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ABSTRACT 

Fracture toughness is a measurement of fracture resistance and is a crucial parameter in 

designing and manufacturing structural engineering components, including the components of 

ships and offshore structures. However, accurate measurement of fracture toughness requires a 

fatigue pre-cracked specimen which can be challenging to prepare in extremely brittle 

materials. Moreover, specimen thickness is another requirement which can be challenging to 

achieve as well, particularly in very tough materials. Therefore, a physics-based closed-form 

analytical expression is proposed to determine fracture toughness of isotropic materials simply 

by utilizing a uniaxial tensile test specimen. The expression naturally introduces a length scale 

parameter, consistent with non-local applications, such as peridynamics, as well. Fracture 

toughness of various metallic materials, including both brittle and ductile, are predicted and 

compared to the experimental results in the literature. Predicted fracture toughness values are 

in good agreement with the experimentally measured ones. 
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Nomenclature 

𝐴 area of the fracture plane 
C𝐼 specific surface energy density (of Mode I fracture) 
𝑑𝑒𝐼 , 𝑑𝑒𝐼𝐼 , 𝑑𝑒𝐼𝐼𝐼  elastic strain increments of the unfractured medium in principal directions 
𝑑𝑊 mechanical work increment of the unfractured medium 
𝑑𝑊∗ mechanical work increment of the fractured medium 
𝑒𝐼  elastic strain in the first principal direction 
𝐸  Young’s modulus 
𝐾𝐼𝑐  plane strain fracture toughness (of Mode I) 
𝑙𝐼,0 characteristic length (relevant to fracture process) 
𝑙𝐼, 𝑙𝐼𝐼, 𝑙𝐼𝐼𝐼 current dimensions of the volume element in principal directions 
𝑥0 atomic spacing (at equilibrium) 
𝜎𝑐𝑠 theoretical cohesive strength 
𝜎𝐼 , 𝜎𝐼𝐼 , 𝜎𝐼𝐼𝐼 principal stresses of the unfractured medium 
𝜎𝐼

∗, 𝜎𝐼𝐼
∗ , 𝜎𝐼𝐼𝐼

∗  principal stresses of the fractured medium 
𝜎𝐼𝑐 critical (tensile) stress at fracture 
𝜎𝑦 yield strength 
𝜐 Poisson’s ratio 
𝛾𝑠 surface energy per unit area 
Γ𝐼 critical effective energy release rate (of Mode I fracture) 
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1. Introduction 

Accurate prediction of material failure is of great significance for designing and manufacturing 

engineering structures as their failure may cause not only economic loss but also loss of human 

life. Material failure can be divided into two categories as brittle fracture and ductile fracture. 

Brittle fracture addresses failures that cause an abrupt loss in the load carrying capability of the 

structure, whereas ductile fracture is associated to large plastic deformations in which failure 

progresses slowly [1, 2]. In both cases, however, a reliable parameter is required to determine 

the fracture resistance of the structure of interest. 

Fracture toughness is a measurement of fracture resistance [3] and is a crucial parameter in 

damage tolerance design and structural integrity assessment [4, 5]. Most safety-critical 

engineering structures including ships (see e.g., [6]) and offshore structures (see e.g., [7]) are 

manufactured from high (fracture) toughness materials1 [8]. Stress intensity factor, J integral, 

crack-tip opening displacement, and crack tip opening angle are the most widely used concepts 

to evaluate fracture toughness [9, 10]. However, these experimental methods are expensive and 

time consuming [11] due to exhaustive specimen preparation, constant monitoring and rigorous 

data treatment, and difficulties in crack advance measurement [12]. Therefore, a 

straightforward, economical and reliable measurement of fracture toughness can accelerate the 

process and reduce costs. 

