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Abstract 

Dynamic crack propagation assessment in functionally graded materials (FGMs) with micro-cracks 

is accomplished using bond-based Peridynamics (PD). The dynamic fracture behaviour of various 

FGMs’ material models is studied in Kalthoff-Winkler experiment. Dynamic crack growth 

predictions and associated material damage of the specimen under dynamic loading conditions are 

considered. The effect of micro-cracks near macro-crack tips on the toughening mechanism is 

evaluated in terms of crack propagation velocities. Stochastically pre-located micro-cracks are 

modelled to obtain the toughening effect in the material. Additionally, the velocities and time required 

for fracture are compared in different FGM cases. It is frankly found that if a crack propagates in the 

harder region of the specimen, velocities decrease and toughness increase in contrast to the softer 

region. Furthermore, micro-cracks around a macro-crack decelerate the crack propagation and 

enhance toughening mechanism in FGM body depending on gradation of material properties. 

Keywords: Crack propagation; functionally graded materials; material toughness; Kalthoff Winkler; 

Peridynamics. 
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1 Introduction 

Recent progress and trends in material science and manufacturing technologies have led to a 

proliferation of studies and broad application areas on functionally graded materials (FGMs). FGMs 

are considered as composites whose material properties are changing with specific functions in any 

determined direction. They are nonhomogeneous materials and consist of two different types of 

materials such as ceramics, steel, and aluminium. The composition of two materials improves 

material properties in terms of strength, light weight, and resistance to impact loading. Moreover, the 

continuous differentiation of material properties prevents discontinuity problems arising in interface 

regions of composite materials. There are various studies on static analysis of FGMs such as using 

the mixed type Finite Element Method (FEM) with a functional [1–3], various material couples for 

functionally graded beams using high-order variational FEM [4] and neural networks by FEM [5]. 

Various analytical and numerical approaches to the static analysis of FGM are proposed in [6, 7]. 

Understanding the effect of defects that pre-existed or formed during operation in FGMs is essentially 

important during any material selection and design phases. In last few decades, there has been a surge 

of interest in crack initiation and propagation and related dynamic fracture problems on these 

materials (see, e.g. [8–12]). More recently, there has been a growing number of publications focusing 

on dynamic fracture problems in FGMs. Dynamic analysis of failure in an FGM subjected to impact 

load has been presented in, e.g. [12–14], and crack propagation analysis has been studied in [15–20]. 

The asymmetrical material properties of FGMs may lead to complex crack propagation in a structure 

[21]. Many authors have carried out a series of experiments to understand the crack propagation 

mechanisms. Jin et al. [22] examined the fracture response of FGMs and found that the non-uniform 

material properties could only lead to a local distortion on crack propagation. Abanto-Bueno and 

Lambros [23] performed fracture experiments to evaluate quasi-static mixed mode crack initiation 

and propagation in FGMs. Jain and Shukla [24] examined the dynamic fracture behaviour of FGMs 

subjected to mixed mode load. Kirugulige and Tippur [25] investigated crack initiation, path, and 
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speed in a glass-filled epoxy sheet under dynamic loading conditions. Rousseau and Tippur [26] 

investigated the crack tip behaviour in a compositionally graded glass-filled epoxy under low-velocity 

impact loading by experimentation. Toktas and Dag [27] presented an analysis of an inclined surface 

crack in an FGM under contact loading. Shukla et al. [28] presented a comprehensive review of 

dynamic fracture studies in FGMs. 

Nearly all studies of simulating dynamic fracture behaviour of materials have been carried out using 

Finite Element Method (FEM) with certain modifications such as cohesive-zone [29], element-

erosion [30], and extended-FEM (XFEM) [31]. The element-erosion and cohesive-zone techniques 

might not obtain exact results since crack propagation can only advance through element boundaries 

[32]. Although some studies [33–36] have proposed that XFEM is an effective method for numerical 

modelling of crack propagation, it has a certain limitation in adjusting the input fracture energy to 

obtain accurate results [32]. Rabczuk et al. [37] and Kosteski et al. [38] examined the crack 

propagation problem with discrete element models. Moreover, a 2D discrete model was presented by 

Braun and Fernández-Sáez [39]. On the other hand, Kim and Paulino [40] presented a remeshing 

algorithm with FEM to model crack propagation in FGMs under mixed-mode loading. Finally, 

Kirugulige and Tippur [41] adopted the cohesive elements in FEM, based on a bilinear traction-

separation law, to explore material gradation’s effect on crack propagation. However, all stated 

methods that used classical continuum mechanics suffer from serious shortcomings such as lattice or 

mesh dependency. Moreover, using partial differential equations requires specific special treatments 

in describing discontinuities such as cracks. 

Silling [42] presented Peridynamics (PD) approach as a non-local form of the continuum mechanics. 

Silling and Askari [43] established PD theory that naturally overcomes the discontinuity issues in 

classical continuum mechanics. The crack modelling, nucleation, and propagation were naturally 

involved in PD owing to its integral form in contrast to the classical approach’s local differential 

form. In PD theory, a continuum body is transferred into discretised material points having volumes 

Peridynamic simulation of dynamic fracture in functionally graded materials subjected to impact load



 4 

in space. Material points have been considered in interaction with other points located within a certain 

radius, termed the horizon. The behaviour of a material point is determined by other points in its 

horizon. PD formulation based on integro-differential equations complies with models comprising 

discontinuities such as cracks [42]. Silling and Lehoucq [44] tested the theory’s robustness and 

efficiency, comparing the force densities of PD and classical elasticity theory. A considerable amount 

of studies using PD have been published, such as combining PD and FEM [45, 46], the effect of 

corrosion pits on crack propagation [47], Hookean type membrane deformation under different 

loading conditions [48], fracture in polycrystalline materials [49], modelling of explosive loading on 

composite laminates [50], a geometrically exact formulation of PD [51], and plate deformations [52, 

53]. Besides, PD has been implemented in various applications such as flat shells under in-plane 

loading [54], extended non-ordinary state-based PD [55], effect of porosity on fatigue nucleation [56], 

crack growth modelling during fatigue [57], and higher order FGMs [58]. Madenci and Oterkus’ book 

[59] presents a comprehensive explanation of the PD theory giving various examples and 

applications. Javili et al. [60] presented a comprehensive review evaluating different applications of 

PD. 

