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Simulated annealing‑based fitting of CAD models to point clouds 
of mechanical parts’ assemblies

Ghazanfar Ali Shah1,2,3   · Arnaud Polette1 · Jean‑Philippe Pernot1 · Franca Giannini2 · Marina Monti2

Abstract
This paper introduces a new fitting approach to allow an efficient part-by-part reconstruction or update of editable CAD 
models fitting the point cloud of a digitized mechanical parts′ assembly. The idea is to make use of parameterized CAD mod-
els whose dimensional parameters are to be optimized to match the acquired point cloud. Parameters may also be related to 
assembly constraints, e.g. the distance between two parts. The optimization kernel relies on a simulated annealing algorithm 
to find out the best values of the parameters so as to minimize the deviations between the point cloud and the CAD models 
to be fitted. Both global and local fitting are possible. During the optimization process, the orientation and positioning of the 
CAD parts are driven by an ICP algorithm. The modifications are ensured by the batch calls to a CAD modeler which updates 
the models as the fitting process goes on. The modeler also handles the assembly constraints. Both single and multiple parts 
can be fitted, either sequentially or simultaneously. The evaluation of the proposed approach is performed using both real 
scanned point clouds and as-scanned virtually generated point clouds which incorporate several artifacts that could appear 
with a real scanner. Results cover several Industry 4.0 related application scenarios, ranging from the global fitting of a single 
part to the update of a complete Digital Mock-Up embedding assembly constraints. The proposed approach demonstrates 
good capacities to help maintaining the coherence between a product/system and its digital twin.

Keywords  CAD assembly models · Digital twin · Constrained fitting · Registration · Simulated annealing · ICP · 
As-scanned point clouds

1  Introduction

Today, the needs to reconstruct or update 3D information 
related to real-world objects, products, systems, build-
ings, environments, terrestrial surfaces and even human 
beings have become mainstream. This topic turns out to 
be of primary interest in the scope of the fourth industrial 

revolution, commonly known as Industry 4.0, and for which 
the demand for access to and use of up-to-date digitized 
information related to the digital twin of a system has raised 
[1]. The increased interest in 3D digitization, combined to 
the emergence of low-cost devices have certainly speeded 
up the development and spreading of new techniques in 
many different application domains, ranging from facial 
reconstruction and comparison on smartphones to complex 
reconstructions for mechanical engineering or architectural 
applications. Depending on the application domain, a wide 
variety of scenarios can be foreseen, and the needs range 
from the acquisition and treatment of incomplete point 
clouds, to the full reconstruction or update of CAD assem-
bly models potentially composed of several components and 
parts. In product development, the objective is to reconstruct 
or to update CAD parts, CAD assembly models and even full 
Digital Mock-Up (DMU) which can then be exploited at dif-
ferent stages of the Product Development Process (PDP). For 
instance, the reconstructed or updated 3D models can then 
be exploited to simulate products’ and systems’ behavior, so 
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as to understand the origin of some failures, to define mitiga-
tion plans and come up with enhanced performances. It can 
also be used to check assembly specifications of products 
and systems which would not have been disassembled before 
scanning, as well as many more scenarios. Actually, such 
an approach can greatly enhance the capacity of companies 
to develop more competitive products, while reducing the 
development times and costs [2]. In the scope of the Indus-
try 4.0, the idea is to be able to update an as-is DMU so as 
to maintain the coherence between a physical system and 
its digital twin. This could be very helpful to get access to 
real-time information regarding for instance the state of a 
machine or of a production line. At the end, this would allow 
more accurate and faster simulations and analyses as well as 
more proactiveness and agility for decision-making.

Unfortunately, current approaches do not fully meet the 
above-mentioned requirements for high-level reconstruction 
and update tools able to consider the information at the level 
of the parts, assemblies and underlying semantics. Today, 
the reconstruction of CAD models from point clouds follows 
a more or less manual, cumbersome, and time-consuming 
patch-by-patch fitting strategy during which engineers have 
to face many issues: pre-processing of the data, segmen-
tation of point clouds, decomposition in patches, fitting 
of primitives, trimming and stitching of the resulting sur-
faces. At the end, manifold B-Rep models are obtained but 
cannot be easily modified as they are considered as dead 
models which do not rely on real building trees [3]. This is 
an important limitation of the existing techniques, which 
prevents efficient reconstructions or updates of consistent 
and editable CAD models. Actually, despite this efferves-
cence around the development of new reconstruction algo-
rithms, very few address the challenging problem of recon-
structing or updating CAD models that could then be edited 
and more successfully exploited in the downstream stages of 
the PDP. This is true when considering single parts and it is 
even truer for the assemblies of several parts potentially sub-
jected to assembly constraints. Again, being able to check 
as-built and as-is models and tolerances as well as to ana-
lyze accessibility issues for maintenance planning without 
disassembling the components can drastically speed up the 
reverse engineering process and thus improve the perfor-
mance of the PDP. More generally, being able to keep track 
of the evolutions of a product/system through its digital twin 
is of foremost importance to support decision-making and 
to evolve towards more optimized and autonomous products 
and systems. This requires a paradigm shift.

This paper introduces a new part-by-part fitting approach 
to circumvent those issues and allow a more global and 
efficient reconstruction or update of editable CAD mod-
els fitting the point cloud of a digitized mechanical parts’ 
assembly. Depending on the adopted scenario, assembly 
constraints can also be specified and maintained during the 

fitting process. The idea is to directly make use of param-
eterized CAD models whose parameters are to be opti-
mized. Parameters may also be related to assembly con-
straints, e.g. the distance between two parts. The proposed 
fitting approach relies on an optimization kernel which 
makes use of a simulated annealing (SA) algorithm to find 
out the best values of the parameters so as to minimize the 
deviations between the point cloud and the CAD models to 
be fitted. Both global and local fitting are possible. During 
the optimization process, the orientation and positioning of 
the CAD parts are driven by an ICP algorithm. The consist-
ency of the CAD models is ensured by calling a modeler, 
which updates the CAD models as the fitting process goes 
on. This reduces the risk to get for instance badly fitted sur-
faces, gaps, overlapping surfaces, self-intersections. The 
modeler also handles the assembly constraints when speci-
fied between the CAD parts. Both single and multiple parts 
can be fitted, either sequentially or simultaneously.

The contribution is threefold:  (1) a new part-by-part 
fitting framework allows the fitting of parameterized and 
editable CAD models to point clouds of digitized mechani-
cal parts assemblies; (2) both local and global fitting can 
be performed thanks to a segmentation strategy controlled 
by a simulated annealing optimization algorithm; (3) the 
method can fit single parts as well as multiple parts option-
ally constrained together with assembly constraints and fitted 
simultaneously. The proposed approach demonstrates good 
capacities to help maintaining the coherence between a prod-
uct or system and its digital twin.

The paper is organized as follows. Section 2 reviews 
the related works and positions the fitting technique with 
respect to state-of-the-art approaches. The proposed frame-
work is then introduced in Sect. 3 and the details of the 
building blocks are given in Sect. 4. The approach is then 
tested and validated on several test cases, including both 
global and local fitting configurations, on single parts as 
well as on assemblies of parts subjected to assembly con-
straints (Sect. 5). Section 6 ends this paper with conclusions 
and perspectives.

2 � Related works

The literature is plenty of more or less sophisticated recon-
struction techniques from point clouds [4]. Here, a focus is 
put on fitting methods of interest to reconstruct or update 
CAD models. To classify the existing approaches, it is 
important to stress that efficient reconstruction algorithms 
use priors, i.e. assumptions made by algorithms to combat 
imperfections in the point cloud and to eventually focus 
what information about the shape is reconstructed. Without 
prior assumptions, the reconstruction problem is ill-posed, 
i.e. an infinite number of solutions can satisfy the fitting 



problem. Of course, when addressing update issues, prior 
assumption is satisfied straightforwardly since it is assumed 
that the model to be updated exists. More precisely, the tech-
niques which can help reconstructing or updating CAD mod-
els from point clouds can make use of three main priors: the 
geometric primitive prior, the global regularity prior and the 
data driven prior.