Accurate measurement of fracture toughness requires a fatigue pre-cracked specimen which 

can be challenging to prepare in extremely brittle materials. Moreover, specimen thickness is 

another requirement which can be challenging to achieve as well, particularly in very tough 

materials. In addition, as crack tip constraints may have a strong effect on the laboratory 

measured values of fracture toughness [10, 13], technical development of an effective test 

methodology is necessary. Therefore, this article proposes a simple method, supported by 

physics-based analytical foundation, to accurately predict fracture toughness of metallic 

materials. 

A simple method to predict fracture toughness has been interest of researchers. Researchers 

have attempted to correlate fracture toughness with tensile and microstructural properties of the 

material (see e.g., [14–17]. However, existing models are mainly based on empirical 

relationships and developed for (particular) ductile materials only. In the current article, on the 

 
1 High toughness does not necessarily correspond to ductility (see e.g., [3]). 
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other hand, a physics-based closed-form analytical expression is proposed to predict fracture 

toughness of both ductile and brittle materials. The expression naturally introduces a length 

scale parameter, consistent with the fact that fracture needs to be characterized over a 

microstructurally significant characteristic length [18, 19]. Hence, the proposed criterion can 

be incorporated into non-local computational methods, such as peridynamics [20–22] and other 

meshfree methods [23–25] as well thanks to the internal length scale parameter. In the current 

investigation, the proposed relationship is validated for a ductile and various brittle metallic 

materials. 

The current research is verbally presented at ICSOS 2020 conference and this article 

encompasses extensive written presentation of it. The remainder of the article is organized as 

follows. Section 2 encompasses derivation of the analytical model, whereas Section 3 presents 

experimental validation of the model. Results are presented and discussed in Section 4, and 

conclusion remarks are given in Section 5. 

2. Analytical Model 

This section introduces the analytical models for brittle and ductile fracture of tensile mode for 

initially crack-free bodies. Tensile mode fracture corresponds to a crack formation with the 

plane of fracture having a normal in the direction of maximum principal stress. Representation 

of the potential fracture plane is shown in Figure 1. 

2.1. Brittle Fracture 

The derivation of the brittle fracture criterion is inspired by an energy balance concept, 

presented in a recent article [26]. The energy balance concept is based on continuum modeling 

of energy release rates, and it states that the system, seeking a minimum energy state, will 

fracture if the rate of energy change for the system in the fracture mode becomes less than that 

of the un-fractured continuum system. Therefore, the critical state is reached when the rate of 

energy change of the bulk system is balanced by the rate of energy change of the fractured 

medium. 
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Figure 1 Volume element and the potential fracture plane (of tensile mode). 

In the following, quasi-static loading conditions are applied and temperature changes are 

neglected. Moreover, the material is assumed to be homogeneous and isotropic, and remains 

within the elastic region. Accordingly, applying the energy balance concept by equating the rate 

of energy change of the un-fractured and fractured systems yields [27] 

 𝑑𝑊 = (𝛤𝐼 × 𝐴)𝑑𝑒𝐼 + 𝑑𝑊∗ (1) 

where 𝑑𝑊 and 𝑑𝑊∗ represent the total work increment for the unfractured and fractured 

systems, respectively. Also, 𝑑𝑒𝐼 is the elastic strain increment in the first principal direction and 

𝐴 is the area of the fracture plane, which equals to 𝐴 = 𝑙𝐼𝐼 × 𝑙𝐼𝐼𝐼. Moreover, 𝛤𝐼 denotes necessary 

energy per unit area (per unit increment) to create new (fracture) surfaces, that is, critical 

effective energy release rate during the formation of new surfaces. In the case of pure brittle 

fracture, 𝛤𝐼 = 2𝛾𝑠 as two (new) surfaces are created during fracture process. Here, 𝛾𝑠 represents 

surface energy per unit area. 

Further simplification of Eq. (1) yields the critical state equation: 

 (1 + 𝑒𝐼)𝜎𝐼 =
𝛤𝐼

𝑙𝐼,0
 (2) 
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where 𝜎𝐼, 𝑒𝐼, and 𝑙𝐼,0 denote the maximum principal engineering stress, maximum principal 

engineering strain, and the characteristic length relevant to fracture process, respectively. 

