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Abstract. IFOSMONDI iterative algorithm for implicit co-simulation
of coupled physical systems (introduced by the authors in july 2019 dur-
ing the Simultech conference, p.176-186) enables us to solve the non-
linear coupling function while keeping the smoothness of interfaces with-
out introducing a delay. Moreover, it automatically adapts the size of the
steps between data exchanges among the systems according to the diffi-
culty of the solving of the coupling constraint. The latter was solved by a
fixed-point algorithm in the original implementation whereas this paper
introduces the JFM version (standing for Jacobian-Free Methods). Most
implementations of Newton-like methods require a jacobian matrix which
can be difficult to compute in the co-simulation context, except in the
case where the interfaces are represented by a Zero-Order-Hold (ZOH).
As far as IFOSMONDI coupling algorithm uses Hermite interpolation for
smoothness enhancement (up to Third-Order-Hold), we propose here-
after a new formulation of the non-linear coupling function including
both the values and the time-derivatives of the coupling variables. This
formulation is well designed for solving the coupling through jacobian-
free Newton type methods. Consequently, successive function evaluations
consist in multiple simulations of the systems on a co-simulation time-
step using rollback. The orchestrator-workers structure of the algorithm
enables us to combine the PETSc framework on the orchestrator side
for the non-linear Newton-type solvers with the parallel integrations of
the systems on the workers side thanks to MPI processes. Different non-
linear methods will be compared to one another and to the original fixed-
point implementation on a newly proposed 2-systems academic test-case
(mass-spring-damper type) with direct feedthrough on both sides.

Keywords: Co-simulation · Systems coupling · Coupling methods ·
Jacobian-free Newton · PETSc · Parallel integration · Strong coupling
test case
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1 Introduction

The use of co-simulation is increasing in the industry as it enables to connect
and simulate systems with given interfaces (input and output variables) without
disclosing the expertise inside. Hence, modellers can provide system architects
with virtual systems as black boxes since the systems are able to interact through
their interfaces. Among these interactions, the minimal requirement are quite
simple: a system should at least be able to read the inputs given by the other
systems, to simulate its physics inside (most of the time thanks to an embedded
solver), and to provide outputs of the simulation to the other systems.

Besides its black box aspect protecting the know-how, co-simulation also
enables physic-based decomposition (one system can represent the hydraulic part
of a modular model, another the mechanical part, a third one the electrical part,
and so on) and/or dynamics-based decomposition (some systems isolate the stiff
state variables so that they do not constraint all the other states anymore during
the simulation). In other words, the co-simulation opens many doors thanks to
the modular aspect of the models handled.

The co-simulation field of research nowadays focuses on the numerical meth-
ods and algorithms that can be used to process simulations of such modular
models. From the simplest implementations (non-iterative Jacobi) to very ad-
vanced algorithms [7,11,12,14,4], co-simulation methods have been developped
in different fields, showing that the underlying problems to be tackled are not
straightforward. Some arising problems could clearly be identified since the mo-
ment it has become a center of interest for researchers, such as the delay between
the given inputs and the retrieved outputs of a system (corresponding to the so-
called ”co-simulation step” or ”macro-step”), the instabilities that might occur
as a consequence of this delay [15], the discontinuities produced at each com-
munication [5], the error estimation (and the use of it in order to adapt the
macro step size) [12], the techniques to solve the so-called ”constraint function”
corresponding to the interface of the systems [9,13], and so on. Many of these
problems have been addressed in papers either proposing an analysis, a method
to solve them, or both.

In our previous paper [6], an iterative method that satisfies the interfaces
consistency while avoiding discontinuities at each macro-step was proposed and
compared to well-established methods (non-iterative Jacobi, zero-order hold iter-
ative co-simulation [9], and non-iterative algorithm enhancing variables smooth-
ness [5]). This algorithm was based on a fixed-point iterative method. Its evolu-
tion, presented in this paper, is based on iterative methods that normally require
jacobian matrix computation, yet we use their jacobian-free version. The name
of this method is IFOSMONDI-JFM, standing for Iterative and Flexible Or-
der, SMOoth and Non-Delayed Interfaces, based on Jacobian-Free Methods. The
enhancements it brings to the classical IFOSMONDI method enable to solve
cases that could not be solved by this previous version. The integration of an
easily modulable jacobian-free method to solve the constraint function will be
presented. In particular, the software integration was made possible thanks to
the PETSc framework, a library that provides modulable numerical algorithms.
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The interfacing between PETSc and the co-simulation framework dealing with
the systems, interfaces and polynomial representations will be detailed.

2 Formalism and notations

2.1 A word on JFM accronym

In the whole paper, the abbreviation JFM will denote jacobian-free versions of
iterative methods that are designed to bring a given function (so-called callback)
to zero and that normally require the computation of the jacobian matrix of
the callback function. In particular, a fixed-point method does not meet these
criteria: it is not a JFM, contrary to matrix-free versions of the Newton method,
the Anderson method [1] or the non-linear GMRES method [10].

2.2 General notations

In this paper, we will focus on the explicit systems. In other words, we will
consider that every system in the co-simulation is a dynamical system corre-
sponding to an ODE (Ordinary Differential Equation). The time-domain of the
ODEs considered will be written [tinit, tend[, and the variable t will denote the
time.

Let’s consider nsys ∈ N∗ systems are involved: we will use the index k ∈
[[1, nsys]] to denote the kth system, and nst,k, nin,k, and nout,k will respectively
denote the number of state variables, the number of inputs, and the number of
outputs of system k.

The time-dependant vectors of states, inputs and outputs of system k will
respectively be written xk ∈ L([tinit, tend],Rnst,k), uk ∈ L([tinit, tend],Rnin,k),
and yk ∈ L([tinit, tend],Rnout,k) where L(A,B) denotes the set of functions of
domain A and co-domain B. Finally, we can write the ODE form of the system
k: {

ẋk(t) = fk(t, xk(t), uk(t))
yk(t) = gk(t, xk(t), uk(t))

(1)

Let nin,tot and nout,tot respectively be the total amount of inputs
∑nsys
k=1 nin,k

and the total amount of outputs
∑nsys
k=1 nout,k.

The total inputs and the total outputs vectors are simply concatenations of
input and output vectors of every system:

u(t) = (u1(t)T , · · · , unsys(t)T )T ∈ L([tinit, tend],Rnin,tot)
y(t) = (y1(t)T , · · · , ynsys(t)T )T ∈ L([tinit, tend],Rnout,tot) (2)

Finally, a tilde symbol˜will be added to a functional quantity to represent an
element of its codomain. exempli gratia , y ∈ L([t[N ], t[N+1][,R), so we can use
ỹ to represent an element of Rnout,tot .
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2.3 Extractors and rearrangement

In order to easily switch from global to local inputs, extractors are defined. For
k ∈ [[1, nsys]], the extractor Euk is the matrix defined by (3).