The geometric primitive prior is adopted in several tech-
niques which try to fit basic geometric primitives in point 
clouds. Among the existing techniques, Fischler et al. have 
introduced the well-known random sampling consensus 
(RANSAC) paradigm to extract shapes by randomly iden-
tifying minimal sets from the point cloud and constructing 
corresponding shape primitives [5]. Schnabel et al. have 
proposed an automatic algorithm to detect basic shapes 
in unorganized point clouds [6]. Their method is based on 
RANSAC paradigm and performs a random sampling to 
detect planes, spheres, cylinders, cones and torii. For models 
with surfaces composed of these basic shapes only, e.g. CAD 
models, the resulting representation solely consists of shape 
proxies. This method has been extended not only to fill in the 
gaps between the detected primitives but also to synthesize 
plausible edges and corners generated from the intersections 
of basic primitives [7]. The method can be applied on point 
clouds of mechanical assemblies but it is unable to identify 
the parts properly saying. Bey et al. [8] have proposed a 
method to reconstruct CAD models from 3D point clouds, 
assuming that an a priori CAD model, roughly similar to the 
scene to reconstruct, is given. Their work is actually limited 
to cylindrical shapes and does not work on complete CAD 
models. Lari et al. have introduced an approach for the iden-
tification, parameterization, and segmentation of planar and 
linear/cylindrical features from laser scanning data, while 
considering the internal characteristics of the input point 
cloud, i.e. local point density variation and noise level in the 
dataset [9]. Their method is limited to very simple primi-
tives and the resulting model is not watertight. Clustering 
approaches can also be used to detect geometric primitives 
in point clouds. To this aim, Attene et al. have proposed a 
hierarchical face clustering algorithm for triangle meshes 
based on fitting primitives belonging to an arbitrary set 
[10]. Their method is particularly efficient and is completely 
automatic which can be interesting in the reverse engineer-
ing context. It generates a binary tree of clusters, each of 
which fitted by one of the primitives employed. However, 
their method does not perform well on incomplete scanned 
data and there is no CAD model reconstruction.

The global regularity prior deals with high-level prop-
erties such as symmetries, structural repetitions, and 
canonical relationship [11]. This is particularly interest-
ing when considering the fitting of CAD models for which 
basic primitives can follow some specific rules. Among 
the existing techniques, Li et al. [12] have developed the 

so-called GlobFit method that simultaneously recovers a set 
of locally fitted primitives along with their global mutual 
relations. Starting with a set of initial RANSAC-based 
locally fitted primitives [6], relations across the primitives 
such as orientation, placement, and equality are progres-
sively learned and conformed to. This algorithm operates 
under the assumption that the data correspond to a man-
made engineering object consisting of basic primitives, 
possibly repeated and globally aligned under common rela-
tions. Monszpart et al. have proposed the so-called RAPter 
algorithm to abstract raw scans by regular arrangements of 
primitive planes by simultaneously extracting a set of primi-
tives along with their inter-primitive relations [13]. How-
ever, those methods can hardly deal with CAD models made 
of more complex features, e.g. blends, draft features. Fur-
thermore, they act at the level of the parts and not at the 
level of an assembly of parts. Finally, as they were initially 
designed to reconstruct basic primitives, this category of 
methods does not allow for a proper update of neither exist-
ing CAD models nor DMU. Such an ability would, how-
ever, be of great interest to update digital twins, and thus, to 
answer some Industry 4.0-related needs.

The data driven prior makes use of existing objects or 
object parts to be fitted to the point clouds in a rigid or non-
rigid manner. This is much more studied in the context of 
scene understanding than for the reconstruction or update 
of mechanical parts assemblies. For instance, Nan et al. 
[14] have proposed an interesting approach for indoor scene 
understanding. The method is based on initial random selec-
tion and iterative region growing with increasing classifica-
tion likelihood. The scene is then reconstructed by deform-
ing template models to fit the classified points. However, this 
technique allows for global fitting only and the adopted tem-
plates are far more simple than real industrial CAD models 
which integrate much more features. Assembly constraints 
are also not considered. Anyway, in the CAD domain, Liu Ip 
et al. have proposed a new approach to retrieve a CAD model 
in a point cloud and to align it using a transformation based 
on principal components analysis [15]. Here, the parameters 
of the CAD model are not modified so as to best fit the point 
cloud. The rigid transformation could also be obtained using 
an efficient variant of the ICP (Iterative Closest Point) algo-
rithm [16]. Rabbani et al. have compared several techniques 
to directly fit CSG objects to point clouds [17]. Their ICT 
(Iterative Closest Triangle-point) algorithm is able to iden-
tify the values of some free parameters as well as to main-
tain the relationships between some other parameters. The 
algorithm can perform global fitting which limits its use 
when considering mechanical parts’ assemblies. Buonamici 
et al. [18] have introduced a template-based technique for 
the reverse engineering of mechanical parts. Here, a CAD 
template is fitted upon the mesh generated from the point 
cloud, optimizing its dimensional parameters and position/



orientation by means of particle swarm optimization algo-
rithm. In their approach, the reference mesh is subdivided 
into N meshes (i.e. N single features) through a segmenta-
tion process with the help of a commercial RE software, 
and afterwards, each segmented region is then registered to 
the corresponding surface of the CAD model. This method 
allows for a global fitting of the CAD template to the ref-
erence mesh. Unfortunately, the method focuses on global 
fitting of parts, and neither the reconstruction nor update 
of CAD assembly models is considered. Wang et al. [19] 
have designed a framework to create 3D models from the 
boundary surface meshes of industrial parts. It exploits a 
divide-and-conquer strategy to construct all primitive fea-
tures of parts. According to the geometric and topological 
relationships among features, some modeling operations are 
performed to obtain the final model. Here again, the result 
is a dead B-Rep model which can be hardly modified in 
the downstream stages of the PDP. Another semi-automated 
approach is introduced by Stark et al. [20] for the reconstruc-
tion of 3D assembly models through the process of segmen-
tation, part identification and structure identification. Point 
cloud data obtained from scanning are used for finding parts 
from database and retrieved parts are used for reconstruc-
tion of assembly model. Bénire et al. [21] have introduced 
an automatic process for the reverse engineering of models 
from 3D meshes. However, the method works on meshes 
obtained by mechanical object discretization. Finally, Xu 
et al. [22] have developed a modeling strategy to reconstruct 
a mechanism from multi-view images. It uses an interactive 
part modeling step to draft the parts which are then fitted 
to the mechanism point cloud. Parts are then aligned using 
an optimization step and the motion parameters can be esti-
mated using a pre-recorded video clip of the mechanism 
motion. This method is interesting as it does not need to use 
a parameterized model as input; however, the segmentation 
properly speaking is left to the user who specifies the cor-
respondences between the parts and the point cloud.

As conclusion, even if some of the previously discussed 
methods can be of interest to support the fitting process 
of mechanical parts, they still suffer from several limita-
tions. First, mostly single CAD parts are reconstructed, 

and very few attention is paid to the direct reconstruction 
or update of CAD assembly models from digitized part 
assemblies. Indeed, existing methods mostly work at the 
level of the parts, and they require the assembly to be disas-
sembled. This is incompatible when considering the needs 
for checking and processing as-is DMUs, and especially in 
the context of the Industry 4.0 where the digital twins should 
follow as much as possible the evolution of the physical 
products/systems, without disassembling them. Second, 
the reconstructed CAD models cannot be easily modified 
in the downstream stages of the PDP as they often corre-
spond to dead B-Rep models. These are the limitations to 
overcome with the proposed fitting framework. In line with 
the Industry 4.0-related scenarios identified and discussed in 
the introduction, the proposed method exploits the assump-
tion that parameterized CAD models to be fitted are a priori 
identified.

