (10) to obtain xfree and 

yfree. 

The compliance values of improved optimal solutions are listed in Table 6, and Figs. 13 and 14 

show the optimal solutions for V = 1 and 0.1 (m3), respectively. Although the final structural layout 

of these four solutions are symmetric with respect to the middle vertical axis, symmetry constraints 

are not enforced explicitly. Through observation from Table 6, one can realize that values of F of 

improved optimal solution with the same V are very close in both cases. It is worth noting that the 

initial ground structures for Case N and Case P are different; however, the purpose of adding nodes 

and members is merely to obtain a self-equilibrium state of free nodes with tension state, and none 

of the additional nodes are allowed to move. Therefore, the optimal shapes of both cases are still 

controlled by the same free nodes, i.e., nodes 2, 4, 6, 8 and 10, and similar optimal solutions can be 

found by the proposed method if the coordinates of free nodes of optimal shape can be determined 

in their feasible domain of force density. 

Table 6 also lists the statistical result of 100 runs, together with the computation time tave with 

the same computer configuration as Example 1 and the number of converged solutions within 100 

different trials. It can be observed that the value of maximum F among 100 runs can be 5 or 6 times 



20 
 

the value of minimum F for Case N, indicating the tendency of being trapped in a local optimal 

solution or even diverge to some extent, and its standard deviation is also greater than that of Case 

P. However, the values of average F for both cases are within an acceptable range, about 20% larger 

than the minimum F. 

7.3 Example 3  

The third example is optimization of a grid-like shear wall subjected to a horizontal force of 1 N at 

the top as shown in Fig. 15. The structure is pin-supported at nodes 1 and 31, and because the border 

of shear wall is usually required to keep rectangle after optimization, nodes on the border frame, i.e., 

2, 3, 4, 5, 6, 10, 11, 15, 16, 20, 21, 25, 26, 30, 32, 33, 34 and 35, as well as nodes 1 and 31, are 

classified as fixed nodes, and the remaining 15 nodes are the free nodes. Members of border and 

inner lattice are depicted by thick and thin black lines in Fig. 15, respectively. The cross-section 

diameters of border frame members are fixed at 0.1 m and remain unchanged during the optimization 

procedure. Design variables are the cross-section diameters and force densities of all the inner lattice 

members.  

In this example, only Case P is considered, and Fig. 16 shows the optimization results by solving 

problems (20) and (25) with V =1. 

 
Fig. 15 Initial ground structure of Example 3 

 

 
(a)                                                                       (b) 

Fig. 16 Optimal shapes of Example 3 with Case P and V = 1 (m3); (a) best result of problem (20), (b) optimal solution 

after solving problem (25) 

It can be observed from Fig. 16(a) that no extremely short member exists, although some of the 
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nodes are closely spaced and connected mainly due to the low axial force in the self-equilibrium 

state, and the diameters of many members reach di,lower. Then, the final optimal solution is obtained 

as shown in Fig. 16(b) by further solving problem (25), where the compliance value is 103.0494 Nm. 

Next, problems (20) and (25) are solved with the change of upper volume bound V  to 0.7, 0.4 and 

0.1 (m3). The optimal solutions are shown in Figs. 1719, respectively, and the corresponding 

compliances after improvement are listed in Table 7. For V = 1 and 0.7 (m3), the optimal solutions 

are similar, however, the shape and topology of optimal solution becomes different when V
—

 decrease 

to 0.4 and 0.1 (m3). This is mainly because long members cannot exist if the diameter becomes small 

as V  is decreased.  
 