Euk =

(
0

∣∣∣ (
Inin,k

) ∣∣∣ 0

)
︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

nin,k ×
∑k−1
l=1 nin,l nin,k × nin,k nin,k ×

∑nsys
l=k+1 nin,l

(3)

where ∀n ∈ N, In denotes the identity matrix of size n by n.
The extractors enable to extract the inputs of a given system from the

global inputs vector with a relation of the form ũk = Euk ũ. We have: ∀k ∈
[[1, nsys]], E

u
k ∈Mnin,k,nin,tot({0, 1}).

A rearrangement operator will also be needed to handle concatenations of
outputs and output derivatives. For this purpose, we will use the rearrangement
matrix Ry ∈Mnout,tot,nout,tot({0, 1}) defined blockwise in (4).

Ry =
(
R
y
K,L

)
K∈[[1, 2 nsys]]
L∈[[1, 2 nsys]]

where

R
y
K,L =


Inout,K if K 6 nsys and L = 2K − 1
Inout,K−nsys

if K > nsys and L = 2(K − nsys)
0 otherwise

(4)

The Ry operator makes it possible to rearrange the outputs and output deriva-
tives with a relation of the following form.


ỹ

˜̇y

 =



ỹ1

ỹ2

...
ỹnsys

˜̇y1

˜̇y2

...
˜̇ynsys


=



Inout,1 0 0 0 · · · 0 0
0 0 Inout,2 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · Inout,nsys 0

0 Inout,1 0 0 · · · 0 0
0 0 0 Inout,2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 Inout,nsys


︸ ︷︷ ︸



ỹ1

˜̇y1

ỹ2

˜̇y2

...
ỹnsys
˜̇ynsys


Ry

(5)
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2.4 Time discretization

In the context of co-simulation, the gk and fk functions in (1) are usually not
available directly. Thus, several co-simulation steps, so-called ”macro-steps”, are
made between tinit and tend. Let’s introduce the notations of the discrete version
of the quantities introduced in 2.2.

A macro step will be defined by its starting and ending times, respectively de-
noted as [t[N ], t[N+1]] for the N th macro-step. The macro-steps define a partition
of the time-domain. 

[tinit, tend[ =

Nmax−1⋃
N=0

[t[N ], t[N+1][

t[0] = tinit

t[Nmax] = tend

∀N ∈ [[0, Nmax − 1]], t[N+1] > t[N ]

(6)

Let δt[N ] denote the size of the N th macro-step:
∀N ∈ [[0, Nmax − 1]], δt[N ] = t[N+1] − t[N ] > 0

Nmax−1∑
N=0

δt[N ] = tend − tinit
(7)

Let T denote the set of possible macro-steps.

T ∆
= {[a, b[ | tinit 6 a < b 6 tend} (8)

On a given macro-step [t[N ], t[N+1][, N ∈ [0, Nmax], for all systems, the restric-

tions of the piecewise equivalents of uk and yk will be denoted by u
[N ]
k and y

[N ]
k

respectively. In case several iterations are made on the same step, we will re-
fer to the functions by a left superscript index m. Finally, we will denote the
coordinate of these vectors with an extra subscript index.

∀k ∈ [[1, nsys]], ∀N ∈ [[0, Nmax]], ∀m ∈ [0,mmax(N)],

∀j ∈ [[1, nin,k]], [m]u
[N ]
k,j ∈ L([t[N ], t[N+1][,R)

∀i ∈ [[1, nout,k]], [m]y
[N ]
k,i ∈ L([t[N ], t[N+1][,R)

(9)

In (9), mmax(N) denotes the number of iterations (minus one) done on the N th

macro-step. mmax(N) across N can be plotted in order to see where the method
needed to proceed more or less iterations.

All derived notations introduced in this subsection can also be applied to the
total input and output vectors.
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∀N ∈ [[0, Nmax]], ∀m ∈ [[0,mmax(N)]],

∀̄ ∈ nin,tot, [m]u
[N ]
̄ ∈ L([t[N ], t[N+1][,R)

∀ı̄ ∈ nout,tot, [m]y
[N ]
ı̄ ∈ L([t[N ], t[N+1][,R)

(10)

Indices ı̄ and ̄ in (10) will be called global indices in opposition to the local
indices i and j in (9).

2.5 Step function

Let Sk, k ∈ [[1, nsys]] be the ideal step function of the kth system, that is to say
the function which takes the system to its future state one macro-step forward.

Sk :

{
T× L([tinit, tend],Rnin,k)× Rnst,k → Rnout,k × Rnst,k
(τ, uk, x̃) 7→ Sk(τ, uk, x̃)

(11)

In practice, the state vector x̃ will not be explicited. Indeed, it will be embedded
inside of the system k and successive calls will either be done:

• with τ beginning where the τ at the previous call of Sk ended (moving on),
• with τ beginning where the τ at the previous call of Sk started (step replay),
• with τ of the shape [tinit, t[ with t ∈]tinit, tend[ (first step).

Moreover, the uk argument only needs to be defined on the domain τ (not
necessary on [tinit, tend[). Thus, Sk will not be considered in the method, but the
Ŝk function (practical step function) defined hereafter will be considered instead.
Despite Ŝk is not properly mathematically defined (the domain depends on the
value of one of the arguments: τ and some quantities are hidden: the states), it
does not lead to any problem, considering the hypotheses above.

Ŝk :

{
T× L(τ,Rnin,k) 7→ Rnout,k
(τ, uk) 7→ Ŝk(τ, uk)

satisfying

Ŝk([t[N ], t[N+1][, [m]u
[N ]
k ) = [m]y

[N ]
k (t[N+1])

(12)

The Ŝk function is the one available in practice, namely in the FMI (Functionnal
Mock-up Interface) standard.

2.6 Extended step function

The values of the output variables might not be sufficient for every co-simulation
scheme. It is namely the case for both classical IFOSMONDI and IFOSMONDI-
JFM. Indeed, the time-derivatives of the outputs are also needed.
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Let
ˆ̂
Sk be the extension of Ŝk returning both the output values and deriva-

tives.

ˆ̂
Sk :

{
T× L(τ,Rnin,k) 7→ Rnout,k × Rnout,k

(τ, uk) 7→ ˆ̂
Sk(τ, uk)

satisfying

ˆ̂
Sk([t[N ], t[N+1][, [m]u

[N ]
k ) =


[m]y

[N ]
k (t[N+1])

d [m]y
[N ]
k

dt
(t[N+1])


(13)

If the derivatives are not available in practice, a finite difference approximation

over [t[N ], t[N+1][ can be made (see
˜̂
Ŝk in [6]).

2.7 Connections

The connections between the systems will be denoted by a matrix filled with zeros
and ones, with nout,tot rows and nin,tot columns denoted by Φ. Please note that if
each output is connected to exactely one input, Φ is a square matrix. Moreover, it
is a permutation matrix. Otherwise, if an output is connected to several inputs,
more than one 1 appears at the corresponding row of Φ. In any case, there can
neither be more nor less than one 1 on each column of Φ considering that an
input can neither be connected to none nor several outputs.