The critical state equation, i.e., Eq. (2), for a linear, isotropic material subjected to uniaxial 

tension simplifies into a quadratic equation in the form of 

 𝜎𝐼
2 + 𝐸𝜎𝐼 − 𝐸

𝛤𝐼

𝑙𝐼,0
= 0 (3) 

where 𝐸 denote the Young’s modulus of the material. The positive root of Eq. (3) provides the 

tensile strength of the material of interest as 

 𝜎𝐼𝑐 = −
𝐸

2
+ √

𝐸2

4
+

𝐸𝛤𝐼

𝑙𝐼,0
 (4) 

The global response of a system, e.g., toughness, strength, is often governed by the material 

behaviour at smaller length scales [28]. Therefore, length scale is an essential parameter in order 

to capture the non-classical material behaviour which usually appears at micro-scale [29, 30]. 

Natural existence of a length scale parameter (i.e., the characteristic length, 𝑙𝐼,0) enables Eq. (4) 

to be utilized in non-local computational methods. Rewriting Eq. (4) provides the characteristic 

length (relevant to fracture process) 

 𝑙𝐼,0 =
𝐸𝛤𝐼

𝜎𝐼𝑐
2 + 𝐸𝜎𝐼𝑐

 (5) 

Additionally, characteristic length (relevant to fracture process) can be written in terms of Mode 

I plane strain fracture toughness, 𝐾𝐼𝑐, and the tensile strength, 𝜎𝐼𝑐, as well, as in the following 

 𝑙𝐼,0 =
(1 − 𝜐2)𝐾𝐼𝑐

2

𝜎𝐼𝑐
2 + 𝐸𝜎𝐼𝑐

 (6) 

where 𝜐 denotes Poisson’s ratio of the material. 

Eq. (6) is obtained based on the assumption that critical energy dissipation (during the formation 

of new fracture surfaces) associated to initially crack-free bodies is equal to that of pre-cracked 

bodies. This is a reasonable assumption, as critical energy release rate is considered a material 

property (see e.g., [9]). Moreover, in fact, fracture initiation phenomena from a pre-crack 

system and a notched system are shown to be almost identical under tensile mode loading when 

the cleave plane is the same [31]. Accordingly, fracture initiation phenomena from a plain 

system, i.e., un-notched system, as well is believed to be almost identical to that of these two, 
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i.e., pre-crack system and notched system (T. Kitamura, personal communication at the ECF22 

event, August 30th, 2018). 

In the following, two special cases are investigated to expose the potential applications of the 

analytical model. The first one considers the case when Young’s modulus and tensile strength 

are on the same order of magnitude (i.e., 𝜎𝐼𝑐 = 0(𝐸)), whereas the second one considers the 

case when Young’s modulus is much higher order of magnitude than the tensile strength (i.e., 

𝐸 ≫ 𝜎𝐼𝑐). 

2.1.1. Special Case 1 

Although it may not be of practical interest, mathematical interest triggers the evaluation of Eq. 

(5) for the upper limit case when Young’s modulus and tensile strength are on the same order 

of magnitude. More precisely, let consider the case when tensile strength is equal to theoretical 

cohesive strength, that is, 𝜎𝐼𝑐 = 𝐸/𝜋 [9]. In addition, pure brittle fracture is considered in which 

the critical effective energy release rate is expressed as 𝛤𝐼 = 2𝛾𝑠. Thus, Eq. (5) in this case yields 

 𝜎𝐼𝑐 = √
2𝐸𝛾s

(1 + 𝜋)𝑙𝐼,0
≈ √

𝐸𝛾s

2𝑙𝐼,0
 (7) 

Tensile strength given in Eq. (7) is consistent with the cohesive strength equation. Theoretical 

cohesive strength is given as [9] 