3 � Overall framework

This section introduces the overall framework of the simu-
lated annealing-based fitting technique (Fig. 1). The details 
of the different modules are provided in Sect. 4. Starting 
from a real-life mechanical parts’ assembly, a point cloud 
PC0 is first acquired using for instance a laser scanner. One 
or several CAD models to be fitted in the point cloud are 
then selected, being M� the �-th one (with � ∈ {1,… ,Nm} , 
and Nm the number of models to be fitted). CAD models 
can optionally be part of an assembly structure A , poten-
tially composed of subassemblies, and their fitting can be 
performed either sequentially or simultaneously. Here, it 
is assumed that the CAD models are parameterized at the 
level of the parts (e.g. lengths, diameters and angles param-
eterizing the features) and/or at the level of the assem-
blies (e.g. lengths and angles parameterizing the relative 
positions and orientation of the parts the ones with the oth-
ers). Both types of parameters can be considered as numeri-
cal variables xk of the fitting process. Each CAD model may 
also contain additional internal constraints (e.g. equations 
linking parameters of the part, constraints between geometric 

Fig. 1   Overall framework to fit parameterized CAD assembly models to point clouds of digitized mechanical part assemblies



entities as for instance perpendicularity and parallelism), and 
so does each assembly (e.g. coaxiality of two axes, contact 
between two parts, equations between the parts′ parame-
ters). These internal constraints do not take part to the opti-
mization process, and are directly handled by the CAD mod-
eler in charge of updating the assemblies and CAD models 
each time their numerical parameters change. The numerical 
parameters can optionally be gathered in several groups Gj , 
with j ∈ {1,… , jmax} , corresponding to the level of details 
they are related to. The parts are pre-arranged within the 
point cloud; this initializes the values x0

k
 of all the numerical 

variables. The iterative fitting process then starts following 
three nested loops (Fig. 1):

• the segmentation loop aims at segmenting the ini-
tial point cloud PC0 so as to consider only the points
in the surrounding of the Nm models to be fitted, and
thus to allow for local fitting.  This iterative pro-
cess is performed  imax times.  During the i-th loop,
with i ∈ {1,… , imax} , a threshold E�

i
 is computed for each

CAD model (� ∈ {1,… ,Nm}). It is used to get the sur-
rounding point cloud PC�

i
 , while cropping PC�

i−1
 obtained 

during the previous segmentation loop. Thus, the num-
ber of points to be considered in the optimization loop 
progressively reduces step after step. For the first loop 
( i = 1 ), each E�

1
 is initialized from the oriented bounding 

box of the �-th pre-arranged CAD model. These thresh-
olds are used to initialize the segmentation and to gener-
ate the various PC�

1
 from the initial point cloud PC0 and

from the position of the pre-arranged CAD models. In
case of global fitting, the segmentation loop is not used
and the point cloud PC0 is considered as a whole all
along the fitting process;

• the parameters loop is optional and it is executed
only if more than one group of parameters  ( jmax > 1

)  is defined. For each step of the segmentation loop,
the parameter loop treats the jmax groups one after the
other. Each group Gj contains one or more parameters xj,k
to be optimized in the optimization loop;

• the optimization loop is the core of the proposed
approach.  It is based on a simulated annealing algo-
rithm which iteratively modifies the numerical param-
eters of the CAD models until they perfectly fit their
respective cropped point clouds PC�

i
 according to a

stop criterion. Here, the algorithm works on a given
group Gj containing a restricted set of parameters xj,k
to be optimized. During this loop, several steps are to
be performed. First, the SA algorithm identifies new
parameters’ values xj,k(t) , and the CAD models are then
updated accordingly. The update is left to the CAD mod-
eler which ensures the consistency of the updated B-Rep
models and manages the internal constraints defined in
the building trees of the parts. The updated CAD models

are then tessellated on one hand, and used as input of an 
ICP algorithm on the other hand. The ICP algorithm is 
used to compute a homogeneous transformation matrix 
so that the updated CAD models align with their respec-
tive PC�

i
. The CAD modeler then updates the assemblies 

so as to satisfy the possibly defined assembly constraints 
between the parts. Thus, the position and orientation of 
the parts are not considered directly as variables of the 
optimization process. The distances between the updated 
CAD models and their correspondent cropped point 
clouds PC�

i
 can now be computed and the result serves as 

the objective function to be minimized during the optimi-
zation. The optimization loop stops when a max number 
of iteration Miter without any change (up to a given accu-
racy �iter ) is reached, otherwise the SA algorithm goes on 
with the computation of new values xj,k(t + 1). Once the 
optimal values of the parameters have been found, the 
algorithm goes back to the parameters loop if  j < jmax , 
otherwise it goes back to the segmentation loop so as to 
start a new segmentation if i < imax.

At the end of the loops, one or several fitted CAD models 
are obtained. Depending on the adopted scenario and needs, 
this fitting process can be repeated for other parts of the 
digitized assembly. Finally, since the fitted CAD models are 
editable, the user can still modify them while rounding for 
instance the values of the optimized parameters. Moreover, 
the final cropped point clouds PC�

imax
 correspond to partial 

segmentations of PC0 reflecting the fitted parts.
For experimentation and validation purposes, the scan-

ning of a real-life mechanical assembly can be optionally 
bypassed (dashed lines of Fig. 1) by the automatic genera-
tion of an as-scanned point cloud using the virtual acquisi-
tion technique of Montlahuc et al. [23]. In this case, the 
initial CAD models to be fitted are known, and the values 
of their parameters can be compared with the ones result-
ing from the proposed fitting strategy. The virtual scanning 
technique is briefly introduced in Sect. 5 as it is used to 
benchmark and validate the fitting algorithm.

4 � Fitting framework modules

This section introduces the technical aspects underlying 
the fitting of one or several CAD models Mm in the point 
cloud PC0 of a digitized parts’ assembly. CAD models can 
optionally be part of an assembly structure A , potentially 
composed of subassemblies, and constrained with assem-
bly constraints. For sake of clarity, the successive steps are 
illustrated on the fitting of a single flange in the point cloud 
of a digitized valve (Fig. 2). The point cloud is composed of 
1204k points. Section 5 presents and discusses more results 



to cover various fitting scenarios involving several parts and 
assembly structures.

4.1 � CAD models’ selection and pre‑arrangement

Once the parts’ assembly has been digitized, a point 
cloud PC0 is available; the first step is to select the CAD 
models to be fitted. The way this is performed depends on 
the adopted fitting scenario. The models can come from 
an existing database available in the company, when con-
sidering for instance the need to either update the DMU 
of a system/product or control its assembly. They can also 
be roughly and rapidly sketched and parameterized start-
ing from scratch using the CAD modeler. Designers can 
also make use of other existing databases which could be 
browsed using ad hoc assembly retrieval approaches [24].

Each of the Nm selected CAD model, in the following 
indicated as M� , is defined by a set of control param-
eters  p�

k′
 , k� ∈ {1,… ,N�

p
} , which correspond to either 

dimensions or angles. Additional numerical parameters 
ak′ , k� ∈ {1,… ,Na} may also be considered if the CAD 
models are part of an assembly structure A involving 
assembly constraints also parameterized by dimensions 
or angles. Both types of parameters are considered as 
numerical variables xk to be optimized during the optimi-
zation loop. The assembly structure and the CAD models 
may also include built-in constraints (e.g. contact between 
parts, coaxiality, symmetry, parallelism, relationships 
between parameters) to be maintained during the modi-
fications. The updates of the CAD models and assembly 
structure are left to a CAD modeler which ensures the 
consistency of the B-Rep model all along the optimiza-
tion process. Thus, both the assembly structure A and its 

associated CAD models M� can be seen as the result of 
several generation functions g∗ described in the assembly 
and building trees and so that:

Optionally, the control parameters can be split in several 
groups Gj,  j ∈ {1,… , jmax} , according to the level of details 
to which they correspond. The parameters of the group Gj are 
denoted pj,k, k ∈ {1,… ,Npj} , and the numerical variables 
for the optimization loops are the xj,k = pj,k. Actually, using 
a three-level decomposition turns out to be a good trade-
off considering commonly adopted CAD modeling strate-
gies ( jmax = 3): G1 groups the parameters of the assembly 
structure as well as the parameters driving the structural 
features (e.g. pads, pockets, revolutions), G2 gathers together 
the parameters of the detail features (e.g. holes, ribs), and 
G3 is concerned by the parameters used to finalize the CAD 
model (e.g. fillets, chamfers). When considering the fitting 
of several CAD models, all their parameters are mixed up 
within those three groups. Thus, when referring to those 
groups, the upper indices � is no more used. Moreover, to 
simplify the writing, this upper indices will also not be used 
in case a single part is to be fitted (Nm = 1).

For example, Fig. 3 shows the parameters of the single 
flange (Nm = 1 ) to be locally fitted in PC0 as shown on 
Fig. 2. It is defined by eight control parameters (Np = 8

): radii ri with i ∈ {1,… , 6} , heights h1 and h2. It also con-
tains symmetry constraints to be maintained by the CAD 
modeler. As only one single flange is to be fitted, there are 
no assembly constraints ( Na = 0). The three groups can 
then be defined as follows:

(1)

{
A = ga(a1,… , aNa

)

M
�
= g�(p�

1
,… , p�

N�

p

), ∀� ∈ {1,… ,Nm}

Fig. 2   Fitting the parameterized CAD model of a flange in the point 
cloud of a digitized valve assembly  (Nm = 1): a coarse pre-arrange-
ment in the initial point cloud PC0;  b–d evolution of the cropped 

point clouds PCi during the segmentation loops; e final fitted flange 
Mimax

 and associated segmentation PCimax



The CAD models and the assembly structure are then pre-
arranged in the point cloud PC0 ; this initializes the values x0

k
 

of all the parameters, and thus it initializes the pre-arranged 
CAD models M�

0
 and assembly structure A0. This step 

depends on the adopted fitting scenario. For instance, it can 
be performed using pre-identified primitives to align cer-
tain axes of the CAD models with axes obtained using for 
instance RANSAC paradigm [6]. The initial values of the 
control parameters x0

k
 can also be tuned in a coarse manner 

or using global scaling factors. Of course, as for any numeri-
cal method, the idea is to start as close as possible to the final 
solution to avoid local minimums. This step is illustrated on 
Fig. 2a where a coarse pre-arrangement of the flange has 
been performed.