∀ı̄ ∈ nout,tot, ∀̄ ∈ nin,tot, Φı̄,̄ =

{
1 if output ı̄ is connected to input ̄
0 otherwise

(14)

The dispatching will denote the stage where the inputs are generated from their
connected inputs, using the connections represented by Φ.

ũ = ΦT ỹ (15)

The coupling function (16) will denote the absolute difference between corre-
sponding connected variables in a total input vector and a total output vector.
In other words, it represents the absolute error beween a total input vector and
the dispatching of a total output vector. The λ subscript does not correspond to
a quantity, it is a simple notation inherited from a Lagrange multipliers approach
of systems coupling [13].

gλ :

{
Rnin,tot × Rnout,tot → Rnin,tot
(ũ, ỹ) 7→ |ũ− ΦT ỹ| (16)

The coupling condition (17) is the situation where every output of the total
output vector corresponds to its connected input in the total input vector.

gλ(ũ, ỹ) = 0Rnin,tot (17)
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3 IFOSMONDI-JFM method

3.1 Modified extended step function

As in classical IFOSMONDI [6], the IFOSMONDI-JFM method preserves the
C1 smoothness of the interface variables at the communication times
(t[N ])N∈[[1,Nmax−1]]. Thus, when a time t[N ] has been reached, the input functions
for every system will all satisfy the following property:

∀k ∈ [[1, nsys]], ∀m ∈ [[0,mmax(N)]],
[m]u

[N ]
k (t[N ]) = [mmax(N−1)]u

[N−1]
k (t[N ])

d [m]u
[N ]
k

dt
(t[N ]) =

d [mmax(N−1)]u
[N−1]
k

dt
(t[N ])

(18)

The IFOSMONDI-JFM also represents the inputs as 3rd order polynomial (max-
imum) in order to satisfy the smoothness condition (18) and to respect imposed
values and derivatives at t[N+1] for every macro-step.

Knowing these constraints, it is possible to write a specification of the prac-

tical step function
ˆ̂
Sk in the IFOSMONDI-JFM case (also applicable in the

classical IFOSMONDI method):

ζk :

{
T× Rnin,k × Rnin,k 7→ Rnout,k × Rnout,k
(τ, ũk, ˜̇uk) 7→ ζk(τ, ũk, ˜̇uk)

(19)

where the three cases discussed in 2.5 have to be considered.

Case 1: Moving on: In this case, the last call to ζk was done with a τ ∈ T
ending at current t[N ]. In other words, the system k ”reached” time t[N ]. The

inputs were, at this last call: [mmax(N−1)]u
[N−1]
k .

To reproduce a behavior analog to the classical IFOSMONDI method, the

inputs [0]u
[N ]
k will be defined as the 2nd order polynomial (or less) satisfying the

three following constraints:

[0]u
[N ]
k (t[N ]) = [mmax(N−1)]u

[N−1]
k (t[N ])

d [0]u
[N ]
k

dt
(t[N ]) =

d [mmax(N−1)]u
[N−1]
k

dt
(t[N ])

[0]u
[N ]
k (t[N+1]) = [mmax(N−1)]u

[N−1]
k (t[N ])

(20)

The two first constraints guarantee the smoothness property (18), and the third
one minimizes the risk of out-of-range values (as in classical IFOSMONDI method).

In this case, ζk in (19) is defined by the specification (21).
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ζk([t[N ], t[N+1][, ·, ·) =
ˆ̂
Sk([t[N ], t[N+1][, [0]u

[N ]
k︸ ︷︷ ︸)

computed with (20)
(21)

2nd and 3rd arguments of ζk are unused.

Case 2: Step replay: In this case, the last call to ζk was done with a τ ∈ T
starting at current t[N ]. In other words, the system did not manage to reach the
ending time of the previous τ (either because the method did not converge, or
because the step has been rejected, or another reason).

Two particular subcases have to be considered here: either the step we are
computing is following the previous one in the iterative method detailed after
this section, or the previous iteration has been rejected and we are trying to
re-integrate the step starting from τ with a smaller size δt[N ].

Subcase 2.1: Following a previous classical step: In this subcase, the last call of
ζk was not only done with the same starting time, but also with the same step

ending time t[N+1]. The inputs were, at this last call: [m−1]u
[N ]
k with m > 1, and

satisfied the two conditions at t[N ] of (21).

The jacobian-free iterative method will ask for given input values ũk and

time-derivatives ˜̇uk that will be used as constraints at t[N+1], thus [m]u
[N ]
k will

be defined as the 3rd order polynomial (or less) satisfying the four following
constraints:

[m]u
[N ]
k (t[N ]) = [mmax(N−1)]u

[N−1]
k (t[N ]) = [m−1]u

[N ]
k (t[N ])

d [m]u
[N ]
k

dt
(t[N ]) =

d [mmax(N−1)]u
[N−1]
k

dt
(t[N ]) =

d [m−1]u
[N ]
k

dt
(t[N ])

[m]u
[N ]
k (t[N+1]) = ũk

d [m]u
[N ]
k

dt
(t[N+1]) = ˜̇uk

(22)

The two firsts constraints ensure the (18) smoothness property, and the third
and fourth ones will enable the iterative method to find the best values and
derivatives to satisfy the coupling condition.

In this subcase, ζk in (19) is defined by the specification (23).

ζk([t[N ], t[N+1][, ũk, ˜̇uk) =
ˆ̂
Sk([t[N ], t[N+1][, [m]u

[N ]
k︸ ︷︷ ︸)

computed with (22)
(23)



10 Y. Eguillon et al.

Subcase 2.2: Re-integrate a step starting from t[N ] but with different δt[N ] than
at the previous call of ζk: In this subcase, current t[N+1] is different from sup (τ)
with τ being the one used at the last call of ζk.

As it shows that a step rejection just occured, we will simply do the same
than in case 1, as if we were moving on from t[N ]. In other words, all calls to ζk
with τ starting at t[N ] are ”forgotten”.

Please note that [mmax(N−1)]u
[N−1]
k (t[N ]) and

d [mmax(N−1)]u
[N−1]
k

dt
(t[N ]) can

be retreived using the values and derivatives constraints at t[N ] of the inputs at
the last call of ζk thanks to the smoothness constraint (18).