Some authors [61–63] have investigated micro/macro- crack interaction using analytical methods. A 

bimaterial consisting of homogeneous materials and an FGM media containing multiple cracks were 

examined and compared in [64]. Singh et al. [65] examined multiple regularly located cracks, holes 

and inclusions and their interactions with a macro-crack in an FGM body. On the other hand, recent 

studies using PD have ensured the analysis of more complex micro-crack patterns and provided 

reliable crack propagations. Vazic et al. [66] examined the crack advancing and branching affected 

by micro-cracks regularly located around the main crack tip. Basoglu et al. [67] compared various 

micro-crack patterns around the main crack tip and examined the micro-crack toughening mechanism. 

Numerous studies, e.g. [68–72], have shown the applicability of PD theory on crack initiation and 

propagation in dynamic loading and thermo-mechanics problems. Both Ghajari et al. [73] and 

Ozdemir et al. [74] applied PD theory to analyse functionally graded materials. They investigated 
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dynamic crack propagation and wave propagation in a 2D rectangular body. Moreover, He et al. [75] 

modelled thermal shock loading using PD in FGMs. Candaş et al. [76] examined the effect of the 

stochastically distributed micro-cracks around the macro-crack tip on the material toughening 

mechanism and used PD theory to simulate the crack propagation in Kalthoff Winkler experiment 

[77, 78], and proposed a two-dimensional micro-crack definition. Kalthoff-Winkler experiment has 

been broadly studied in the literature and therefore is an excellent candidate to examine the crack 

propagation and toughening mechanism hypothesis in FGMs. So far, a number of studies have 

examined the Kalthoff-Winkler problem using PD such as a validation study of PD [79], dual horizon 

PD formulation [80, 81], state-based PD for thermoplasticity [82], implementing non-uniform 

discretization [83], investigation of model dimensions and parameters [84], meshfree quadrature rule 

for PD [85], and reformulated thermo-visco-plastic model [86]. Despite well-studied dynamic crack 

propagation in both homogeneous and FGMs, several questions remain to be answered about the 

effect of micro-cracks on crack propagation in FGMs. The examination of crack propagation and its 

interaction with micro-cracks in a functionally graded material subjected to impact load stands out as 

a gap in the literature that needs further investigation. This study seeks to obtain data which will help 

to address the effect of FGM properties and pre-located micro-cracks on toughening mechanism. 

Hence, the authors applied a gradation effect to material properties of the body used in the Kalthoff-

Winkler problem and concentrated on the crack propagation in the dynamic fracture of FGMs using 

bond-based PD. Determining the effect of pre-located micro-cracks on the toughening mechanism in 

a three-dimensional FGM body is considered as a novel approach. After briefly explaining the bond-

based PD theory, two-dimensional micro-crack definition and functionally graded material adaptation 

have been defined. In this paper, the proposed method has been applied to Kalthoff-Winkler impact 

problem and numerical results have been obtained and discussed. 

2 Methodology 
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In this section, firstly fundamentals of PD theory are introduced. The equation of motion in PD, the 

discretized form, and the failure definition are given. Then, micro-crack definition used in the study 

is explained. Finally, the adaptation of FGM modelling parameters to PD is presented. 

2.1 Peridynamic formulation 

During the last decade, modelling of dynamic fracture problems using PD has been at the centre of 

much attention. To overcome discontinuity issues in classical continuum mechanics, Silling [42] 

presented PD theory that is applicable in discontinuous regions, e.g. zones in which a crack is forming 

and propagating in a material. The equations based on partial derivatives are invalid in discontinuity 

regions. On the contrary, the equation of motion in PD is valid in both continuity and discontinuity 

regions in material because it is based on integral equations. Silling [42] firstly presented bond-based 

PD theory in the form of which force density vectors between two material points are parallel and 

equal in magnitude. Silling et al. [87] extended this formulation to the state-based PD theory that uses 

unequal force density vectors. The integral based equation of motion in PD theory for any material 

point x is defined as [43] 

𝜌𝐮̈(𝐱, 𝑡) = ∫ 𝐟(𝐮(𝐱′, 𝑡) − 𝐮(𝐱, 𝑡), 𝐱′ − 𝐱)d𝑉𝐱′ + 𝐛(𝐱, 𝑡)
 

ℋx

, (1) 

where x′ is the family member inside the horizon ℋx. The radius of the spherical horizon region is 𝛿. 