 

(a)                                                                       (b) 

Fig. 17 Optimal shapes of Example 3 with Case P and V = 0.7 (m3); (a) best result of problem (20), (b) optimal 

solution after solving problem (25) 

 

 

(a)                                                                       (b) 

Fig. 18 Optimal shapes of Example 1 with Case P and V = 0.4 (m3); (a) best result of problem (20), (b) optimal 

solution after solving problem (25) 
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(a)                                                                       (b) 

Fig. 19 Optimal shapes of Example 3 with Case P and V = 0.1 (m3); (a) best result of problem (20), (b) optimal 

solution after solving problem (25) 
 

Table 7. Statistical result, initial and final values of compliance F (Nm) and CPU time (sec) of 100 results of Example 

3 with different V  (m3) 

V (m3) 1 0.7 0.4 0.1 

Max F 107.595 146.811 245.683 889.966 

Min F 103.829 144.110 242.160 840.453 

Average F 105.315 145.700 244.180 851.771 

Std. Dev 0.9778 0.4579 0.6406 10.814 

Final F 103.050 143.794 242.142 840.231 

Initial F  388.792 465.937 626.432 1517.843 

tave 27.45 27.44 22.30 21.47 

   

The maximum, minimum, average and standard deviation of F among 100 random seeds, as well 

as tave, are shown in Table 7. Compliance of initial ground structure where the inner lattice members 

are evenly distributed is also calculated and listed in Table 7 as Initial F for comparison to the optimal 

solution with the same V . It can be seen from Table 7 that the compliance is significantly decreased 

through optimization by the proposed method.  

8 Conclusion 

A new method has been presented for geometry and topology optimization of plane frame structure 

using force density for defining the nodal locations of free nodes. An auxiliary truss or cable net with 

different boundary and loading conditions is used for defining the nodal locations.  

In order to prevent the generation of melting nodes in the structure, the side constraint on member 

length is indirectly assigned by limiting the force density value of each member. Two cases of lower 

bound of force density are given; namely, Case N for negative lower bound and Case P for small 

positive lower bound, which correspond to truss and cable net, respectively, for the definition of 

auxiliary structure for defining nodal coordinates. Sensitivity coefficients of objective and constraint 

functions with respect to force density and member diameter are also derived to accelerate the 

optimization procedure. After obtaining the optimization results, the geometry and topology of the 

structure are further improved in order to achieve a distinct final solution, with no extremely thin 

member or closely space nodes.  
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Three numerical examples are presented to illustrate the effectiveness of the proposed method. 

It has been shown that reasonable shape and topology can be successfully found for both Case N and 

Case P. However, comparison of results obtained from 100 different trials shows that Case P is more 

stable, i.e., has smaller standard deviation, than Case N. An approximate optimal solution can be 

obtained smoothly by assigning a positive lower bound for force density, although convergence to a 

strict optimal solution is slow. 

It is interesting to note in the example of bridge frame that a thin horizontal member is needed at 

the roller support to be at equilibrium with the shear force of the thick vertical member, although 

such member is not needed for a truss or a frame with thin vertical member corresponding to a small 

upper bound of structural volume. Furthermore, the coordinates of free nodes cannot be determined 

using FDM, if the vertical coordinates of fixed nodes have the same value. In this case, an 

equilibrium condition with the reaction force at a support is included to successfully obtain the nodal 

coordinates of free nodes.  
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Appendix  

The intermediate solutions in optimization procedure of Example 1 with V = 1 are shown in Figs. 

A1 and A2 for Cases P and N, respectively. Note that both the results correspond to the best results 

of problem (20), and the red and blue color of members stand for positive and negative member 

forces, respectively. The figure at the top-right of Fig. A2 is trimmed to be consistent with the others, 

although some of the nodes and members are cut off.  
 

 

      Step 1                                             Step 120                                          Step 240 

 

Step 360                                             Step 480                                         Step 600 

Fig. A1 Intermediate solutions of Example 1 with Case P 

 



24 
 

 
Step 1                                             Step 100                                         Step 200 

 
Step 300                                             Step 400                                         Step 500 

 Fig. A2 Intermediate solutions of Example 1 with Case N 

 

As seen from Figs. A1 and A2, in Case N the structure undergoes drastic variation at the beginning 

mainly due to the change of signs of the force; on the other hand, iteration in optimization procedure 

with Case P has “smoother” shape variation leading to a monotonic convergence to the solution. 
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