Case 3: First step: In this particular case, we will do the same as in the other
cases, except that we won’t impose any constraint for the time-derivative at tinit.
That is to say:

• at the first call of ζk, we have N = m = 0, we will only impose [0]u
[0]
k (tinit) =

[0]u
[0]
k (t[1]) = uinit

k to have a zero order polynomial satisfying the initial con-
ditions uinit

k (supposed given),

• at the other calls, case 2 will be used without considering the constraints for
the derivatives at tinit (this will lower the polynomial’s degrees). For (22),

the first condition becomes [m]u
[N ]
k (tinit) = uinit

k , the second one vanishes,
and the third ans fourth ones remain unchanged. For the subcase 2.2, it can

be considered that [mmax(−1)]u
[−1]
k (tinit) = uinit

k , and
d [mmax(−1)]u

[−1]
k

dt
(tinit)

will not be needed as it is a time-derivative in tinit.

Finally, we have ζk defined in every case, wrapping polynomial inputs com-

putations and the integration done with
ˆ̂
Sk.

3.2 Iterative method’s callback function

The aim is to solve the co-simulation problem by using a jacobian-free version
of an iterative method that usually requires a jacobian computation (see 2.1).
Modern matrix-free versions of such algorithms make it possible to avoid per-
turbating the systems and re-integrating them for every input, as done in [13],
in order to compute a finite-differences jacobian matrix. This saves a lot of in-
tegrations over each macro-step and gains time.

Nevertheless, on every considered macro-step τ , a function to be brought to
zero has to be defined. This so-called JFM’s callback (standing for Jacobian-Free
Method’s callback) presented hereafter will be denoted by γτ . In zero-order hold
co-simulation, this function if often ũ − ΦT ỹ (or equivalent) where ỹ are the
output at t[N+1] generated by constant inputs ũ over [t[N ], t[N+1][.
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In IFOSMONDI-JFM, we will only enable to change the inputs at t[N+1], the
smoothness condition at t[N ] guaranteeing that the coupling condition (17) re-
mains satisfied at t[N ] if it was satisfied before moving on to the step [t[N ], t[N+1][.
The time-derivatives will also be considered in order to maintain C1 smoothness,
so the coupling condition (17) will also be applied to these time-derivatives.

Finally, the formulation of the JFM’s callback for IFOSMONDI-JFM is:

γτ :


Rnin,tot × Rnin,tot → Rnin,tot × Rnin,tot(
ũ
˜̇u

)
7→
(
ũ
˜̇u

)
−
(
ΦT 0
0 ΦT

)
Ry


ζ1
(
τ, Eu1 ũ, E

u
1

˜̇u
)

...

ζnsys

(
τ, Eunsys ũ, E

u
nsys

˜̇u
)


(24)

Link with the fixed-point implementation: The formulation (24) can be
used to represent the expression of the fixed-point Ψτ function. The latter has
been introduced in classical IFOSMONDI algorithm [6] where a fixed-point
method was used instead of a JFM one. We can now rewrite a proper expression
of Ψτ including the time-derivatives.

Ψτ :



Rnin,tot × Rnin,tot → Rnin,tot × Rnin,tot(
ũ
˜̇u

)
7→
(
ũ
˜̇u

)
− γτ (

(
ũ
˜̇u

)
)

=

(
ΦT 0
0 ΦT

)
Ry


ζ1
(
τ, Eu1 ũ, E

u
1

˜̇u
)

...

ζnsys

(
τ, Eunsys ũ, E

u
nsys

˜̇u
)

(25)

Ψτ was refered as Ψ in [6] and did not include the derivatives in its formulation,
yet the smoothness enhancement done by the Hermite interpolation led to an
underlying use of these derivatives.

When the result of the mth iteration is available, a fixed-point iteration on
macro-step τ = [t[N ], t[N+1][ is thus simply done by:(

[m+1]ũ
[m+1] ˜̇u

)
:= Ψτ (

(
[m]ũ
[m] ˜̇u

)
) (26)

3.3 First and last integrations of a step

The first iteration of a given macro-step τ ∈ T is a particular case to be taken
into account. Considering the breakdown presented in subsection 2.5, this corre-
sponds to case 1, case 2 subcase 2.2, case 3 first bullet point, and case 3 second
bullet point when falling into subcase 2.2.
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All these cases have something in common: they denote calls to ζk using a τ
argument that has never been used in a previous call of ζk. In these cases, the
latter function is defined by (21).

For this reason, the first call of γτ for a given macro-step τ will be done before
applying the JFM. Then, every time the JFM will call γτ , the (ζk)k∈[[1,nsys]]

functions called by γτ will behave the same way.
Once the JFM method ends, if it converged, a last call to γτ is made with the

solution
(
([mmax(N)]ũ[N ])T , ([mmax(N)] ˜̇u[N ])T

)T
for the systems to be in a good

state for the next step (as explained in subsection 2.5, the state of a system is
hidden but affected at each call to a step function).

3.4 Step size control

The step size control is defined with the same rule-of-thumbs than the one used
in [6]. The adaptation is not done on an error-based criterion such as in [12],
but with a predefined rule based on the convergence of the iterative method
(yes/no).

A reference step size δtref ∈ R+
∗ is defined for any simulation with IFOSMONDI-

JFM method. It will either act as initial macro-step size, and maximum step size.
At some points, the method will be allowed to reduce this step in order to help
the convergence of the JFM.

The convergence criterion for the iterative method is defined by the rule (27).

Given (εabs, εrel) ∈ (R∗+)2,

convergence is reached when

∣∣∣∣γτ ( ũ˜̇u
)∣∣∣∣ < ∣∣∣∣( ũ˜̇u

)∣∣∣∣ εrel +

∣∣∣∣(1
...
1

)∣∣∣∣ εabs
(27)

When the iterative method does not converge on the step [t[N ], t[N+1][, either
because a maximum number of iterations is reached or for any other reason (lin-
ear search does not converge, a Krylov internal method finds a singular matrix,
...), the step will be rejected and retried on the half (28). Otherwise, once the
method converged on [t[N ], t[N+1][, the next integration step τ tries to increase
the size of 30%, without exceeding δtref.

Once the iterative method exits on τold, the next step τnew is defined by:

τnew =



[
sup(τold),min

{
tend, sup(τold) + max

{
δtref, 1.3

(
sup(τold)− inf(τold)

)}}[
if convergence (27) was reached[

inf(τold), inf(τold) +
sup(τold)− inf(τold)

2

[
otherwise (divergence)

(28)
When εabs = εrel, these values will be denoted by ε.
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4 Note on the implementation

Our implementation is based on an orchestrator-worker architecture, where nsys+
1 processes are involved. One of them is dedicated to global manipulations: the
orchestrator. It is not responsible of any system and only deals with global quan-
tities (such as the time, the step τ , the ũ and ỹ vectors and the corresponding
time-derivatives, and so on). The nsys remaining processes, the workers, are re-
ponsible of one system each. They only deal with local quantities related to the
system they are responsible of.

4.1 Parallel evaluation of γτ using MPI

An evaluation of γτ consists in evaluations of the nsys functions (ζk)k∈[[1,nsys]],
plus some manipulations of vectors and matrices (24). An evaluation of a single ζk
for a given k ∈ [[1, nsys]] consists in polynomial computations and an integration

(21) (23) through a call of the corresponding
ˆ̂
Sk function (13).