The force vector, f is the mutual force between two material points x and x′. u is the displacement 

vector, b is the body load, 𝜌 is the mass density, and d𝑉𝐱′ is the infinitesimally small volume of point 

x′. In Fig. 1, position vectors, ξ = 𝐱′ − 𝐱 represents the relative positions in reference state and 𝛈 +

𝛏 = 𝐲′ − 𝐲 denotes the relative positions of material points after deformation, where 𝛈 = 𝐮(𝐱′, 𝑡) −

𝐮(𝐱, 𝑡) is the relative displacement vector [43, 59]. Considering the relative displacement between 

material points, the stretch of a bond is expressed as follows, 

𝑠 =
(𝐲′ − 𝐲) − (𝐱′ − 𝐱)

𝐱′ − 𝐱
=

|ξ+𝛈| − |ξ|

|ξ|
. (2) 
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This equation defines the bonds between two material points as an elastic spring in a micro-elastic 

material. Thus, a scalar micro-potential function in a bond according to the bond-based Peridynamics 

is 

𝑤(𝛈,ξ) =
1

2
𝑐𝑠2|ξ|, (3) 

where the bond constant, 𝑐 = 12𝐸/𝜋𝛿4 is expressed for three-dimensional structures in terms of 

elastic modulus, E and the radius of horizon, 𝛿 [59]. The pairwise force function f, is the derivative 

of micro-potential function with regard to the relative displacement vector: 

𝐟(𝛈,ξ) =
𝜕𝑤

𝜕𝛈
(𝛈,ξ) =

ξ+𝛈

|ξ+𝛈|
𝑓(|ξ+𝛈|,ξ)   ∀ 𝛈,ξ, (4) 

where f is a scalar-valued function in terms of the bond constant and bond stretch. The bond between 

two material points is valid only if the initial reference distance between these points is within the 

horizon that restricts the interaction of material points with others. Therefore, the scalar-valued force 

function between material points is defined as: 

𝑓(|ξ+𝛈|,ξ) = {
𝑐𝑠µ(𝑡,ξ)     if   |ξ| < 𝛿   for all   𝛈,

0           otherwise                
(5) 

where µ(𝑡,ξ) is a history-dependent scalar-valued step function to ensure that the bond-stretch s, does 

not exceed a pre-defined critical-stretch value sc. This condition also provides a failure criterion in 

PD by considering the bond is not recoverable after failure. The function µ(𝑡,ξ) is valued as 1 if the 

bond-stretch 𝑠(𝑡′,ξ ) is smaller than the critical-stretch sc over time, otherwise it is evaluated as 0 that 

means breaking a bond between two material points. Overall, in PD theory, the force between two 

material points can only be defined if these points are within the horizon and vanish after bond-stretch 

exceeding the critical-stretch value. These definitions provide PD theory deals with discontinuities in 

a continuous body. Both pre-defined cracks and crack propagation can be modelled by eliminating 

bonds through the crack surface. The pre-defined critical-stretch value is defined in [59] as follows, 
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𝑠𝑐 =
√

𝐺𝑐

(3𝜇 + (
3
4

)
4

(𝜅 −
5𝜇
3

)) 𝛿

, (6)
 

where 𝐺𝑐 is the critical energy release rate, 𝜅 is bulk modulus, and  is the shear modulus. 

Considering the broken bonds for a material point, the local damage parameter can be written as  

𝜑(𝐱, 𝑡) = 1 −
∫ 𝜇(𝐱, 𝑡,ξ)

ℋx
d𝑉ξ

∫ d𝑉ξℋx

. (7) 

This equation is the weighted ratio of the number of damaged bonds to the entire internal interactions 

for a material point. 

The integral based equation of motion in PD is not usually solved by analytical tools. Therefore, the 

continuum body is re-defined as discretized volumes that have certain volumes to obtain a numerical 

solution. The governing equation for a material point k by taking into account all points in its horizon 

is given in a discretized form: 

𝜌𝑘𝐮̈𝑘
𝑛 =  ∑ 𝐟(𝐮𝑗

𝑛 − 𝐮𝑘
𝑛, 𝐱𝑗−𝐱𝑘)𝑉𝑗 + 𝐛𝑘

𝑛

𝑗

. (8) 

The displacement vector is represented by 𝐮𝑘
𝑛 for a material point k at the time step, nth. The constant 

grid spacing is denoted by Δ𝑥 and the volume of material point j, is defined as 𝑉𝑗 = (Δ𝑥)3 in a three-

dimensional body [43]. 

2.2 Micro-crack definition 

Both macro- and micro- level pre-existed defects have always been a problematic issue for materials 

under impact load. These cracks that are located in material with various positions, angles, and lengths 

may cause high stress concentrations around the crack tips. Micro-cracks are relatively smaller cracks 

with regard to existing macro-cracks in a structure. Vazic et al. [66] defined micro-cracks as 
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𝑙𝑚𝑖𝑐𝑟𝑜−𝑐𝑟𝑎𝑐𝑘 = 𝑙𝑚𝑎𝑐𝑟𝑜−𝑐𝑟𝑎𝑐𝑘 50⁄  for a plate. Basoglu et al. [67] considered a similar approach and 

defined micro-cracks as 𝑙𝑚𝑖𝑐𝑟𝑜−𝑐𝑟𝑎𝑐𝑘 = 𝑙𝑚𝑎𝑐𝑟𝑜−𝑐𝑟𝑎𝑐𝑘 50⁄  and 𝑙𝑚𝑖𝑐𝑟𝑜−𝑐𝑟𝑎𝑐𝑘 = 𝑙𝑚𝑎𝑐𝑟𝑜−𝑐𝑟𝑎𝑐𝑘 25⁄  for a 

plate with the size of 0.050.05 m2 that contain a macro-crack with the length of 0.025 m. In our 

previous study [76], we defined the length of micro-cracks as 𝑙𝑚𝑖𝑐𝑟𝑜−𝑐𝑟𝑎𝑐𝑘 = 𝑙𝑚𝑎𝑐𝑟𝑜−𝑐𝑟𝑎𝑐𝑘 16⁄  in a 

body with the size of 0.10.2 m2. In three-dimensional body, micro-cracks are considered as a plane 