 𝜎𝑐𝑠 = √
𝐸𝛾s

𝑥0
 (8) 

where 𝑥0 is atomic spacing (at equilibrium). Therefore, the above analysis suggests that atomic 

spacing represents the characteristic length scale, i.e., 𝑙𝐼,0 ≈ 𝑥0/2, when tensile strength is on 

the same order of magnitude of cohesive strength. This finding is consistent with Novozhilov’s 

[32] study, where characteristic length dimension in the case of pure brittle fracture was shown 

to be equal to atomic radius. However, this analogy should be considered as a rough estimate, 

as the continuum assumption on which the current theory is based is not valid at the atomic 

scale. 
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2.1.2. Special Case 2 

The second special case corresponds to practical cases, in which Young’s modulus is 

approximately two to three times higher order of magnitude than the tensile strength (i.e., 𝐸 ≫

𝜎𝐼𝑐). Eq. (6) in this case yields 

 𝑙𝐼,0 ≈
(1 − 𝜐2)𝐾𝐼𝑐

2

𝐸𝜎𝐼𝑐
 (9) 

Rewriting Eq. (9) provides the plane strain fracture toughness of material of interest as 

 𝐾𝐼𝑐 ≈ √
𝑙𝐼,0𝐸𝜎𝐼𝑐

1 − 𝜐2
 (10) 

2.2. Ductile Fracture 

The aforementioned energy concept was utilized by Karr & Akçay [26] to determine ductile 

fracture locus. However, analytical concept proposed by Karr & Akçay [26] does not allow to 

predict fracture toughness of ductile materials. Therefore, here, the critical state equation 

derived in Section 2.1 is combined with the Equivalent Material Concept (EMC), proposed by 

Torabi [33], to derive a closed-form solution for fracture toughness of isotropic ductile 

materials. 

The main idea of EMC is that a ductile material is equated with a virtual brittle material 

exhibiting linear elastic behavior. The EMC concept considers that the existing ductile material 

and the virtual brittle material have the same values of Young’s modulus as well as the plane 

strain fracture toughness. Moreover, the strain energy density (i.e., the area under the stress-

strain curve in uniaxial tension) of the existing ductile material is assumed to be equal to that 

of the virtual brittle material [33, 34]. 

Now consider a ductile material that obeys the power-law hardening relationship stated as 

 Σ = Ωεn (11) 

The power-law hardening relationship expressed by Eq. (11) can be utilized to describe most 

metals [35]. Here, Σ, ε, Ω, and 𝑛 represent the true stress, true strain, hardening coefficient, and 

the hardening exponent, respectively, of the existing ductile material. 
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Equating strain energy densities of the existing ductile material (that obeys the aforementioned 

power-law hardening relationship) and the virtual brittle material with further simplification 

yields [33] 

 𝜎𝐼𝑐
𝑣𝑏 = √(σ𝑦

𝑒𝑑)
2

+
2𝐸Ω

𝑛 + 1
[(𝜀𝑢

𝑒𝑑)
𝑛+1

− (𝜀𝑦
𝑒𝑑)

𝑛+1
] (12) 

where 𝜎𝐼𝑐
𝑣𝑏 denote the tensile strength of the virtual brittle material. Moreover, σ𝑦

𝑒𝑑, 𝜀𝑦
𝑒𝑑, 𝜀𝑢

𝑒𝑑 

denote the yield strength, true strain at yield, and true strain at ultimate tensile strength, 

respectively, of the existing ductile material. 

True strain at ultimate tensile strength (𝜀𝑢
𝑒𝑑) for a ductile material that obeys the power-law 

hardening relationship expressed by Eq. (11) is equal to hardening exponent of the material (𝑛), 

i.e., 𝜀𝑢
𝑒𝑑 = 𝑛. Moreover, if the true strain at yield of the existing ductile material (𝜀𝑦

𝑒𝑑) is 

considered to be equal to 0.2% offset (which is commonly used to determine the yield strength 

of ductile materials), i.e.,  𝜀𝑦
𝑒𝑑 = 0.002, Eq. (12) turns into 

 𝜎𝐼𝑐
𝑣𝑏 = √(σ𝑦

𝑒𝑑)
2

+
2𝐸Ω

𝑛 + 1
[𝑛𝑛+1 − 0.002𝑛+1] (13) 