A single call to γτ can be evaluated parallely by nsys processes, each of them
carying out the integration of one of the systems. To achieve this, the MPI
standard (standing for Message Passing Interface has been used, as the latter
provides routine to handle multi-process communications of data.

As the kth system only needs Euk ũ and Euk
˜̇u (see (3)) among ũ and ˜̇u, the

data can be send in an optimized manner from an orchestrator process to nsys
workers by using the MPI_Scatterv routine.

Analogously, each worker process will have to communicate their contribution
both to the outputs and their derivatives (assembling the block vector at the right
of the expression (24)). This can be done by using the MPI_Gatherv routine.

Finally, global quantities such as τ , m, the notifications of statuses and so
on can be done easily thanks to the MPI_Broadcast routine.

4.2 Using PETSc for the JFM

PETSc [2,3] is a library used for parallel numerical computations. In our case, the
several matrix-free versions of the Newton method and variants implemented in
PETSc were very attractive. Indeed, the flexibility of this library at runtime en-
ables the use of command-line arguments to control the resolution: -snes_mf or-
ders the use of a matrix-free non-linear solver, -snes_type newtonls, anderson
[1] and ngmres [10] are various usable solving methods that can be used as JFMs,
-snes_atol, -snes_rtol and -snes_max_it control the convergence criterion,
-snes_converged_reason,
-snes_monitor and -log_view produce information and statistics about hte
run, ...

This subsection proposes a solution to use these PETSc implementations in
a manner that is compliant with the parallel evaluation of the JFM’s callback
(24). This implementation has been used to generate the results of section 5.

First of all, PETSc needs a view on the environment of the running code:
the processes, and their relationships. In our case, the nsys + 1 processes of the
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orchestrator-worker architecture are not dedicated to the JFM. Thus, PETSc
runs on the orchestrator process only. In terms of code, this can be done by
creating PETSc objects referring to PETSC_COMM_SELF communicator on the
orchestrator process, and creating no PETSc object on the workers.

The callback γτ implements internally the communications with the workers,
and is given to the PETSc SNES object. The SNES non-linear solver will call this
callback blindly, and the workers will be triggered behind the scene for integra-

tions, preceded by the communications of the
(
([mmax(N)]ũ[N ])T , ([mmax(N)] ˜̇u[N ])T

)T
values asked by the SNES and followed by the gathering of the outputs and re-
lated derivatives. The latters are finally returned to PETSc by the callback on
the orchestrator side, after reordering and dispatching them as in (24).

4.3 JFM’s callback implementation

In this section, a suggestion of implementation is proposed for the γτ function,
both on the orchestrator side and on the workers side. Precisions about variables
in the snippets are given below them.

The aim is not to show the code that has been used to generate the results
of section 5, but to figure out how to combine the PETSc and MPI standard
(PETSc being based on MPI) to implement a parallel evaluation of γτ .

By convention, the process of rank 0 is the orchestrator, and any process of
rank k ∈ [[1, nsys]] will be responsible of system k.

Snippet 1. JFM’s callback on the orchestrator side (γτ )

1 PetscErrorCode JFM_callback(SNES /* snes */, Vec u_and_du , Vec res , void *
ctx_as_void)

2 {
3 MyCtxType *ctx = (MyCtxType *) ctx_as_void;
4 const int order = DO_A_STEP;
5 PetscScalar const * pscalar_u_and_du;
6 PetscScalar * pscalar_res;
7 size_t k;
8
9 // conversion PetscScalar -> C double

10 VecGetArrayRead(u_and_du , &pscalar_u_and_du);
11 for (k = 0; k < ctx ->n_in_tot * 2; k++)
12 ctx ->double_u_and_du[k] = (double)(pswork_x[k]);
13 VecRestoreArrayRead(u_and_du , &pscalar_u_and_du);
14
15 // Notify workers that we want them to run ,
16 // and telling them what tau is
17 MPI_Bcast (&order , 1, MPI_INT , 0, MPI_COMM_WORLD);
18 MPI_Bcast (&(ctx ->t_N), 1, MPI_DOUBLE , 0, MPI_COMM_WORLD);
19 MPI_Bcast (&(ctx ->t_Np1), 1, MPI_DOUBLE , 0, MPI_COMM_WORLD);
20
21 // Apply extrators and communicate at the same time:
22 // values , then derivatives
23 MPI_Scatterv(ctx ->double_u_and_du , ctx ->in_sizes , ctx ->in_offsets ,

MPI_DOUBLE , NULL , 0, MPI_DOUBLE , 0, MPI_COMM_WORLD);
24 MPI_Scatterv(ctx ->double_u_and_du + ctx ->n_in_tot , ctx ->in_sizes , ctx ->

in_offsets , MPI_DOUBLE , NULL , 0, MPI_DOUBLE , 0, MPI_COMM_WORLD);
25
26 /* Workers proceed integration here */
27



IFOSMONDI-JFM Co-simulation Algorithm with PETSc 15

28 // Assemble vector R^{\ bar{y}} * (\ zeta_1^T, ... \zeta_2^T)^T directly
29 // while communicating values and derivatives
30 MPI_Gatherv_outputs(MPI_IN_PLACE , 0, MPI_DOUBLE , ctx ->work1_n_out_tot , ctx

->out_sizes , ctx ->out_offsets , MPI_DOUBLE , 0, MPI_COMM_WORLD);
31 MPI_Gatherv_outputs(MPI_IN_PLACE , 0, MPI_DOUBLE , ctx ->work2_n_out_tot , ctx

->out_sizes , ctx ->out_offsets , MPI_DOUBLE , 0, MPI_COMM_WORLD);
32
33 // Dispatching ( equivalent of [[ Phi^T, 0], [0, Phi^T]])
34 dispatch(ctx ->work1_n_out , ctx ->out_sizes , ctx ->n_sys ,
35 ctx ->double_res , ctx ->in_sizes , ctx ->connections);
36 dispatch(ctx ->work2_n_out , ctx ->out_sizes , ctx ->n_sys ,
37 ctx ->double_res + ctx ->n_in_tot , ctx ->in_sizes , ctx ->connections);
38
39 // Difference between original entries and permuted outputs
40 for (k = 0; k < ctx ->n_in_tot * 2; k++)
41 ctx ->double_res[k] = ctx ->double_u_and_du[k] - ctx ->double_res;
42
43 // conversion C double -> PetscScalar
44 VecGetArray(res , &pscalar_res);
45 for (k = 0; k < ctx ->n_in_tot * 2; k++)
46 pswork_f[k] = (PetscScalar)(ctx ->double_res[k]);
47 VecRestoreArray(res , &pscalar_res);
48
49 return 0;
50 }