passing through all material with a thickness of 0.009 m. We applied the same proportion for the 

purpose of results comparison with reference [76]. PD has a straightforward approach to define a 

realistic model for creating micro-cracks. Madenci and Oterkus [59] showed that the damage value 

for material points can be calculated quantitively in terms of the local damage. They examined the 

damage of a material point with respect to the location of crack surface. The pre-defined crack line 

in a two-dimensional discretised body is given as a red line in Fig. 2. When bonds of material points 

intersect with the crack line, the bond-breakage occurs. The position of crack line may be adjusted in 

any location between material points to obtain particular crack surfaces in many numbers. Thus, 

bonds between the material point and its family members are diminished with regard to the length of 

crack. The colour scale shows percentages of damaged material points' bonds. The amount of damage 

is affected by the proximity to crack line. The points closest to the crack has been damaged more than 

distant ones. While the material point A has lost 40% of its bonds, the material point B has lost 22% 

of its bonds.  We have applied the flowchart in Fig.3 in [76] to create a body that suffer from multiple 

micro-cracks. This algorithm can be applied for any type of Peridynamic codes in any application. It 

starts with defining coordinates and length of a single micro-crack. The next step is finding material 

points that their horizon intersects with the crack. Then, if the bond between the determined material 

point and its family member intersects with the crack, the bond is considered broken. The number of 

broken bonds determines the damages.  

2.3 Peridynamic formulation for FGMs 
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The combination of two materials in composite materials to improve strength and stiffness leads to 

an uncertainty in material properties at the transition zones. Functionally graded materials overcome 

this issue by a smooth differentiation in material properties in any direction. Moreover, gradient 

structure provides a continuous variation in material properties such as strength and toughness. FGMs 

can be designed according to direction of applied loads. 

The adaptation of FGMs in bond based Peridynamic theory needs special treatment and assumptions 

to determine material properties, such as elastic modulus and critical energy release rate. In Eq. (5), 

the scalar-valued force function is expressed in terms of bond stretch and also bond constant that is a 

function of elastic modulus and horizon radius. The horizon radius is a PD model parameter that is 

not changing with material properties. On the other hand, considering the elastic modulus is changing 

differentially along a direction in an FGM body, the bond constant shall be determined for each 

particular bond between a material point and its neighbour in the horizon. To determine a bond 

constant for each material point in a discretized body, the following averaging formula is adopted as 

𝑐′ =
12

𝜋𝛿4
(

𝐸𝑗 + 𝐸𝑘

2
) , (9) 

where, 𝑐′ presents a value for a particular bond in a certain horizon depending on 𝐸𝑗 and 𝐸𝑘 that are 

elastic modulus of material points 𝐱𝑗 and 𝐱𝑘 at each end of the bond. The same approach should be 

applied to the critical bond stretch, 𝑠𝑐 for modelling of FGMs in PD. In the formula of critical stretch 

(Eq. (6)), the horizon radius, 𝛿 is not dependent on material properties. However, bulk modulus, 𝜅 

and shear modulus, 𝜇 differentiate depending on elastic modulus, 𝐸 because of constraints in bond 

based Peridynamic theory. In addition, the critical energy release rate, 𝐺𝑐 is a material property that 

gradually changes in FGMs. The variation of the critical stretch, 𝑠𝑐
′  for each bond between material 

points is expressed as, 
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𝑠𝑐
′ =

√

𝐺𝑐
′

(3𝜇′ + (
3
4

)
4

(𝜅′ −
5𝜇′

3
)) 𝛿

, (10)
 

where, the mean value of critical energy release rate is 𝐺𝑐
′ = (𝐺𝑐,𝑗 + 𝐺𝑐,𝑘)/2, bulk modulus is 𝜅′ =

(𝜅𝑗 + 𝜅𝑘)/2 , and shear modulus 𝜇′ = (𝜇𝑗 + 𝜇𝑘)/2 with the constraint conditions 𝜅 = 5𝜇/3 or 𝜈 =

1/4 emerging from bond-based Peridynamics [59]. The gradual differentiation of material properties 

and its effect on critical stretch and bond constant is represented schematically in Fig. 3. The practical 

advantage of using this straightforward approach is that it provides a control of material properties 

for each discretised material point in PD. 

3 Numerical examples 

Numerical examples were considered on Kalthoff-Winkler problem that adapted FGMs. In Section 

1, the original experiment performed by Kalthoff and Winkler [77] was given as a reference model. 

After that, material properties proposed by Zhang et al. [88] were modified to be used in Kalthoff-

Winkler problem. The "softer" and "harder" materials that were defined in [88] were adapted as 

homogeneous cases for the purpose of benchmarking. In Section 3.2, a linear gradation effect on 

material properties was applied in parallel to the direction of impact load to compare homogeneous 

and FGM characteristics. In Section 3.3, FGM properties proposed by Kirugulige and Tippur [25] 

and used in [68] were implemented in Kalthoff-Winkler problem. Finally, in Section 3.4, the effect 

of micro-cracks on the crack propagation in FGM models was also presented. The software package 

OVITO [89] is used for visualization. 

Kalthoff and Winkler carried out a series of impact tests on a high-strength maraging steel plate 

(X2NiCoMo 18 9 5) containing two parallel notches and performed outstanding experiments on the 

impact loading and mode transitions on a crack propagation problem [77, 78, 90, 91]. A steel impactor 

impacts with a constant velocity in parallel direction to notches as shown in Fig. 4. The homogenous 
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material properties of the plate are given in [59] and presented in Table 1. Kalthoff [78] explained the 

material behaviour of high-strength maraging steel under certain impact loading conditions as almost 

linear-elastic and it can be said that the stress distributions around the crack tip were modelled with 

linear-elastic equations. The Mode II crack propagation is almost parallel to notches because of shear 

bands controlling the fracture at high loading rates. Besides, a mode transition is observed at low rates 

of loading. Silling [79], therefore, stated that micro-elastic PD theory performs a suitable performance 

on simulating brittle fracture and crack propagation. 