On the other hand, plane strain fracture toughness of the virtual brittle material (𝐾𝐼𝑐
𝑣𝑏) can be 

obtained utilizing Eq. (10) as 

 
𝐾𝐼𝑐

𝑣𝑏 ≈ √𝑙𝐼,0

𝐸𝜎𝐼𝑐
𝑣𝑏

1 − 𝜐2
 (14) 

As the plane strain fracture toughness of existing ductile material is considered to be equal to 

that of virtual brittle material [33], Eq. (14) provides the plane strain fracture toughness of 

existing ductile material (𝐾𝐼𝑐
𝑒𝑑) as well, that is, 𝐾𝐼𝑐

𝑒𝑑 = 𝐾𝐼𝑐
𝑣𝑏. Therefore, plane strain fracture 

toughness of existing ductile material can be expressed by substituting Eq. (13) into Eq. (14) 

 
𝐾𝐼𝑐

𝑒𝑑 ≈ √𝑙𝐼,0

𝐸

1 − 𝜐2
√(σ𝑦

𝑒𝑑)
2

+
2𝐸Ω

𝑛 + 1
[𝑛𝑛+1 − 0.002𝑛+1] (15) 

In fact, Eq. (14) and Eq. (15) can be utilized to predict the fracture toughnesses of not only 

ductile materials but also brittle materials. In other words, Eq. (15) reduces to Eq. (10) in the 
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case of a brittle material, as the tensile strength of virtual brittle material in Eq. (14), 𝜎𝐼𝑐
𝑣𝑏, 

exchanges with that of existing brittle material, 𝜎𝐼𝑐. 

3. Materials and Methods 

3.1. Materials 

Two types of brittle materials and a ductile material are used for the validation of the analytical 

model presented above. A ductile material with small hardening coefficient is chosen to be 

consistent with the derivation of the analytical model. Experimental data of the materials of 

investigation are obtained from the open literature. As the experimental data on fracture of 

marine structural materials are scarce [36] and not sufficient to evaluate, only available material 

data in the open literature are considered in the current research. 

3.1.1. Cast Iron 

Recently, Han et al. [37] conducted experimental investigation on pearlitic graphite cast iron to 

study the effects of micro-structural factors on fracture toughness. The article investigated the 

fracture toughness of pearlitic graphite cast iron with six different nodularities. However, the 

current investigation considers the results of five cast iron samples, as the characteristic length 

of one sample cannot be interpreted from the reported results. The mechanical properties of 

these five cast iron samples are presented in Table 1. 

As the cracks initiated at graphites [37], the characteristic length relevant to fracture process is 

taken as the average spacing between graphites. On the other hand, Young’s moduli and 

Poisson’s ratios of the cast iron samples were not reported by the authors. However, considering 

the Young’s moduli and Poisson’s ratios of similar cast irons, 𝐸 ≈ 105 GPa and 𝜐 ≈ 0.18 are 

used as representative values for the Young’s moduli and Poisson’s ratios of the cast iron 

samples of investigation. 

Table 1 Mechanical properties of the cast iron samples [37]. 

Cast iron sample Elongation (%) 𝑙𝐼,0, 𝜇𝑚 𝜎𝐼𝑐, MPa 𝐾𝐼𝑐, 𝑀𝑃𝑎√𝑚 

G60N6 0.2 157 232 58±3 

G62N6 0.5 144 268 64±5 

G65N10 0.6 134 317 69±2 

G87N18 0.7 74 356 40±2 
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G65N6 1.4 151 307 67±3 

 

3.1.2. Metallic Glass 

Experimental data of various metallic glasses are extracted from multiple sources and is 

compiled in Akçay [38]. The summary of the necessary data to predict the fracture toughness 

of metallic glasses are presented in Table 2. Interested readers on the original data sources are 

referred to Argon & Salama [39], Davis [40], Davis & Yeow [41], Davis [42], Nagendra et al. 