In the code snippet 1, the function JFM_callback is the one that is given to
the PETSc SNES object with SNESSetFunction. The context pointer ctx can be
anything that can be used to have access to extra data inside of this callback.
The principle is: when SNESSolve is called, the callback function which has been
given to the SNES object will be called an unknown number of times. For this
example, we suggested a context structure MyCtxType at least containing:

• t_N, t_Np1 the boundary times of τ , id est t[N ] and t[N+1] (as double each),
• n_in_tot the total number of inputs nin,tot (as size_t),
• double_u_and_du an array dedicated to the storage of (ũT , ˜̇uT )T (as double*),
• in_sizes the array containing the number of inputs for each process

(nin,k)k∈[[0,nsys]] including process 0 (with the convention nin,0 = 0) (as
int*),

• in_offsets the memory displacements
(∑k

l=1 nin,l

)
k∈[[0,nsys]]

for inputs scat-

tering for each process (as int*),
• work1_n_out_tot and work2_n_out_tot two arrays of size nout,tot for tem-

porary storage (as double*),
• out_sizes and out_offsets two arrays analogous to in_sizes and in_offsets

respectively, considering the outputs,
• n_sys tot number of systems nsys (as size_t),
• double_res an array of size 2 nin,tot dedicated to the storage of the result

of γτ (as double*), and
• connections any structure to represent the connections between the systems
ΦT (a full matrix might be a bad idea as Φ is expected to be very sparse).

Finally, dispatch is expected to be a function processing the dispatching
(15) of the values given in its first argument into the array pointed by its fourth
argument.
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On the workers side, the running code section is the one in the snippet 2.

Snippet 2. JFM’s callback on the worker side (ζk and communications)

1 /* ... */
2
3 while (1)
4 {
5 MPI_Bcast (&order , 1, MPI_INT , 0, me__ ->comm);
6 if (order != DO_A_STEP)
7 break;
8
9 // get tau

10 MPI_Bcast (&t_N , 1, MPI_DOUBLE , 0, MPI_COMM_WORLD);
11 MPI_Bcast (&t_Np1 , 1, MPI_DOUBLE , 0, MPI_COMM_WORLD);
12
13 // receive relevant inputs and derivatives for this system
14 MPI_Scatterv(NULL , ctx ->in_sizes , ctx ->in_offsets , MPI_DOUBLE ,
15 sys_inputs , sys_n_in , MPI_DOUBLE , 0, me__ ->comm);
16 MPI_Scatterv(NULL , ctx ->in_sizes , ctx ->in_offsets , MPI_DOUBLE ,
17 sys_dinputs , sys_n_in , MPI_DOUBLE , 0, me__ ->comm);
18
19 /* integration : */
20 zeta_do_a_step(t_N , t_Np1 , inputs , sys_dinputs , // [in]
21 sys_outputs , sys_doutputs); // [out]
22
23 // send the outputs and derivatives (results of zeta)
24 MPI_Gatherv_outputs(sys_outputs , sys_n_out , MPI_DOUBLE ,
25 NULL , NULL , NULL , MPI_DOUBLE , 0, MPI_COMM_WORLD);
26 MPI_Gatherv_outputs(sys_doutputs , sys_n_out , MPI_DOUBLE ,
27 NULL , NULL , NULL , MPI_DOUBLE , 0, MPI_COMM_WORLD);
28 }
29
30 /* ... */

Please note that the orchestrator process has to explicitely send an order different
from DO_A_STEP (with MPI_Bcast) to notify the workers that the callback will
not be called anymore.

Nonetheless, this order might not be send right after the call to SNESSolve

on the orchestrator side. Indeed, if the procedure converged, a last call has to
be made explicitely in the orchestrator (see 3.3).

An other explicit call to JFM_callback should also be explicitly made on the
orchestrator side before the call of SNESSolve (as also explained in 3.3).
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Finally, figure 1 presents a schematic view of these two snippets running
parallely.

Fig. 1. Workflow of the callback function called by SNESSolve: example with nsys = 2
(external first call to the callback is supposed to be already made before SNESSolve is
called)
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5 Results on a test cases

Difficulties may appear in a co-simulation problem when the coupling is not
straightforward. Some of the most difficult cases to solve are the algebraic cou-
pling (addressed in [8]) arising from causal conflicts, and the multiple feed-
through, id est the case where outputs of a system linearly depend on its inputs,
and the connected system(s) have the same behavior. In some case, this may
lead to a non-contractant Ψτ function. This section presents a test case we de-
signed, belonging to this second category. The fixed-point convergence can be
accurately analyzed so that its limitations are highlighted.

5.1 Test case presentation

Fig. 2. Mass spring damper with damping reaction modelled with Simcenter Amesim
- Parameters are above, variables are below

Figure 2 represents a 1-mass test case with a classical mechanical coupling on
force, velocity and position. These coupling quantities are respectively denoted
by fc, vc and xc. The component on the right represents a damper with a massless
plate, computing a velocity (and integrating it to compute a displacement) by
reaction to a force input.

We propose the parameters values in table 1.

Table 1. Parameters and initial values of the test case model

Notation Description Value

ML Mass of the body in (S1) 1 kg

KSD Spring rate of the spring in (S1) 1 N/m

DSD Damper rating of the damper in (S1) 1 N/(m/s)

DD Damper rating of the damper in (S2) ∈ [0.01, 4]

xL(0) Initial position of the body in (S1) 0 m

vL(0) Initial velocity of the body in (S1) 0 m/s

xD(0) Initial position of the plate in (S2) 0 m

tinit Initial time 0 s

tend Final time 10 s
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All variables will be denoted by either f , v or x (corresponding to forces, veloc-
ities and positions, respectively) with an index specifying its role in the model
(see figure 2).

The predefined force fL is a C∞ function starting from 5 N and definitely
reaching 0 N at t = 2 s. The expression of fL is (29) and the visualization of it
is presented on figure 3.

Fig. 3. Predefined force fL

fL :



[0, 10]→ [0, 5]

t 7→


5

e−1
e

( t
2

)2

− 1

−1

if t < 2

0 if t > 2

(29)

The expected behavior of the model is presented in table 2 referring to conven-
tionnal directions of figure 4.

Fig. 4. Test model visualized with Simcenter Amesim
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Table 2. Main stages of a simulation of the test case model

Stage
Body Plate

Description
displacement displacement

1 front front Positive fL pushes everything

2 back front
The spring pushes the body
backward as it is close to the plate

3 back back
The spring pulls the plate backwards as
the body is moving backward with inertia

4 front back
The spring pulls the body forward as the inertia
made it go too far in the backward direction

5 front front
The body is still moving frontward with inertia,
so the compressed spring pushed the plate forward

The behavior presented in table 2 might slightly change while parameter DD

changes (all other parameters being fixed, see table 1).