4.2 � Segmentation loop

From this pre-arrangement, if a local fitting is to be con-
sidered, the algorithm crops the initial point cloud PC0 to 
get the subsets PC�

1
 associated to the Nm models to be fit-

ted. For the �-th model, the cropping is driven by an initial 
threshold E�

1
. All the points of PC0 which have a distance 

to M�

0
 greater than E�

1
 are cropped (Fig. 2b). By default, 

E
�

1
 is set up to 10% of the diagonal of the pre-arranged part 

oriented bounding box. This percentage corresponds some-
how to the level of confidence in the pre-arrangement, thus 
the default value can be adjusted. The cropping is done in 
the same way for each model M� , but with different E�

1
 val-

ues. The cropped PC�

1
 are then used to optimize the param-

eters of all the groups Gj in the parameters and optimiza-
tion loops. Those two loops end up with the definition of 
the M�

1
 fitting the PC�

1
. The process goes on this way with 

(2)

G1 ={r1, r2, r3, h1, h2} ∶ p1,1 = r1, p1,2 = r2,

p1,3 =r3, p1,4 = h1 and p1,5 = h2,

G2 ={r4, r5} ∶ p2,1 = r4 and p2,2 = r5,

G3 ={r6} ∶ p3,1 = r6.

successive values E�
i
, i ∈ {2,… , imax} used to crop all the 

points of the PC�

i−1
 which have a distance to the M�

i−1
 greater 

than E�
i
 , and thus define the PC�

i
 used to generate the M�

i

. Here, the E�
i
 are defined according to the max distance 

between the PC�

i−1
 and the M�

i−1
 such that

wherein n�
i−1

 is the number of points in PC�

i−1
 and ��

s
 is a 

segmentation weight empirically set up to 10%.
The segmentation loops are illustrated on the example 

of Fig. 2. Figure 2c shows M1 fitting PC1 and used to com-
pute E2 and PC2. Similarly, Fig. 2d depicts M2 fitting PC2 
and used to get E3 and PC3. Figure 2e shows the final fitted 
CAD model Mimax

 fitting PCimax
, with imax = 3.

4.3 � Parameters loop

As introduced in Sect. 4.1, the parameters xj,k of the j-th 
group can refer to either parameters of the assembly struc-
ture or parameters of one or several CAD models. The 
parameters grouping is not performed according to the 
models but considering the level of details to which they 
correspond. Thus, the number of groups jmax is limited and 
is not affected by the number Nm of models to be fitted.

If groups of parameters are considered ( jmax > 1 ), 
then this nested loop treats each group one by one, oth-
erwise the parameters are treated all together in a sin-
gle step. The treatment makes use of the cropped point 
clouds PC�

i
 generated in the i-th segmentation loop. For 

each group Gj,  j ∈ {1,… , jmax} , it consists in running the 
optimization loop to get the optimized parameters xj,k , with 
k ∈ {1,… ,Npj}.

4.4 � Optimization loop

The objective of this loop is to find out the optimal values 
of the parameters xj,k of a parameters group Gj (parameters 
loop) so that the CAD models M�

i
 best fit their respective 

cropped point clouds PC�

i
 (segmentation loop). Actually, this 

can be formulated as a minimization problem:

where xj,k are the variables, Dj,k their definition domains, 
M

�

i
 the CAD models whose deviations to the cropped point 

clouds PC�

i
 are to be minimized, and Ei,j the energy function 

characterizing this overall deviation. During the successive 
optimization loops, the M�

i
 are updated by the CAD modeler 

using the generation functions g∗ of Eq. (1) where only the 
subset of parameters xj,k is modified. As previously said, 

(3)E
�

i
= �

�

s
×max

{
d (M�

i−1
, PC �

i−1
[�]) ∶ � ∈ [1..n�

i−1
]

}
,

(4)
min

xj,k ∈ Dj,k

k ∈ [1..Npj]

Ei,j(xj,1,… , xj,Npj
) =

Nm∑

�=1

d ( PC �

i
,M�

i
),

Fig. 3   Definition of the eight parameters controlling the shape of the 
half-flange that is fitted in the point cloud of a digitized assembly as 
depicted on Fig. 2



the functions g∗ incorporate built-in constraints (e.g. sym-
metries, relationships) which are not directly accessible in 
the optimization loop but can be satisfied from the build-
ing and assembly trees. The way the distances between the 
points of the PC�

i
 and the CAD models M�

i
 are computed is 

explained in Sect. 4.4.4.

4.4.1 � Resolution using simulated annealing algorithm

The minimization of the energy function Ei,j is obtained 
using a metaheuristic algorithm able to solve the opti-
mization problem in a large solution space. Simulated 
annealing (SA) algorithm has demonstrated good profi-
ciency to find efficiently the solution from a pre-arranged 
configuration. It performs a global stochastic search that 
evolves towards local searches as the time goes on. Thus, 
it is particularly interesting in the present case for which 
the initial positions have been pre-arranged in the close 
vicinity of the final fitted configurations. The algorithm 
handles a very limited set of constraints, mainly the lower 
and upper bounds of the parameters values, and both the 
internal and assembly constraints (e.g. coincident, paral-
lelism, coaxiality, contact) are left to the CAD modeler 
in charge of the updates. The use of such an algorithm is 
particularly interesting in the present case as the energy 
function to be minimized, and the geometric constraints 
to be satisfied, are not defined by equations but by means 
of black boxes combining calls to several procedures of 
the CAD modeler [25, 26]. Other metaheuristics have 
been tested but have demonstrated a lower efficiency than 
SA. For instance, particle swarm optimization (PSO) gen-
erates candidate solutions which can be significantly dif-
ferent from the initial position. This optimization strategy 
may result in configurations that are hard for the CAD 
modeler to update, and may even cause the software to 
crash.

Starting from an initial configuration, potentially com-
posed of an assembly structure A(0) and one or several 
CAD models M�

i
(0) defined by the variables xj,k(0) of the 

j-th group, the algorithm iterates on the parameters xj,k(t) 
thus creating an evolution of the current assembly struc-
ture A(t) and models M�

i
(t). The optimization loop stops 

when a max number of iteration Miter without any change 
of Ei,j (up to a given accuracy �iter ) is reached, otherwise 
the SA algorithm goes on with the computation of new 
values xj,k(t + 1) defining an updated assembly structure 
A(t + 1) and updated models M�

i
(t + 1).  In this nested 

loop, the updates are performed while only considering 
the parameters of the j-th group. The way the SA control 
parameters are tuned is discussed in Sect. 5.2.

4.4.2 � CAD models update and tessellation

The SA algorithm evolves thanks to the variations of the 
energy function to be minimized. This energy is based on the 
distance between the current CAD models M�

i
(t) and their 

cropped point clouds PC�

i
. Thus, at each step of the optimi-

zation loop, the CAD modeler updates the M�

i
(t) according 

to the values xj,k(t) . However, the possible assembly struc-
ture is not updated at this step, but after the ICP registra-
tion as discussed in Sect. 4.4.3. Once updated, each CAD 
model is then tessellated to get the triangle meshes M𝜅

i⊳
(t)

. Actually, in the proposed implementation, the tessellated 
models are directly the ones generated by the modeler for 
the visualization purposes, thus they generally contain few 
triangles with widely varying shapes and dimensions. Then, 
it is possible to compute the deviation between each M𝜅

i⊳
(t) 

and its PC�

i
 by means of computing the distances between a 

point cloud and a mesh (Sect. 4.4.4).