The cylindrical projectile impacts with a constant velocity to the target body and this results in a 

brittle fracture as stated in [77]. Hence, this paper only focused on the dynamic fracture analysis. As 

depicted in Fig. 4, dimensions of the experimental setup are 𝐿 = 0.200 m, 𝑊 = 0.100 m, and 𝑡 =

0.009 m. The distance between symmetrically located notches is 𝑑 = 0.050 m with a length of 𝑎 =

0.050 m. The thickness of the notches is 𝑛 = 0.0015 m. During the simulations, plates are traction-

free and at rest. The projectile is assumed as a rigid body with properties; 𝐷 = 𝜙0.050 m, 𝐻 =

0.050 m and, m = 1.57 kg. The velocity is constant during simulations and directed into parallel to 

the notches as 𝑣 = −32 m/s through the y-axis. 

The steel plate body is discretized with 201 × 101 × 9 material points along x, y, and z-axes, 

respectively. The grid size (spacing between material points) is specified as Δ = 0.001 𝑚 in each 

direction and the total number of material points is 180,873. The horizon's radius is 𝛿 = 3.015 × Δ   

as given in [59]. The time-step is Δ𝑡 = 8.7 × 10−8s and the reference critical- stretch is 𝑠𝑐 = 0.01 

defined as in [59]. 

3.1 Benchmark tests 

A series of numerical tests for examining dynamic crack propagation in both homogeneous and FGMs 

were performed by Zhang et al. [88]. They proposed two models considering linearly graded Young's 

modulus 𝐸, and critical energy release rate 𝐺𝑐 to obtain material properties differentiation in direction 
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of the impact load.  In the benchmark problem, the "softer" and "harder" material properties that 

defined in [88] were adapted to test the applicability of proposed methodology. The softer and harder 

terms refer to low and high Young's modulus and critical energy release parameters, respectively, as 

defined in [88]. In Table 1, material properties of the reference state (M1), and proposed cases, M2 

and M3 are given. Note that M2 and M3 models are homogeneous models. In these models, Young's 

modulus and critical energy release parameters are altered by ±33% from the reference values. The 

Poisson’s ratio is taken as constant, 𝜈 = 1/4. Due to the relation between Young's Modulus and 

critical energy release rate in Eq. (6), the critical stretch value remains constant. Likewise, the mass 

density is 𝜌 = 8000 kg/m3. In the reference model M1 produced from the original experiments in 

[77], notches dominate the crack initiation location and propagation direction. The propagation 

initiates at 30.5 μs (350th timestep). The complete fracture occurs by reaching cracks to both ends at 

91.4 μs (1050th timestep). All models in this study were run to 117.5 μs (1350th timestep) to obtain 

a fully occurred separation in the body. In the benchmark models M2 and M3, cracks start to initiate 

at 30.5 μs as same as the reference model M1. However, the cracks cannot reach the edges at 91.4 μs 

in M2 case, because of the decrease in crack propagation velocity. The complete fracture occurs at 

104.4 μs with a 13.0 μs time delay. On the contrary, cracks in M3 case reach the edges at 87.0 μs. 

Thus, the crack paths for M1, M2, and M3 cases are given at 87.0 and 104.4 μs in Fig. 5. Crack 

lengths are calculated by taking the difference between the first and last coordinates of cracks. 

Considering the crack initiation and complete fracture, the average velocities are 1253, 958, and 1389 

m/s for M1, M2, and M3 cases, respectively, in between time interval 30.5 - 87.0 μs. Herein, the crack 

propagation velocity of M2 reduced about 24% as compared with the reference model M1 while the 

average velocity in M3 increased about 11%. Velocity profiles for models are shown in Fig. 6. These 

results are presented by adapting the homogeneous material properties for the two material models 

given in [88]. The results of the benchmark study based on these homogeneous material models show 

the applicability of our PD theory with different Young’s modulus and critical energy release rate. 

3.2 Comparison of homogenous material and FGMs 
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The challenging work for the adaptation of FGMs in PD theory is the calculation of each varying 

properties of bonds as given in Eq. (9). M2 and M3 were homogenous models. The purpose of this 

section is that examining the effect of linearly changed Young’s modulus and critical energy release 

rate. Thus, with the same values in the benchmark study, two different FGM models are defined: M4 

and M5. The maximum and minimum values of material properties of M4 and M5 are given in Table 

1. In the first model, Young's modulus varies linearly through y- direction from 𝐸𝑦=0 = 127 to 

𝐸𝑦=0.1 = 255 GPa. Also, the critical energy release rate varies linearly from 𝐺𝑐,𝑦=0 = 46.1 to 

𝐺𝑐,𝑦=0.1 = 92.1 kJ/m2. In the reference model M1, 𝐸 = 191 GPa and 𝐺𝑐 = 69.1 kJ/m2 are the 

constant properties. The linear relationship between E and Gc results in constant critical stretch values 

for each bond. The model M5 is a reverse-valued setup with regard to M4 model. The summary of 

all material properties data is given in Table 1. The results of the M4 and M5 models are used to 

compare the crack propagation velocity of the reference case. In Fig. 7, the simulation of the reference 

model and FGM models are given to compare the velocities obtained from simulations. While cracks 

in the reference model M1 and FGM model M4 start to initiate propagation 30.5 μs (350th timestep), 

the other FGM model M5 has a delay of about 4.3 μs. Considering the time for cracks reaching edges, 

the delay in the crack initiation time shows its effect on M5 model. The complete fracture occurs in 