5.2 Equations and eigenvalues of the fixed-point callback Ψτ

Second Newton’s law gives:

v̇L = (fL + fSD)M−1
L

ẋL = vL
(30)

and the spring and damper forces can be expressed the following way:

fSD = KSD(xC − xL) +DSD(vC − vL)
fC = −fSD
fD = −DD(0− vC)
fC = fD
vC = fC/DD

(31)

leading to the following expressions of the coupled systems:

(S1) :


(
v̇L
ẋL

)
=

( −DSD
ML

−KSD
ML

1 0

)(
vL
xL

)
+

(
DSD
ML

KSD
ML

0 0

)(
vC
xC

)
+

(
fL
ML

0

)
fC = (DSD KSD)

(
vL
xL

)
+ (−DSD −KSD)

(
vC
xC

)

(S2) :


ẋD = 0 xD + 1

DD
fC(

vC
xC

)
=

(
0
1

)
xD +

(
1
DD
0

)
fC

(32)
At a given time t, we can state the jacobian of Ψτ introduced in (25) using the
expressions of the coupling quantities (32). Indeed, the output variables got at a
call are at the same time than the one at which the imposed inputs are reached
(end of the macro-step) thanks to the definitions of ζk.
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JΨτ (


fC
vC
xc
˙fC
˙vC
ẋc

) =



0 −DSD −KSD 0 0 0
1/DD 0 0 0 0 0

0 0 0 0 0 0

0 −DSD −KSD

Block 1/DD 0 0
0 0 0


(33)

The framed zeros are ”by-design” zeros: indeed, systems never produce outputs
depending on inputs given to other systems. The block called ”Block” in (33)
depends on the methods used to retrieve the time-derivatives of the coupling
quantities (see (13) and its finite differences version). Nevertheless, this block
does not change the eigenvalues of JΨτ as it is a block-triangular matrix. Indeed,
the characteristic polynomial of I6 − λJΨτ is the product of the determinant of
the two 3× 3 blocks on the diagonal of I6 − λJΨτ . The eigenvalues of JΨ are:

0, +1i

√
DSD

DD
, −1i

√
DSD

DD
(each with a multiplicity of 2) (34)

Hence, the following relation between the parameters and the spectral radius
can be shown (given DD > 0 and DSD = 1 > 0):

% (JΨτ )

{
< 1 if DSD < DD

> 1 if DSD > DD
(35)

We can thus expect that the classical IFOSMONDI co-simulation algorithm
based on a fixed-point method [6] cannot converge on this model when the
damping ratio of the component on the right of the model (see figure 2) is
smaller than the damping ratio of the spring-damper component.

We will process several simulations with different values of DD leading to
different values of %(JΨτ ). These values and the expected movement of the body
of the system is plotted in figure 5.

Fig. 5. Displacement of the mass (xL) for different damping ratios of the right damper
(DD) simulated on a monolithic model (without co-simulation). Associated spectral
radii of JΨ are recalled for futher coupled formulations.
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5.3 Results

As the PETSc library enables to easily change the parameters of the JFM (as
explained in subsection 4.2), three methods have been used in the simulations:

• NewtonLS: a Newton based non-linear solver that uses a line search,
• Ngmres: the non-linear generalized minimum residual method [10], and
• Anderson: the Anderson mixing method [1]

First of all, simulations have been processed with all these JFMs (with pa-
rameters exhaustively defined in appendix A) within IFOSMONDI-JFM, the
classical IFOSMONDI algorithm (denoted hereafter as ”Fixed-point”), and the
original explicit zero-order hold co-simulation method (sometimes referred to as
non-iterative Jacobi). The error is defined as the mean of the normalized L2

errors on each state variable of both systems on the whole [tinit, tend] domain.
The reference is the monolithic simulation (of the non-coupled model) done with
Simcenter Amesim. Such errors are presented for a contractant case (DD = 4
N, so %(JΨτ ) = 0.5) in figure 6. For a non-contractant case (DD = 0.64 N, so
%(JΨτ ) = 1.25), analog plots are presented in figure 7.
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Fig. 6. Error accross δtref with different methods on a contractant case (DD = 4.0,
ρ(JPsi) = 0.5) - NewtonLS, Ngmres and Anderson are matrix-free iterative meth-
ods used with the IFOSMONDI-JFM algorithm, Fixed-point is the classical IFOS-
MONDI algorithm, and Explicit ZOH is the non-iterative zero-order hold fixed-step
co-simulation
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Fig. 7. Error accross δtref with different methods on a non-contractant case (DD =
0.64, ρ(JPsi) = 1.25) - NewtonLS, Ngmres and Anderson are matrix-free iterative
methods used with the IFOSMONDI-JFM algorithm

As expected, the simulations failed (diverged) with fixed-point method (classical
IFOSMONDI) for the non-contractant case. Moreover, the values given to the
system were too far from physically-possible values with the explicit ZOH co-
simulation algorithm, so the internal solvers of systems (S1) and (S2) failed to
integrate. These are the reason why these two methods lead to no curve on figure
7.

Nonetheless, the three versions of IFOSMONDI-JFM algorithm keep pro-
ducing reliable results with an acceptable relative error (less than 1%) when
δtref > 0.1 s.

On figures 6 and 7, IFOSMONDI-JFM method seems to solve the problem
with a good accuracy regardless of the value of the damping ratio DD. In order
to confirm that, several other values have been tried: the ones for which the
solution has been computed and plotted in figure 5. The error is presented, but
also the number of iterations and the number of integrations (calls to ζk, i.e.
calls to γτ for IFOSMONDI-JFM or to Ψτ for classical IFOSMONDI). Although
for the fixed-point case (classical IFOSMONDI) the number of iteration is the
same than the number of integration, for the IFOSMONDI-JFM algorithm the
number of iterations is the one of the underlying non-linear solver (NewtonLS,
Ngmres or Anderson), and there might be a lot more integrations than iterations
of the non-linear method. These results are presented in figure 8.
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Fig. 8. Total number of iterations, integrations, and error across spectral radius of JΨ
for different methods (Fixed-point corresponds to classical IFOSMONDI algorithms,
and all other methods are used with the IFOSMONDI-JFM version). All co-simulation
ran with ε = 10−4 and δtref = 10−2

As expected, the threshold of %(JΨτ ) = 1 (id est DD = DSD = 1) is critical for
the fixed-point method. The IFOSMONDI-JFM method not only can overpass
this threshold, but no significant extra dificulty appears to solve the problem
in the non-contractant cases, except for the Ngmres non-linear solver (which
failed to converge with DD = 0.01, so with %(JΨτ ) = 10). However, regarding
the Ngmres method, the variant that uses line search converges in all cases.
Eventhough the latter requires more integrations than other JFMs, it is more
robust to high values of %(JΨτ ). The parameters of this line search are detailed
on table 6 in appendix A.

The NewtonLS and Anderson methods show a slightly bigger error on this
”extreme” case of %(JΨτ ) = 10, yet it stays under 0.001% which is completely
acceptable.