4.4.3 � Registration with ICP and assemblies update

The parameters xj,k(t) controlling the evolution of the CAD 
models M�

i
(t) during the optimization loop do not affect 

the position and orientation of the parts with respect to the 
cropped point clouds PC�

i
 to be fitted. Indeed, adding six 

additional parameters to control the position and orienta-
tion of each part (i.e. 6 × Nm additional control parameters 
overall) would clearly reduce the performances of the SA 
algorithm. Thus, once the M�

i
(t) have been updated, their 

position and orientation are modified using an ICP algorithm 
[27] that finds a best fit rigid body transformation between 
each M𝜅

i⊳
(t) and its PC�

i
 . Then, if it exists, the assembly 

structure A(t) is updated by the CAD modeler and the 
assembly constraints are satisfied.

4.4.4 � Distance computation

Once the possible assembly structure A(t) has been updated, 
and once the M�

i
(t) have been updated, tessellated and reg-

istered, the deviation between PC�

i
 and M�

i
(t) can be com-

puted as follows:

where n�
i
 is the number of points in PC�

i
 , and d(point, mesh) 

is the distance function that returns the closest distance 
between a point and a mesh. In the proposed implementa-
tion, this evaluation is performed efficiently by CloudCom-
pare called in batch mode. When considering several CAD 
models to be fitted simultaneously, the deviations are com-
puted for each model M� with � ∈ {1,… ,Nm} , and each 

(5)d( PC 𝜅

i
,M𝜅

i
(t)) =

n𝜅
i∑

𝜏=1

d2( PC 𝜅

i
[𝜏],M𝜅

i⊳
(t)),



contribution is added up in the overall energy function to be 
minimized (Eq. 4).

4.5 � End of the loops

The three loops operate in a nested manner. Once the opti-
mal parameters values have been found in the related opti-
mization loop, the algorithm goes back to the parameters 
loop if j < jmax , otherwise it goes back to the segmentation 
loop and if i < imax it starts a new segmentation. When all 
the loops are finished, the M�

imax
 correspond to the fitted 

CAD models, and the PC�

imax
 to the by-part segmentations of 

the original point cloud.
This is illustrated on Fig. 2 which shows the evolution 

of the cropped point clouds PCi during the segmentation 
loops, as well as the final fitted flange Mimax

 and associated 
segmentation PCimax

. The numerical results associated to this 
example are discussed in Sect. 5.6.

5 � Results and discussion

This section aims at presenting some additional results to 
validate various fitting scenarios. It briefly introduces the 
technique used to generate as-scanned point clouds, as well 
as the procedure to tune the initial temperature of the SA 
algorithm. Four experimentations are then presented and 
discussed. The first example illustrates the global fitting of 
a L-like shape in an as-scanned point cloud. It allows the 
validation and benchmark of the proposed approach when 
considering more or less noisy data. The second example 
is used to validate the proposed fitting strategy on a real 
scanned point cloud. The third example illustrates how 
the fitting approach can be used to track the position and 
orientation of robot arms, and thus update the digital twin 
of a physical system in the scope of the Industry 4.0. The 
fourth example is more complex as it demonstrates how to 
update a CAD assembly model following a part-by-part fit-
ting strategy, while also considering the simultaneous fitting 
of several parts as well as the possibility to handle assembly 
constraints during the optimization loops.

The core of the fitting algorithm has been implemented 
in MATLABⓇ , which is able to call the built-in functions of 
SolidWorksⓇ to perform the successive updates and ensure 
the consistency of the resulting B-Rep models during the 
optimization loops. The ICP algorithm is run in CloudCom-
pare also called in batch mode.

5.1 � As‑scanned point cloud generation

To experiment and validate the proposed fitting strategy, it 
is mandatory to rely on ground truth data. Thus, the overall 

fitting framework has been customized to allow bypassing the 
scanning of a real-life mechanical assembly (dashed lines of 
Fig. 1) and to enable the use of as-scanned virtually generated 
point clouds. As-scanned point clouds are automatically gener-
ated from CAD models. The resulting point clouds incorporate 
various realistic artifacts (e.g. non-uniform sampling, missing 
data, noise and outliers) that would appear if the corresponding 
real objects were digitalized with a real acquisition device. The 
details of the virtual scanning algorithm can be found in the 
paper of Montlahuc et al. [23]. Overall, the generation of 
an as-scanned point cloud follows a six-step sequential pro-
cess: wrapping of the assembly model to produce a watertight 
triangle mesh, resampling to control the density, removal of 
hidden points to simulate the occlusion phenomenon, genera-
tion of misalignments to simulate multiple poses, insertion of 
noise and outliers. Each step is optional. The removal of points 
follows the efficient HPR algorithm of Katz et al. [28], and 
the insertion of noise is obtained, while moving points along 
the line of sight using a Gaussian random distribution. This is 
illustrated on Fig. 4.

Following this virtual scanning process, the final values pF
k
 

of all the parameters controlling the fitted CAD models and 
assembly structure can be compared to the original values pD

k
 

of the ground truth models as they appear in the DMU. As a 
consequence, for each parameter, the relative deviation �pk and 
the absolute deviation �pk can be computed as follows:

where Np stands for the overall number of parameters pos-
sibly distributed in the parameters groups. The absolute 
deviation is computed at the end of each segmentation 
loop (∀i ∈ {1,… , imax} ) so as to appreciate the convergence 
step after step, whereas the relative deviation is computed 

(6)
�pk =

���pk
��

��
�
pD
k

��
�

=

���
pD
k
− pF

k

���
��
�
pD
k

��
�

∀k ∈ [1…Np]

with Np =
∑jmax

j=1
Npj,

Fig. 4   Generation of as-scanned point clouds [23]: a CAD assembly 
model to be virtually scanned, b point cloud without noise, and with 
noise, c using different view points



on the final configuration only (i = imax ) so as to assess the 
accuracy of the overall fitting process.

5.2 � Tuning of the SA algorithm initial temperature

For an efficient search of the xk optimal numerical val-
ues, the SA algorithm initial temperature T0 needs to be 
tuned. In the proposed implementation, T0 is initialized 
before entering the three nested loops and following a 
procedure similar to the one of Ben-Ameur [29]. More 
precisely, the initialization procedure looks for the opti-
mal temperature T0 that maximizes the decrease of the 
energy function in a measuring window of width Witer , 
i.e. between iteration 1 and Witer. This is performed while 
launching several times the SA algorithm with different T0
. For each T0 , the value of the energy function is tracked 
during the Witer very first iterations of the SA algorithm, 
and the temperature which gives rise to the most impor-
tant decrease of the energy function is selected. Actu-
ally, to smooth the effect of the stochastic behavior, the 
energy function is averaged while considering its values 
during the Liter last iterations of the measuring window, 
i.e. between iterations (Witer − Liter) and Witer. As a con-
sequence, the initial temperature T0 of the SA algorithm 
varies depending on the fitting scenarios.

In the following examples, selecting a measuring width 
of Witer = 25 first iterations and considering the Liter = 5 
last iterations of this window to smooth the energy values 
have proved to be good trade-off between waiting a suf-
ficient stabilization of the stochastic behavior, and avoid-
ing too much iterations. Actually, these values must be 
compared to the 150 iterations usually required for the SA 
algorithm to converge, i.e. to reach a max number of itera-
tion Miter without any change of the energy function (up to 
a given accuracy �iter). Moreover, in the proposed imple-
mentation, the values of T0 to be tested evolve between 
5 and 50 with an increment of 5. Thus, ten simulations 
(stopped after Witer iterations) are necessary to identify the 
best initial temperature for a given fitting example.

5.3 � Global fitting of a symmetric L‑like shape

The first example deals with the global fitting of a symmetric 
L-like shape controlled by five parameters (Na = 0 , Nm = 1 
and Np = 5): the lengths L and � , the thickness e, the holes 
radius R and the size of the fillet r. This part has been rapidly 
sketched and parameterized in a pre-processing step. Three 
groups of parameters are defined according to the level of 
detail they correspond to (Fig. 5 and Table 1). This decom-
position conforms to the classical CAD modeling strategy, 
which starts from structural and detail features, and ends 
up with skinning features. From the original CAD model, 
an as-scanned point cloud has been created using the HPR 
algorithm from 6 viewpoints. The point cloud is composed 
of about 500k points. At first, no noise has been added. As 
it is a global fitting, no segmentation is performed and the 
optimization loop is run on the three parameter groups. At 
each iteration, the ICP algorithm is run to control the posi-
tion and orientation of the updated part with respect to the 
point cloud.