[43], Xi et al. [19], Yuan & Xi [44], Wang [45], and Madge et al. [46]. 

Table 2 Mechanical properties of the metallic glasses. See Akçay [38] for details. 

Metallic glass 𝑙𝐼,0, 𝜇𝑚 𝜎𝐼𝑐, MPa 𝐸, GPa 𝜐 𝐾𝐼𝑐, 𝑀𝑃𝑎√𝑚 

Ce60Al20Ni10Cu10 5 600 30.3 0.313 10 

La55Al25Ni5Cu10Co5 0.55 700 44.0 0.342 5 

Ni49Fe29P14B6Si2 0.38 2380 129.0 0.370 12 

Mg65Cu25Tb10 0.1 660 51.3 0.309 2 

 

3.1.3. En3B Steel 

Susmel & Taylor [47] investigated whether the Theory of Critical Distances (TCD) can predict 

failures in notched components when large plastic deformation exists. In this regard, they 

conducted experiments on notched En3B steel specimens. En3B steel has a yield strength of 

σ𝑦 = 606.2 MPa, Young’s modulus of 𝐸 = 197.4 GPa, plane strain fracture toughness of 

𝐾𝐼𝑐 = 97.4 𝑀𝑃𝑎√𝑚, hardening exponent of 𝑛 = 0.06, and hardening coefficient of Ω = 882.7 

MPa [47]. However, the authors did not report any data on the dimple size or spacing between 

impurities. The only reported microstructural length feature of En3B steel by Susmel & Taylor 

[47] was the grain size, which was reported as 13 m. Hence, considering the fact that grain 

size is correlated to the dimple size, a characteristic length of 𝑙𝐼,0 ≈ 13 m is used in the current 

investigation. Poisson’s ratio of En3B steel is taken as 𝜐 = 0.30. 

3.2. Methods 

Fracture toughnesses of brittle materials (including the samples/materials exhibiting minor 

plastic deformation), i.e., cast iron samples and metallic glasses are predicted by Eq. (10), 
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whereas fracture toughness of the ductile material, i.e., En3B steel is predicted by Eq. (15). 

Results are presented and discussed in the following section. 

4. Results and Discussion 

Plane strain fracture toughness predictions for the cast iron samples are presented in Table 3. 

Although the application of the model is restricted up to small scale plasticity, fracture 

toughnesses of five different cast iron samples are determined to investigate the accuracy of the 

model at different (minor) plastic deformation levels. As can be seen from Table 3, the 

analytical model provides very good estimations except for G87N18 sample, which is the only 

sample that contains fine graphites. Although the exact reason for this high difference is not 

known, a fracture toughness within 3.0% deviation is obtained when the average size of 

graphites is used as a characteristic length rather than the average spacing of graphites. 

Experimental plane strain fracture toughness data along with the analytical predictions for 

metallic glasses are presented in Table 4. Fracture toughness predictions for metallic glasses 

are in reasonably good agreement as well, with a maximum absolute relative error of 12.0%. 

Table 3 Experimental data and analytical fracture toughness predictions for various cast iron samples. 
Experimental data are taken from Han et al. [37]. 

Cast iron sample Experimental value, 

𝑀𝑃𝑎√𝑚 

Analytical prediction, 

𝑀𝑃𝑎√𝑚 

Absolute relative 

error (%) 

G60N6 58 62.9 8.4 

G62N6 64 64.7 1.1 

G65N10 69 67.9 1.6 

G87N18 40 53.5* 33.8* 

G65N6 67 70.9 5.8 
*Use of average size of graphites (instead of average spacing of graphites), which was reported as 39 m by Han et al. [37], as 
a characteristic length yields a fracture toughness of 38.8 𝑀𝑃𝑎√𝑚 (corresponding to an absolute relative error of 3.0%). 