M1 (Fig. 7 (a)) and M4 (Fig. 7 (c)) models at 91.4 μs, whereas 95.7 μs in M5 (Fig. 7 (f)) model. The 

average velocities are 1253, 1354, and 1064 m/s for M1, M4, and M5 models, respectively in between 

time interval 30.5 - 87.0 μs. It can be seen that the average velocities are changing depending on the 

gradation direction of material properties. The propagation of crack changes; moreover, the crack 

path angles have been affected as shown in Fig 7 (f). Although patterns in all simulations are nearly 

straight and very similar to patterns in [59, 81, 84], the change of direction in propagation can be 

observed. Zhang et al. [88] emphasized that propagation showed a tendency to advance into the 

weaker areas and explained this phenomenon by the fact that the stiffness between impacted surface 

(y=0.1) and the crack tip is greater than the other cases. As a result of this difference, the average 

velocity in M4 model increased about 8% as compared with the reference model M1. Moreover, the 
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directions of crack tips direction become different for all three cases as shown in Fig. 7 (f). The 

velocity profiles of M4 and M5 models are given with previous models in Fig 6. These alterations in 

both direction and velocity changes are consistent with that of Zhang et al. [88] performed by using 

Cohesive Zone Model approach. 

3.3 More comprehensive PD FGM model 

Models considered so far provide some results concerning the FGMs modelling. The lack of all 

material properties that affect the dynamic crack propagation requires the need for more simulations. 

What remains unclear, however, is whether the crack propagation is affected by other parameters 

such as fracture toughness, critical stretch, and mass density. The extent to which material properties 

moderate crack propagation is still unclear. In the previous section, the effect of Young’s modulus 

and critical energy release rate are examined. Here, the effect of fracture toughness, critical stretch, 

and mass density are also taken into account in this section. 

Kirugulige and Tippur [41] carried out a series of dynamic crack experiments on a brittle FGM plate 

containing a crack. After the observation, they developed a finite element model with cohesive 

elements to explain the material gradation effect. The given linear variation of parameters; Young's 

modulus, fracture toughness, and mass density were also used in [68] for examining dynamic crack 

propagation using PD and in [74] for studying crack branching in FGMs. Following linear equations 

for material properties gradation in Kalthoff-Winkler experiment were adapted from [41, 68, 74] to 

set up an analogy that develops a similar FGMs behaviour. 

𝐾𝐶(𝑦) = 140.2 −
140.2 − 89.6

0.1
𝑦          0 ≤ 𝑦 ≤ 0.1 m, (11) 

𝐸(𝑦) = 271 −
271 − 111

0.1
𝑦          0 ≤ 𝑦 ≤ 0.1 m, (12) 

𝜌(𝑦) = 9600 −
9600 − 6400

0.1
𝑦          0 ≤ 𝑦 ≤ 0.1 m, (13) 
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𝐺𝐶(𝑦) =
𝐾𝐼𝐶

2 (𝑦)

𝐸(𝑦)
. (14) 

In the above equations, y is varied from 0 to 0.1 m. The units for fracture toughness 𝐾𝐼𝐶(𝑦), Young's 

modulus 𝐸(𝑦), and mass density 𝜌(𝑦) are MPa ∙ √m, GPa and kg/m3, respectively. Because of the 

transitions between Mode I and Mode II fracture mechanisms in Kalthoff-Winkler experiment [78], 

a difficulty arises to determine critical energy release rates for Mode I (𝐺𝐼𝐶) and Mode II (𝐺𝐼𝐼𝐶). 

Kirugulige and Tippur [41] stated that the equality of 𝐺𝐼𝐶 = 𝐺𝐼𝐼𝐶 was used due to the lack of 

application of pure Mode II experiments under dynamic loading conditions. Therefore, with the plane 

stress assumption suggested in [41], the critical energy release rate is determined by Eq. (14). This 

approach was also used in [68, 74]. The reference value 𝐸 = 191 GPa is changed by ±42% to obtain 

limit values of E as in accordance with [41]. The reference values of 𝐾𝐼𝐶 and 𝜌 are changed by ±22% 

and ±20%, respectively. The variation of Young’s modulus, critical energy release rate, and mass 

density of M6 and M7 models examined in this section are shown in Fig. 8. Maximum and minimum 

values of all material properties are summarized in Table 1. Models M6 and M7 were compared to 

the reference model M1. While cracks start to propagate at 30.5 μs in M1 and M6 models, the 

initiation occurs at 34.8 μs in M7 model. In Fig. 9, crack positions of all models are given. It can be 

seen that cracks in M6 reach the edge within the same time (91.4 μs) according to the reference model 

M1. The model M7 is shown in Fig. 9 (e,f). When the tip of cracks at 91.4 μs is inspected in M7 

model, decreasing in the crack velocity can be observed compared to M1 and M6 models. The 

complete fracture can only occur at about 100.1 μs. In Fig. 10, velocity profiles of models are 

presented. The average velocities in M1, M6, and M7 models are 1253 m/s, 1340 m/s, and 956 m/s, 

respectively. The offset on M7 compared to M1 model can be clearly seen, which results in about 

24% decrease in average velocity. In M7 model, material properties linearly change from lower at 

the 𝑦 = 0.1 m to higher values at 𝑦 = 0. The propagation velocity appeared to be affected by stiffer 

material properties in the crack path. The velocities decelerate as they advance for all models. Cheng 

et al. [68, 69] also observed a similar velocity change in the stiffer side. These complete modelling 
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cases also provide a basis for the testing of the effect of micro-cracks on crack propagation in FGM 

body in the next section. 