Following the initialization procedure detailed in 
Sect. 5.2, the initial temperature T0 of the SA algorithm is 
set up to 10 for the L-like shape fitting example. This is the 
value of T0 that maximizes the decrease of the energy func-
tion in the very first iterations. The algorithm stops when a 
max number of iteration (Miter = 50 ) without any change (up 
to an accuracy �iter = 10−1 ) is reached. The algorithm runs 
for the successive segmentations (segmentation loop), and 
for the three groups of parameters (parameters loop). The 
graphics of Fig. 6 show the SA evolution curves for the three 
parameters groups Gj of the last segmentation loop (i = 3

). The group G1 is optimized first, then G2 , and G3 at last. The 
stochastic nature of the SA algorithm is clearly visible. Such 
an algorithm is interesting to solve this global optimization 
problem in a large search space. Of course, in scenarios 
where the final parameters values are to be rounded, the 
minimization process could stop earlier while acting on the 
value of �iter.

Figure 5 shows the fitted L-like shape and the numeri-
cal results are gathered together in Table 1. The average 

Fig. 5   Global fitting of a L-like shape following three optimization loops: a coarse pre-arrangement in the initial point cloud; b loop on G1 ; c 
loop on G2 ; d final fitted part after a loop on G3



absolute deviation between the point cloud and the CAD 
model is about 0.1133 mm (min = 0.0 mm, max = 0.3907 
mm, std = 0.0495 mm) and the average relative devia-
tion is about 0.0034 (when using the average of the three 
dimensions of the oriented bounding box as a reference 

distance), which is quite low. The relative and absolute 
deviations between the parameters final values pF

k
 and the 

ones of the original part pD
k

 are low. Actually, the larg-
est deviations are for parameters e and r. This is due to 
the fact that those parameters are controlling relatively 
small features whose size variations have a low impact 
on the energy function to be minimized. This effect is 
more deeply analyzed in Sect. 5.4 where alternative solu-
tions are sketched. Using this part-by-part fitting strategy, 
the final L-like shape better fits the point cloud than if a 
traditional patch-by-patch reconstruction process would 
have been followed. Indeed, the L-like shape is fitted glob-
ally and the final solution does not depend on a reference 
surface which would have been fitted individually at the 
beginning of the manual reconstruction process. Moreover, 
internal constraints (e.g. symmetry, perpendicularity, holes 
centered on the faces) are directly managed by the CAD 
modeler, which handles the successive updates and main-
tains the CAD model consistency step after step. Finally, if 
the parameters would not have been distributed in the three 
groups, the results would have been less good. Indeed, 
when considering the five parameters at the same level, 
the average absolute deviation is about 0.2636 mm (min 
= 0.0 mm, max = 2.2474 mm, std = 0.4264 mm) and the 
average relative deviation is about 0.0080, and both values 
are higher than when considering the parameters within 
the three groups. This validates the proposed decomposi-
tion strategy.

Another experimentation has been performed to study 
the impact of the presence of noise on the fitting results. 
To this aim, a noise has been added to the whole point 
cloud using a Gaussian noise random distribution con-
trolled by an amplitude factor. Results of the fitting pro-
cess with two levels of noise ( 50 μm and 100 μm ) are 
listed in Table  2.  One can clearly observe that as the 
noise increases, the relative deviation also increases 
coherently. This effect is more significant for small fea-
tures. Obviously, the levels of noise which have been 
applied are far greater than what can appear on a well-cali-
brated acquisition device used in normal conditions. Thus, 
the proposed approach is relatively stable to noise, except 
for small detail features which can hardly be well fitted in 
the presence of too much noise. But in this case, follow-
ing a more conventional manual reconstruction process 

0.0E+0

3.3E+6

6.6E+6

9.9E+6

1.3E+7

1.7E+7

2.0E+7

2.3E+7

2.6E+7

3.0E+7

0

5

10

15

20

25

30

35

40

45

1 25 49 73 97 121 145 169 193 217 241

L (mm) l (mm) e (mm) Energy (mm²)

Itera�ons

p1, E3,1

0.0E+0

5.0E+5

1.0E+6

1.5E+6

2.0E+6

2.5E+6

3.0E+6

3.5E+6

4.0E+6

4.5E+6

5.0E+6

0

2

4

6

8

10

12

14

16

18

1 25 49 73 97 121 145 169 193

R (mm) Energy (mm²)

Itera�ons

p2, E3,2

0.0E+0

2.6E+4

5.2E+4

7.8E+4

1.0E+5

1.3E+5

1.6E+5

1.8E+5

2.1E+5

2.3E+5

0

2

4

6

8

10

12

14

16

18

1 25 49 73 97 121 145 169 193 217

r (mm) Energy (mm²)

Itera�ons

p3, E3,3

Fig. 6   Simulated annealing evolution curves for the three parameters 
loops ( j ∈ {1,… , 3} ) of the last segmentation step (i = 3 ) during the 
global fitting of a L-like shape: parameters values evolution (left) and 
energy evolution (right)

Table 1   Results for the 
global fitting of a L-like 
shape (without noise and with 
an initial temperature of the SA 
algorithm T

0
= 10)

Groups pk p0
k
 (mm) pD

k
 (mm) pF

k
 (mm) �pk (mm) �pk

G
1

L 25 35 34.7800 0.2200 0.0063
� 20 30 29.9210 0.0790 0.0026
e 2 5 4.7514 0.2486 0.0497

G
2

R 3 6 6.0045 − 0.0045 0.0008
G
3

r 2 5 4.7061 0.2939 0.0588



would lead to the same difficulties. Anyhow, depending on 
the adopted fitting scenario, the obtained parameter values 
may also be rounded at the end.

5.4 � Global fitting of a sonotrode to a real scanned 
point cloud

This second example studies the behavior of the fitting 
algorithm when dealing with real scanned data. This time, 
a ROMER Absolute Arm 7520 SI (7 axis, 2m acquisition 
volume, absolute encoders, RSI laser sensor 30000pts/s) has 
been used to scan a Sonotrode (Fig. 7a) and get a point cloud 
of about 257k points (Fig. 7b). The resulting point cloud 
incorporates noise and artifacts. The CAD model of the 
Sonotrode to be fitted is controlled by ten parameters split 
in three groups (Na = 0 , Nm = 1 and Np = 10): structural 
features ( G1 ), geometric features ( G2 ) and skinning features 
( G3). Following the initialization procedure of Sect. 5.2, the 
initial temperature T0 of the SA algorithm is set up to ten for 
the Sonotrode example, and the other control parameters 
are the same as for the previous example (Miter = 50 and 
�iter = 10−1). The fitting process starts by the pre-arrange-
ment of the CAD model with respect to the reference point 
cloud (Fig. 7b). This initializes the fitting algorithm, which 
then starts by optimization the structural parameters of 
G1 (Fig. 7c). For this loop, the holes D3 and D4 have been 
deactivated from the building tree. Doing this way, the fit-
ting of D1 is not affected by the internal points related to the 
holes, and the corresponding areas of the point cloud can be 
cropped through the segmentation loop. The parameters of 

G2 are then optimized (Fig. 7d). The axes of the holes are 
constrained using built-in constraints (i.e. perpendicularity, 
coaxiality and circular repetition) of the CAD modeler in 
charge of the updates. Due to the occlusion phenomenon, 
there are too few points to accurately identify the depth of 
the holes, which, therefore, has not been considered as a 
parameter to be optimized. As part of the last optimization 
loop, the parameters of G3 are then optimized to get the final 
fitted CAD model of the Sonotrode (Fig. 7e). The numerical 
results are synthesized in Table 3.

This fitting problem is more complex and the dif-
ficulties are threefold:  (i) the number of variables is 
greater than in the previous case, resulting in more itera-
tions; (ii) some features are quite small when compared 
to the size of the object, and their contribution within 
the energy function becomes negligible, thus caus-
ing greater deviations of the corresponding parameters 

Fig. 7   Global fitting of a Sonotrode to a real scanned point cloud following 3 optimization loops: a scanned Sonotrode; b coarse pre-arrange-
ment in the initial point cloud; c loop on G1 ; d loop on G2 ; e final fitted part after a loop on G3

Table 2   Evolution of the relative deviation �pk with respect to the 
amplitude of the inserted noise (0 μm , 50 μm , 100 μm ) for the global 
fitting of the L-like shape

Groups pk Relative deviation �pk

0 μm 50 μm 100 μm

G
1

L 0.0063 0.0068 0.0187
� 0.0026 0.0000 0.0099
e 0.0497 0.0553 0.1315

G
2

R 0.0008 0.0018 0.0192
G
3

r 0.0588 0.0327 0.1332



values (e.g. parameter r4 in G3);  (iii) due to the occlu-
sion phenomenon, the internal holes cannot be well cap-
tured by the acquisition device, resulting in difficulties 
to get a good fitting of the internal holes’ parameters 
(i.e. parameters in G2 and depth of the holes). Despite 
those difficulties, the average absolute deviation between 
the point cloud and the CAD model of the Sonotrode is 
about 0.0622 mm (min = 0.0 mm, max = 5.8095 mm, std 
= 0.3536 mm) and the average relative deviation is about 
0.0010, which is quite low. The larger values of min and 
max can directly be ascribed to the issue (iii).