Table 4 Experimental data and analytical fracture toughness predictions for various metallic glasses. See Akçay 
[38] for the details of the experimental data. 

Metallic glass Experimental value, 

𝑀𝑃𝑎√𝑚 

Analytical prediction, 

𝑀𝑃𝑎√𝑚 

Absolute relative 

error (%) 

Ce60Al20Ni10Cu10 10 10.0 0.0 

La55Al25Ni5Cu10Co5 5 4.4 12.0 

Ni49Fe29P14B6Si2 12 11.6 3.3 
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Mg65Cu25Tb10 2 1.9 5.0 

Experimentally measured and analytically determined plane strain fracture toughness of En3B 

steel are presented in Table 5. Fracture toughness of En3B steel is determined as 𝐾𝐼𝑐 = 107.2 

𝑀𝑃𝑎√𝑚, which deviates 10.0% from the experimental value. 

Table 5 Experimental datum and analytical fracture toughness prediction for a ductile metal. Experimental result 
is taken from Susmel & Taylor [47].  

Metal type Experimental value, 

𝑀𝑃𝑎√𝑚 

Analytical prediction, 

𝑀𝑃𝑎√𝑚 

Absolute relative 

error (%) 

En3B steel 97.4 107.2 10.0 

Fracture toughness predictions of materials of investigation are depicted in Figure 2 as well for 

illustration purposes. As the horizontal axis denotes the experimentally measured values and 

vertical axis denotes the predictions, the (black color) solid line corresponds to exact 

predictions. In other words, the amount of deviation from this line reflects the accuracy of the 

predictions. In this regard, the (red color) dashed lines encompass accurate predictions within 

10% absolute relative error. Hence, the proposed method provides reasonably good estimations 

given the fact that even experimentally measured fracture toughness can exhibit considerable 

amount of scatter. However, additional experimental validations are needed, particularly for the 

ductile material application, to assure the accuracy of proposed method, as the validated data 

for ductile material application is restricted to only one material. 
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Figure 2 Accuracy of analytical predictions with respect to experimental data. The (black color) solid line 
corresponds to exact predictions, whereas the (red color) dashed lines encompass accurate predictions within 

10% absolute relative error. 

The use of EMC requires the yield strength and the ultimate tensile strength of the ductile 

material to be adequately close to each other, i.e., corresponding to a ductile material with small 

hardening exponent such that linear portion of the load-displacement curve during plane strain 

fracture toughness does not violate ASTM E399 standard [33]. Otherwise, experimentally 

measured plane strain fracture toughness does not correspond to a valid fracture toughness 

measurement [48]. Accordingly, as an alternative solution, recently, a modified version of EMC 

(called MEMC), in which a virtual fracture toughness is defined, is proposed and implemented 

by Torabi & Kamyab [48]. The current article implements the former concept, that is, the 

original EMC, which requires the use of low hardening (ductile) materials. 

5. Conclusions 

A physics-based closed-form expression is derived to predict plane strain fracture toughness of 

isotropic materials. The expression introduces a length scale parameter, an essential parameter 

in non-local computational methods, such as peridynamics. Moreover, use of the length scale 
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parameter, i.e., the characteristic length, as a mesh size removes mesh dependency in finite 

element applications. The proposed expression enables to predict fracture toughness of not only 

brittle materials but also ductile materials. The expression provides a faster and cheaper fracture 

toughness evaluation compared to the traditional methods, as it utilizes uniaxial tensile test 

results. Fracture toughness of two brittle materials (cast iron samples and various metallic 

glasses) and one ductile material (En3B steel) are predicted using the proposed expression. 

Fracture toughness of cast iron samples and various metallic glasses is determined to remain 

within 12% deviations except for G87N18 sample, whereas fracture toughness of En3B steel is 

determined to remain within 10% deviation. For G87N18 sample, which is the only sample that 

contains fine graphites, a fracture toughness within 3.0% deviation is obtained when the average 

size of graphites is used as a characteristic length rather than the average spacing of graphites. 
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