3.4 Randomly distributed micro-cracks in FGMs 

In the section that follows, the effect of micro-cracks in the FGM body on the crack propagation 

velocity will be addressed. Micro-cracks around the crack tip may lead to micro-crack toughening 

effect in brittle materials due to crack shielding [63, 92, 93]. We previously examined this 

phenomenon in [76] to investigate relationship between randomly pre-located micro-cracks and the 

toughening mechanism in the Kalthoff–Winkler problem. Now, the model called A2 in [76] that 

showed one of the most effective toughening effect is adapted in M6 and M7 models. In other words, 

models M8 and M9 have same material properties as M6 and M7, respectively. Moreover, they 

contain stochastically distributed micro-cracks. In addition to this modification, the A2 model from 

[76], which had same homogeneous material properties as M1 model but with micro-cracks, is now 

examined as M1-w/mc (M1 with micro-cracks) model for comparison purposes. The crack locations, 

density and dimensions were presented in Fig. 10 in [76]. 

While cracks start to propagate at 30.5 μs in M1 and M1-w/mc models, the initiation occurs at 30.5 

and 34.8 μs in M8 and M9 models, respectively. The crack initiation time in M8 and M9 are same as 

M6 and M7 models which means there is no significant effect on crack initiation arising from pre-

located micro-cracks. The crack path location of simulations is given in Fig. 11 at times 91.4 and 

100.1 μs. The complete fracture occurs in M8 at 95.7 μs with a delay of 4.3 μs with regard to M6 

model. It should be mentioned that it is 91.4 μs in the reference model M1 (Fig. 11(a)). The required 

time for main-cracks to reach edges in M9 is 100.1 μs (Fig. (11(f)) which is the same as in M7. When 

considering the time for complete fracture in M1-w/mc is 104.4 μs, crack velocities in M8 and M9 

seems slower than in M1-w/mc. However, required times for complete fracture may lead to a 

misinterpretation about the crack velocity and toughening effect due to changing of crack path's 

directions. Paths of crack propagations are given in Fig. 11 (f). Herein, average velocities should be 
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compared for all models. Since micro-cracks do not allow tracking the crack tip, velocities are 

evaluated once cracks pass over the micro-crack area. In Fig. 12, velocity profiles after 52.2 μs is 

given, in which the crack propagation is in the micro-crack-free area. Considering that cracks reach 

edges at 91.4 μs in M1 model, the velocity data should be compared up to this time. The average 

velocities between 52.2 and 91.4 μs are 1345, 1383, 1126, 1300, 1066, and 1219 m/s in models M1, 

M6, M7, M8, M9, and M1-w/mc, respectively. When FGM model M8 and homogenous model M1-

w/mc are compared, the average velocity increases with application of FGM properties. On the other 

hand, FGM model M9 has lower average velocity value than M1-w/mc. This difference indicates that 

the direction of gradation of material points is an effective parameter on toughening mechanism in an 

FGM body with pre-located micro cracks around the crack tip. A possible cause of that crack 

propagation is in stiffer side of the body in M9 model with regard to M8 model. This also agrees with 

results stated by Zhang et al. [88]. Turning now to the comparison of FGM models with micro-cracks 

and without micro-cracks, there is a decrease in average velocity values in M8 and M9 models 

compared to M6 and M7 models. In that comparison, about 6% and 5% reductions in average 

velocities are obtained in M8 and M9 models. These results corroborate the findings of a great deal 

of the previous work in [76]. 

Overall, results in numerical examples chapter indicate that crack propagation shows various 

characteristics depending on material properties gradation in FGMs that both with and without micro-

cracks. In summary, models M1, M2, and M3 are compared in Section 3.1. M1 is the original 

experimental setup. M2 and M3 are homogeneous material models. Crack propagation velocities are 

reduced with high Elastic modulus and critical energy release rate parameters, but increased with low 

ones. In Section 3.2, M4 and M5 FGM models with linearly changing material properties are 

presented and compared with M1 model. Here, crack propagations change depending on the gradation 

direction of material properties. If the crack propagation advances from stiffer part of the body to 

weaker, velocity of the propagation increases. In Section 3.3, M6 and M7 models considered variation 

of Elastic modulus, fracture toughness, critical energy release rate, and density. In Section 3.4, models 
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M8 and M9 have same material properties as M6 and M7, respectively, but they have pre-defined 

micro-cracks. M8 and M9 have lower crack propagation velocities than M6 and M7, respectively. 

4 Conclusion 

In this paper, the bond based Peridynamics (PD) model was presented to examine the crack 

propagation in a functionally graded material (FGM) body subjected to impact load and the effect of 

micro-cracks was investigated. Two FGM approaches have been adapted to obtain effects of material 

properties on the crack propagation. Material parameters such as Young’s modulus, fracture 

toughness, and density gradation provides a more valid simulation approach to FGM modelling using 

PD. The most obvious finding to emerge from the analyses is that the softening of area without crack 

and hardening the area containing the crack path reduce the crack tip velocity and increase the 

toughness with an appreciable difference. One of the more significant verdicts to emerge from this 

study is that adding a pre-defined micro-crack cluster around the crack tip decelerate the crack 

propagation and cause toughening of an FGM body. However, there is a material gradation 

dependency on toughening mechanism when adding micro-cracks in FGMs. These results provide 

important insights into the role of micro-cracks and toughening effect in an FGM body. The results 

of this investigation complement those of earlier studies. This work contributes to existing knowledge 

of dynamic fracture mechanism in an FGM model by providing an investigation of toughening effect. 