This example shows that the size of the features clearly 
influences the quality of the fitting. This is directly linked 
to the contribution of those features within the overall 
energy function to be minimized. This issue could be 
overcome while considering a particular weighting strat-
egy for each feature of the CAD model to be fitted. As a 
consequence, in a pre-processing step, the parameterized 
CAD model could be used to compute the sensitivity of 
each parameter pk to shape variations, and then infer the 
proper distribution of the weights. This is further dis-
cussed in the conclusion.

5.5 � Local fitting of robot arms

The third example illustrates how the fitting approach can 
be used to track successive moves of robot arms, and thus 
update the digital twin of a physical system (Fig. 8). The 
robot is supposed to be stopped during the update of its 
digital twin. Such a possibility is particularly interesting to 
maintain the coherence between the physical system and its 
digital twin in the scope of the Industry 4.0 [1].

The DMU of the considered robot is composed of 
three arms and one fixed support (Nm = 3). The orienta-
tion of the arms with respect to the others is parameterized 
by three angles �i (with i ∈ [1… 3] ) gathered in a single 
group G1 (Fig. 8a). The shape of the arms is not considered 
in this test case (Np = 0 ), which focuses on the global fitting 
of the assembly structure (Na = 3). Here, the objective is to 
be able to retrieve the values of the arms’ rotation parameters 
after three moves of the robot. To this aim, three as-scanned 
point clouds have been created using the HPR algorithm 
from six viewpoints, thus generating a bunch of 614 k/520 
k/410 k points for, respectively, the first, second and third 
move. Following the initialization procedure of Sect. 5.2, 
the initial temperature T0 of the SA algorithm is set up to 25 
for the robot arms example, and the other control parameters 

Table 3   Results for the global 
fitting of a Sonotrode to a real 
point cloud obtained by a laser 
scanner

Groups pk p0
k
 (mm) pD

k
 (mm) pF

k
 (mm) �pk (mm) �pk

G
1

D
1

30 35 34.9872 0.0128 0.0004
L
1

40 47 47.6183 − 0.6183 0.0132
L
2

70 75 74.0385 0.9615 0.0128
r
1

7 11.5 11.4656 0.0344 0.0030
r
2

22 24 21.1645 2.8355 0.1181
r
3

12 20 20.0028 − 0.0028 0.0001
G
2

D
3

9 6 6.6348 − 0.6348 0.1058
D

4
4 8 7.9101 0.0899 0.0112

L
3

27 30 29.7042 0.2958 0.0099
G
3

r
4

0.5 1.5 0.8376 0.6624 0.4416

Fig. 8   Fitting of robot arms constrained with assembly constraints and parameterized by 3 rotation angles: a initial configuration; b–d final con-
figurations fitting respectively the first, second and third robot moves



are the same as for the previous example (Miter = 50 and 
�iter = 10−1). Starting from an initial configuration, the fit-
ting algorithm is sequentially called three times so that the 
robot arms successively fit the three virtually generated point 
clouds (Fig. 8b–d).

The numerical results are provided in Table 4. It clearly 
shows that the parameters’ values obtained after a fitting 
serves as new initial values for the next fitting. As in the 
previous test cases, the relative deviations of the control 
parameters are very low. In the worst case, i.e. for the move 
that gives the largest deviation, the average absolute devia-
tion between the point cloud and the CAD models is about 
0.0068 mm (min = 0.0 mm, max = 5.5210 mm, std = 0.1071 
mm) and the average relative deviation is about 0.00001, 
which is also quite low. Actually, when only dealing with 
assembly parameters only, the fitting process is very efficient 
as it does not require CAD models updates. This demon-
strates the pertinence of the proposed technique to tackle 
such a fitting scenario in the scope of the Industry 4.0. This 
is a first step towards the accurate tracking of robots evolving 
in complex industrial environments.

5.6 � Local fitting of multiple parts in a valve 
assembly

The last example illustrates how the fitting strategy can be 
used to update the CAD assembly model of a valve. Here, it 
is assumed that the CAD models already exist and need to be 
updated. To be able to validate the approach, from the origi-
nal DMU made of 40 assembled parts, an as-scanned point 
cloud has been created using the HPR algorithm from 10 
viewpoints. The resulting point cloud is composed of 1204 k 
points. No noise has been added. The reconstruction process 
follows a part-by-part fitting strategy where several parts can 
be fitted simultaneously, while also satisfying assembly con-
straints. Each part is defined by several control parameters, 
whose values are to be optimized (Table 5). In this scenario, 
the parts with the biggest extent are fitted first so as to get a 
good initial fitting, which will then serve as a reference for 
the fitting of the other parts. However, as it will be explained, 

during the successive fittings, parameters of previously fitted 
parts can still be reconsidered as variables for the upcoming 
fitting steps. Indeed, considering more points step after step 
can improve the fitting accuracy of previously fitted parts. Of 
course, if the final objective is to control possible misalign-
ments between assembled parts, assembly constraints should 
not be specified so as to let the algorithm capturing the as-is 
assembly configuration, but this is not the considered sce-
nario here. The SA control parameters are tuned as for the 
previous examples (Miter = 50 and �iter = 10−1 ), except for 
the initial temperature T0 that is tuned differently for each of 
the parts to be fitted.

At first, after a pre-arrangement of the two flanges in the 
point cloud, the initial temperature T0 of the SA algorithm 
is set up to 15 while following the initialization procedure 
of Sect.  5.2. The two flanges are fitted simultaneously 
using eight parameters to control the shape of the flanges 
and one parameter to control the distance between the two 
flanges (Nm = 2 , Np = 8 and Na = 1). Additional assembly 
constraints are also used and directly handled by the CAD 
modeler in charge of the successive updates (Fig. 9.a1 and 
a2): the axes of the cylindrical faces of radius r1 have to be 
coincident (orange color), so do the axes of the through holes 
of radius r5. Overall, the deviations between the final param-
eters values and the ones of the original part are low. Actu-
ally, the largest deviations are for parameters r5 and r6. This 
is due to the fact that those radii are rather small and very 
few points can contribute to the fitting. Anyhow, a more 
conventional reverse engineering process would lead to the 
same issue. Since the two flanges are fitted simultaneously, 
the resulting deviations are smaller than if the flanges would 
have been fitted sequentially. This is due to the fact that the 
number of points and their distribution in the 3D space make 
this configuration more stable than when fitting the flanges 
one after the other.

Once the two flanges fitted, the update process keeps on 
going with the simultaneous fitting of two identical screws 
defined by four control parameters (Fig. 9.b1 and b2). For this 
fitting step, the parameter r4 of the flanges is reconsidered as 
a variable that can be further optimized during the fitting of 

Table 4   Results obtained when 
fitting three successive moves 
of robot arms parameterized by 
three rotation angles

Groups pk p0
k
 (mm) pD

k
 (mm) pF

k
 (mm) �pk (mm) �pk

G
1
 Move-1 �

1
75 90 89.9990 0.0010 0.0000

�
2

15 30 29.9946 0.0054 0.0002
�
3

65 95 94.9968 0.0032 0.0000
G
1
 Move-2 �

1
89.9990 115 114.9987 0.0013 0.0000

�
2

29.9946 55 54.9954 0.0046 0.0001
�
3

94.9968 120 119.9976 0.0024 0.0000
G
1
 Move-3 �

1
114.9987 140 139.9985 0.0015 0.0000

�
2

54.9954 90 89.9935 0.0065 0.0001
�
3

119.9976 170 170.0019 − 0.0019 0.0000



the screws. Thus, the SA algorithm tries to find the optimal 
values of five parameters (four parameters of the screws, 
and one parameter of the flanges). The pre-arrangement 
is performed while using the axes of the previously fitted 
flanges. Each screw is constrained to have its axis coinci-
dent with the axis of the flange’s through hole (orange and 
purple colors), and the front planar face of the flange should 
be coincident with the contact face of the screw head (blue 
color). Following the initialization procedure of Sect. 5.2, 
the initial temperature T0 of the SA algorithm is set up to 
10 for the screws fitting. Here again, as the two screws are 
fitted simultaneously, the final parameters deviations are bet-
ter controlled. Similarly, the two nuts are then fitted based 
on the previously fitted screws and flanges (Fig. 9.c1 and 
c2). Each nut is parameterized by two control parameters 
and it is constrained to have its axis coincident with the 
axis of the screw (orange and purple), and the bottom face 
of the nut should be coincident with the planar face of the 
flange (blue color). For this fitting step, the parameter r4 of 
the two flanges and the diameter bd of the screws are recon-
sidered as variables that can be further optimized during 
the fitting of the nuts. Thus, the SA algorithm tries to find 
the optimal values of four parameters (two parameters of 
the nuts, one parameter of the flange and 1 parameter of the 
screw). In addition, the diameter bd of both the screws and 
nuts are linked to the radius r5 of the fitted flanges. Here, the 
initial temperature T0 of the SA algorithm is set up to 5 for 
the nuts fitting.