Among those two JFMs (NewtonLS and Anderson), the trend that can be
observed on figure 8 shows that NewtonLS is always more accurate than Ander-
son, yet it always requires a bigger amount of integrations. We can stand that
IFOSMONDI-JFM is more accuracy-oriented on this model when it is based on
the NewtonLS JFM, and more speed-oriented on this model when it is based
on the Anderson JFM (for the same δtref and ε). For high values of %(JΨτ ),
accuracy-oriented simulations are achieved thanks to the Ngmres JFM with line
search more than the NewtonLS one.

Finally, smaller errors are obtained with IFOSMONDI-JFM and with less
iterations than classical IFOSMONDI. Yet, the time consumption is directly
linked with the number of integrations, not with the number of iterations of the
underlying non-linear solver. The total number of integrations does not increase
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across the problem difficulty (increasing with %(JΨτ )), and the non-linear meth-
ods within IFOSMONDI-JFM do not even require more integrations that the
fixed-point one for most of the values of DD for which the classical IFOSMONDI
algorithm does not fail.

6 Conclusion

IFOSMONDI-JFM method not only enables to solve problems that were im-
possible to solve with the classical IFOSMONDI method, it also requires less
iterations to converge on the test case of section 5 when the parameterization
enables both methods to solve the problem.

Despite a number of integration greater than one for every iteration (contrary
to the classical IFOSMONDI algorithm), IFOSMONDI-JFM does not require
a lot more integrations than classical IFOSMONDI. In most of the cases, for
the considered test case, IFOSMONDI-JFM even requires less integrations than
classical IFOSMONDI, and the resulting solution is always more accurate (for
the same δtref and ε). The matrix-free aspect of the underlying solvers used with
IFOSMONDI-JFM are one of the causes of the small amount of integrations.

The IFOSMONDI-JFM algorithm takes advantages from the C1 smoothness
of classical IFOSMONDI algorithm [6] without the delay it implies in [5] (thanks
to its iterative aspect), the coupling constraint is satisfied both at left and right of
every communication time thanks to the underlying non-linear solvers of PETSc
[2]. The iterative part does not need a finite differences estimation of the jacobian
matrix like in [13] or a reconstruction of it like in [14].

The resulting algorithm even solves co-simulation problems for which the
fixed-point formulation would involve a non-contractant coupling function Ψτ .

Finally, the test case introduced in 5.1 can be reused to test the robustness of
various co-simulation methods as the model is relatively simple and the difficulty
can easily be increased or decreased in a quantifiable way.
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6. Éguillon, Y., Lacabanne, B., Tromeur-Dervout, D.: IFOSMONDI: A Generic Co-
simulation Approach Combining Iterative Methods for Coupling Constraints and
Polynomial Interpolation for Interfaces Smoothness. In: 9th International Confer-
ence on Simulation and Modeling Methodologies, Technologies and Applications.
pp. 176–186. SCITEPRESS - Science and Technology Publications, Prague, Czech
Republic (Jul 2019), https://doi.org/10.5220/0007977701760186

7. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation:
a survey. ACM Computing Surveys (CSUR) 51(3), 1–33 (2018)

8. Gu, B., Asada, H.H.: Co-Simulation of Algebraically Coupled Dynamic
Subsystems Without Disclosure of Proprietary Subsystem Models. Jour-
nal of Dynamic Systems, Measurement, and Control 126(1), 1–13 (2004).
https://doi.org/10.1115/1.1648307
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Appendix A Parameters of the PETSc non-linear solvers

The JFMs mentionned in this document (see definition in 2.1) refer to PETSc
non-linear solvers, so-called ’SNES’ in the PETSc framework.

The parameters of these methods where the default one, except the explicitely
mentionned ones. The following tables recaps these options. For furthe definition
of their meaning, see [2,1,10].

Table 3. Parameters of the NewtonLS method

PETSc argument:
-snes linesearch <...>

Description Value

type Select line search type bt

order Selects the order of the line search for bt 3

norms
Turns on/off computation of the norms for ba-
sic line search

TRUE

alpha
Sets alpha used in determining if reduction in
function norm is sufficient

0.0001

maxstep
Sets the maximum stepsize the line search will
use

108

minlambda
Sets the minimum lambda the line search will
tolerate

10−12

damping Damping factor used for basic line search 1

rtol Relative tolerance for iterative line search 10−8

atol Absolute tolerance for iterative line search 10−15

ltol
Change in lambda tolerance for iterative line
search

10−8

max_it Maximum iterations for iterative line searches 40

keeplambda Use previous lambda as damping FALSE

precheck_picard
Use a correction that sometimes improves con-
vergence of Picard iteration

FALSE
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Table 4. Parameters of the Anderson method

PETSc argument:
-snes anderson <...>

Description Value

m
Number of stored previous solutions and resid-
uals

30

beta Anderson mixing parameter 1

restart_type Type of restart NONE

restart_it
Number of iterations of restart conditions be-
fore restart

2

restart Number of iterations before periodic restart 30

Table 5. Parameters of the Ngmres method (not Ngmres with line search)

PETSc argument:
-snes ngmres <...>

Description Value

select_type
Choose the select between candidate and com-
bined solution

DIFFERENCE

restart_type Choose the restart conditions DIFFERENCE

candidate
Use NGMRES variant which combines candi-
date solutions instead of actual solutions

FALSE

approxfunc Linearly approximate the function FALSE

m
Number of stored previous solutions and resid-
uals

30

restart_it
Number of iterations the restart conditions
hold before restart

2

gammaA
Residual tolerance for solution select between
the candidate and combination

2

gammaC Residual tolerance for restart 2

epsilonB
Difference tolerance between subsequent solu-
tions triggering restart

0.1

deltaB
Difference tolerance between residuals trigger-
ing restart

0.9

single_reduction Aggregate reductions FALSE

restart_fm_rise Restart on residual rise from x M step FALSE
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Table 6. Parameters of the Ngmres with linsearch method

PETSc argument:
-snes ngmres <...>

Description Value

select_type
Choose the select between candidate and com-
bined solution

LINESEARCH

...

All other options of table 5 are the same
...

PETSc argument:
-snes linesearch <...>

Description Value

type Select line search type basic

order Selects the order of the line search for bt 0

norms
Turns on/off computation of the norms for ba-
sic linesearch

TRUE

maxstep
Sets the maximum stepsize the line search will
use

108

minlambda
Sets the minimum lambda the line search will
tolerate

10−12

damping Damping factor used for basic line search 1

rtol Relative tolerance for iterative line search 10−8

atol Absolute tolerance for iterative line search 10−15

ltol
Change in lambda tolerance for iterative line
search

10−8

max_it Maximum iterations for iterative line searches 1

keeplambda Use previous lambda as damping FALSE

precheck_picard
Use a correction that sometimes improves con-
vergence of Picard iteration

FALSE