Further research should be undertaken to explore how different material models affect the crack 

propagation under various impact states. 
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Table 1 The homogeneous and FGM models’ material properties 

Figure captions 

Fig. 1 The reference and deformed states for two material points 

Fig. 2 Two different material points and broken bonds  

Fig. 3 Determining average values for each bond in FGMs 

Fig. 4 Geometrical details of Kalthoff-Winkler problem 
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Fig. 5 Crack paths and damages in models (a) M1 at 87.0 μs, (b) M1 at 104.4 μs, (c) M2 at 87.0 μs, 

(d) M2 at 104.4 μs, (e) M3 at 87.0 μs, (f) M3 at 104.4 μs. CL and y are crack length and y-coordinates 

of crack ends 

Fig. 6 Crack velocity profiles of models M1, M2, M3, M4, and M5 between 26.1 and 91.4 μs 

Fig. 7 Crack paths and damages in models (a) M1 at 91.4 μs, (b) M1 at 95.7 μs, (c) M4 at 91.4 μs, (d) 

M4 at 95.7 μs, (e) M5 at 91.4 μs, (f) M5 at 95.7 μs. CL and y are crack length and y-coordinates of 

crack ends 

Fig. 8 Variation of material properties of M6 and M7 models across the height of the body, (a) Linear 

curve fits for Young’s Modulus and density (b) Fracture energy, (same as those used in M8 and M9 

models, respectively.) 

Fig. 9 Crack paths and damages in models (a) M1 at 91.4 μs, (b) M1 at 100.1 μs, (c) M6 at 91.4 μs, 

(d) M6 at 100.1 μs, (e) M7 at 91.4 μs, (f) M7 at 100.1 μs. CL and y are crack length and y-coordinates 

of crack ends 

Fig. 10 Crack velocity profiles of models M1, M6, and M7 between 26.1 and 91.4 μs 

Fig. 11 Crack paths and damages in models (a) M1 at 91.4 μs, (b) M1 at 100.1 μs, (c) M8 at 91.4 μs, 

(d) M8 at 100.1 μs, (e) M9at 91.4 μs, (f) M9 at 100.1 μs. CL and y are crack length and y-coordinates 

of crack ends 

Fig. 12 Crack velocity profiles of models M1, M6, M7, M8, M9, and M1-w/mc between 26.1 and 

91.4 μs 
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Fig.1 The reference and deformed states for two material points 

 

Fig.2 Two different material points and broken bonds 

 

Fig. 3 Determining average values for each bond in FGMs 
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Fig. 4 Geometrical details of Kalthoff-Winkler problem 
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Fig. 5 Crack paths and damages in models (a) M1 at 87.0 μs, (b) M1 at 104.4 μs, (c) M2 at 87.0 μs, 

(d) M2 at 104.4 μs, (e) M3 at 87.0 μs, (f) M3 at 104.4 μs. CL and y are crack length and y-coordinates 

of crack ends 

 

Fig. 6 Crack velocity profiles of models M1, M2, M3, M4, and M5 between 26.1 and 91.4 μs 
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Fig. 7 Crack paths and damages in models (a) M1 at 91.4 μs, (b) M1 at 95.7 μs, (c) M4 at 91.4 μs, (d) 

M4 at 95.7 μs, (e) M5 at 91.4 μs, (f) M5 at 95.7 μs. CL and y are crack length and y-coordinates of 

crack ends 
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Fig. 8 Variation of material properties of M6 and M7 models across the height of the body, (a) Linear 

curve fits for Young’s Modulus and density (b) Fracture energy, (M8 and M9 models have same 

material properties as M6 and M7, respectively.) 
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Fig. 9 Crack paths and damages in models (a) M1 at 91.4 μs, (b) M1 at 100.1 μs, (c) M6 at 91.4 μs, 

(d) M6 at 100.1 μs, (e) M7 at 91.4 μs, (f) M7 at 100.1 μs. CL and y are crack length and y-coordinates 

of crack ends 
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Fig. 10. Crack velocity profiles of models M1, M6, and M7 between 26.1 and 91.4 μs 
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Fig. 11 Crack paths and damages in models (a) M1 at 91.4 μs, (b) M1 at 100.1 μs, (c) M8 at 91.4 μs, 

(d) M8 at 100.1 μs, (e) M9at 91.4 μs, (f) M9 at 100.1 μs. CL and y are crack length and y-coordinates 

of crack ends 
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Fig. 12 Crack velocity profiles of models M1, M6, M7, M8, M9, and M1-w/mc between 26.1 and 

91.4 μs 

Table 1 The homogeneous and FGM models’ material properties 

  
Young's 

Modulus (GPa) 
Critical Energy Release 

Rate (kJ/m2) 
Fracture Toughness 

(MPa m1/2) 
Mass Density 

(kg/m3) 

  Ey=0 Ey=0.1 Gc,y=0 Gc,y=0.1 KIC,y=0 KIC,y=0.1 ρy=0 ρy=0.1 

M1 (Ref. 
Model) 191 191 69.1 69.1 114.9 114.9 8000 8000 

M2 127 127 46.1 46.1 76.5 76.5 8000 8000 

M3 255 255 92.1 92.1 153.2 153.2 8000 8000 

M4 127 255 46.1 92.1 76.5 153.2 8000 8000 

M5 255 127 92.1 46.1 153.2 76.5 8000 8000 

M6 111 271 52.7 86.6 76.5 153.2 6400 9600 

M7 271 111 86.6 52.7 153.2 76.5 9600 6400 

M8 111 271 52.7 86.6 76.5 153.2 6400 9600 

M9 271 111 86.6 52.7 153.2 76.5 9600 6400 
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