Following the part-by-part fitting strategy, the central 
part is then fitted while optimizing the values of five con-
trol parameters (Fig. 9.d1 and d2). Using the same coloring 
strategy, the axes of the two parts are constrained to be coin-
cident, and the lateral contact faces of the central part are 
constrained to be coincident with the back faces of the two 
flanges. Here, the initial temperature is set up to 5. Then, 
the top plate is fitted to the point cloud. It is parameterized 
by five control parameters and aligned with the central part 
using coincidence constraints on both the axes and contact 
faces (Fig. 9.e1 and e2). The initial temperature is set up to 
10 for the top plate. For this fitting step, the parameter cpd1 
of the central part is reconsidered as a variable to be further 
optimized. Thus, the SA algorithm tries to find the values 
of six parameters (five parameters of the top plate, and one 
parameter of the central part). Finally, the bottom plate is 
fitted to the point cloud. It is parameterized by four con-
trol parameters and aligned with the central part with which 
it is also in contact (Fig. 9.f1 and f2). For this fitting step, 
the parameter cpd2 of the central part is reconsidered as a 
variable to be further optimized. Thus, the SA algorithm 
tries to find the values of five control parameters (4 param-
eters of the bottom plate, and one parameter of the central 
part). Here, the initial temperature is set up to 5 for the bot-
tom plate.

This example clear shows the potential of the pro-
posed part-by-part fitting strategy to update an entire CAD 
assembly model so that it fits the point cloud of a digitized 
assembly. The method is also able to segment the point 
cloud of the digitized valve so as to highlight the different 
parts (Fig. 9.g1 to g4). The relative deviations of the control 
parameters are quite low (Table 5), except for the radius of 
some fillets and for small features for which larger deviations 
can be ascribed to a lack of data in the corresponding areas 
of the point cloud. This has been discussed for the previous 
experiments. Here again, depending on the adopted sce-
nario, the obtained parameter values may be rounded at the 
end. Of course, being the screws and nuts standard elements, 
the obtained parameters values can serve as a reference to 
select in a catalog the closest available ones. Finally, Table 6 
gathered together the absolute and relative errors measured 
between the point cloud and each fitted part. Those errors are 
rather small when compared to the size of the parts.

6 � Conclusion and future works

This paper has introduced a new framework able to fit simul-
taneously several parameterized CAD models in the point 
cloud of a digitized assembly. CAD models to be fitted can 
also be constrained with assembly constraints. Both the con-
sistency of the CAD models and the constraints between them 
are managed by the CAD modeler which acts every time 
the parameters are modified. The resulting CAD models can 
directly be used and edited in the stages of the PDP. When 
considering local fitting, the initial point cloud is also seg-
mented at the end of the process. The proposed approach is 
very promising when considering the need to maintain the 
coherence between a physical system and its digital twin in 
the scope of the Industry 4.0. It bypasses the traditional tedi-
ous and time-consuming patch-by-patch reverse engineering 
process. It makes use of a simulated annealing algorithm to 
find the optimal values in a large search space. The frame-
work has been designed around three nested loops which act 
at different levels: the segmentation loop that isolates step 
after step the subset of the original point cloud to which the 
CAD models have to be fitted; the parameters loop which 
splits the optimization problem according to three catego-
ries of parameters, similar to what is traditionally used when 
modeling CAD parts and assemblies in a CAD environment; 
and the optimization loop which runs the simulated anneal-
ing algorithm on the subproblems. The method has proved 
its efficiency for global and local fitting. It has been tested 
on several configurations, for which as-scanned point clouds 
have been generated following an ad hoc virtual scanning 
approach. Thus, it has been possible to measure the devia-
tions between the parameters of the fitted parts, and the 
ones of the original parts as they appear in the DMU. The 





influence of the noise and of the parameters grouping on the 
final results have also been analyzed. The experimentations 
have been performed on mechanical parts assemblies, but the 
method could be extended to allow the more general local 
fitting of parameterized objects in virtual environments. A 
first attempt to define a tracking approach able to maintain 
the coherence between a physical system and its digital twin 
has proved to be promising, and it already gives good results 
on a simple 3-axes robot.

The various experimentations allowed to demonstrate 
several interesting features of the approach, as well as ways 
of improvement. Among others, it is clearly demonstrated 
that for the local fitting, a sufficient amount of information 
has to be accessible. This is of course very similar to the 
traditional manual reconstruction process, and the proposed 
approach cannot capture the invisible. This is notably true 
to fit small features as well as to capture interfaces between 
parts. Thus, few disassembly steps might be required before 
scanning. The exploitation of RANSAC-based, or even 
manually, extracted primitives to be used as constraints of 
the fitting problem could help solving this issue. The integra-
tion of this fitting technique as part of a reverse engineering 
framework might also help speeding the entire reconstruc-
tion process in case no parameterized model exists. How-
ever, this requires some adaption so as to be able to work 
with parameters of 2D sketches and 3D features, and thus 
to allow reconstructing a full CAD model step after step 

Fig. 9   Successive fittings of multiple CAD models in the point cloud 
of a digitized valve assembly: ( a1 ) coarse pre-arrangement of two 
flanges in the initial point cloud; ( a2 ) final fitted flanges; ( b1 ) pre-
arrangement of two screws; ( b2 ) final fitted screws; ( c1 ) pre-arrange-
ment of two nuts; ( c2 ) final fitted nuts; ( d1 ) pre-arrangement of the 
central part; ( d2 ) final fitted central part; ( e1 ) pre-arrangement of the 
top plate; ( e2 ) final fitted top plate; ( f1 ) pre-arrangement of the bottom 
plate; ( f2 ) final fitted bottom plate; ( g1 to g4 ) successive segmentations 
of PC0

◂

Table 5   Results for the local fitting of multiple parts in a valve assembly



following a feature-by-feature reconstruction strategy. This 
is part of future works.

The proposed approach is modular and each module 
can still be improved separately. As already explained, 
the energy function could be weighed to better reflect the 
influence of the different parameters on the shape varia-
tions. The weights could rely on a sensitivity analysis run 
at the beginning of the fitting process. Moreover, the current 
implementation is yet at the level of the prototype and it 
does not fully allow for real-time fitting. This is mainly due 
to the modularity of the implementation that calls external 
modules that need to exchange with the optimization ker-
nel. Thus, a better integration of the different modules can 
drastically reduce the time spent to read/write/update the 
data in the various data structures of the different mod-
ules. In addition, in the current version, the thresholds used 
to tune the accuracy of the final results have been set up to 
quite low values so as to get very good fitting results. Of 
course, depending on the scenarios and parts to be fit-
ted, a good trade-off between accuracy and time has to be 
found. Thus, the thresholds could be increased and the final 
results rounded. This is particularly true for instance for 
the standard parts that will anyhow be selected in a catalog 
and defined with predefined parameters values (e.g. screws, 
nuts). Parallelization can also be a good mean to speed up 
the overall process, while considering for instance that the 
parameters loops are executed step after step while letting 
the user free to interact and continue his/her work on the 
already fitted parts.

Finally, the use of parameterized CAD models as priors 
is a promising idea to avoid learning the parameters from 
the data as there are explicitly encoded in the CAD mod-
els. More generally, global regularity priors (e.g. symme-
tries, repetitions, relationships) are directly encoded in the 
CAD models and can thus be exploited when solving the 
fitting problem. Clearly, more domain-dependent knowl-
edge still remain to be exploited to better support advanced 
treatments of geometric models. This could also help bet-
ter solving the tracking of systems evolving in complex 
environments.
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