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Abstract
This paper presents a novel method for solving partial differential equations on three-dimensional CAD geometries by means 
of immersed isogeometric discretizations that do not require quadrature schemes. It relies on a newly developed technique 
for the evaluation of polynomial integrals over spline boundary representations that is exclusively based on analytical com-
putations. First, through a consistent polynomial approximation step, the finite element operators of the Galerkin method 
are transformed into integrals involving only polynomial integrands. Then, by successive applications of the divergence 
theorem, those integrals over B-Reps are transformed into the first surface and then line integrals with polynomials inte-
grands. Eventually, these line integrals are evaluated analytically with machine precision accuracy. The performance of 
the proposed method is demonstrated by means of numerical experiments in the context of 2D and 3D elliptic problems, 
retrieving optimal error convergence order in all cases. Finally, the methodology is illustrated for 3D CAD models with an 
industrial level of complexity.

Keywords Immersed methods · Computer-Aided Design · Isogeometric analysis · Quadrature-free

1 Introduction

The integration of Computer-Aided Design (CAD) and 
Computer-Aided Engineering has gained interest during 
the last two decades with the introduction of new numerical 
approaches as, for instance, the isogeometric paradigm [1, 2] 
or meshfree strategies [3]. Particularly, spline-based geomet-
ric models have been found to present excellent performance 
for numerical simulations [4–7]. This opens the door to the 
formation of all-in-one design frameworks where a single 
geometric model is simultaneously used for parameterizing 
the shape of the object of interest and performing advanced 
numerical analyses [8–11]. The combination into one single 
model of both high-fidelity geometrical properties and effi-
cient analysis performances is, however, far from trivial in 
general. Indeed, generating analysis-suitable geometric mod-
els for complex industrial designs requires advanced numeri-
cal tools. To achieve this goal, two different strategies can 
be undertaken: The first one consists in generating a fully 

boundary-conforming and matching geometric model such 
that standard analysis procedures can be directly applied. 
Generating those spline meshes is however a quite challeng-
ing task for geometries with complex topologies, especially 
when only tensor-product splines are considered [12–15]. 
For those cases, unstructured spline meshes [16–20] con-
stitute an appealing alternative. On the contrary, the second 
approach aims to directly use standard CAD models which 
may contain non-conforming and trimmed surfaces and 
present geometric defects, such as water leaks or surface 
overlaps, and require the use of high-end analysis procedures 
[21–26]. Interested readers may refer to [27], and the many 
references therein, for an extensive review in the context 
of isogeometric methods. The present work falls into this 
second category.

A major ingredient that is commonly required to perform 
numerical analyses over CAD models is an efficient inte-
gration procedure which enables to evaluate integrals over 
complex domains such as curved polyhedrons. This is, for 
instance, the case when employing non-conformal analysis 
methods, where the geometric representation is decoupled 
from the discretization of the solution [28–34].

In this context of immersed and enriched FEM, there exist 
several integration approaches. In 3D, among the most com-
mon ones is worth highlighting octree subdivision [35–38] 
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which consists in adaptively subdividing the domain of 
integration into sub-cells (voxels in 3D, or simple pixels 
in 2D). The obtained piecewise constant approximation of 
the underlying geometry can be improved by performing a 
local boundary reparameterization at the finest level of this 
recursion procedure via a (low-order) tessellation method 
[39, 40]. Despite the beneficial simplicity and robustness of 
this decomposition-based method, it may suffer from high 
computational cost due to the large number of integration 
sub-cells, especially in three-dimensional and high-order 
methods.

For problems where the geometric representation of the 
boundary is of major importance, alternative approaches are 
considered. They consist in generating boundary-conform-
ing sub-meshes which are generally non-analysis-suitable 
(due to the presence of hanging nodes, missing connectiv-
ity, singularities, etc.) but which are handy for integration 
purposes. The high-fidelity representation of the geometry 
boundaries, even for complex geometries, yields a high-
accuracy in the evaluation of integrals. Nonetheless, even if 
the difficulty of generating such a high-order mesh is lower 
than building fully analysis-suitable boundary-conforming 
parameterizations, it still remains a challenging and time 
consuming task for complex 3D geometries. On the other 
hand, for two-dimensional geometries, the problem can be 
usually solved in a more accurate way: We refer the inter-
ested reader to the extensive survey [27].

An appealing alternative to these two approaches is the 
use of moment fitting techniques [41–44] in which coarse, 
but accurate, quadrature rules are generated for complex 
integration domains by tuning the positions and/or weights 
of the quadrature points. Nevertheless, these methods come 
at a price: The creation of tailored quadrature rules requires 
the computation of polynomial integrals over complex 
domains at a pre-processing stage, which calls for the use of 
alternative integration techniques.

Finally, there exists a fourth group of strategies for com-
puting integrals over curved polyhedrons that lies in deriving 
dedicated integration rules for specific classes of integrands, 
as for instance polynomial functions. Indeed, it is known that 
integrating polynomials and other homogeneous functions 
over (curved) polyhedrons can be done more efficiently by 
invoking the divergence theorem [45–49]. These results can 
be exploited in several ways: One can perform a polyno-
mial approximation of the integrands of interest such that 
the integration can be done straightforwardly [50–52]; those 
specific rules can be applied at the pre-processing stage of 
moment-fitting methods [42, 43, 53]; or can be used for 
creating quadrature schemes on the edges or faces of the 
polyhedrons for integrating the involved operators [54, 55].

Within this category, worth mentioning are the recent 
works [49, 55], where the divergence theorem is used for 
transforming volumetric integrals into either surface or 

line integrals. In [55], the authors reduced 3D integrals of 
general functions to 1D integrals, that are finally evalu-
ated using fine quadrature rules. This extends the previ-
ous work [56] for the case of 2D geometries. Similarly, 
in [49] the complexity of 3D integrals is reduced to just 
vertices evaluations in the case of planar polyhedra. For 
the case of B-reps composed of Bézier triangles or non-
trimmed B-splines patches, the authors in [49] applied the 
divergence theorem just once, transforming 3D integrals 
into 2D ones, which are approximated through standard 
quadrature rules.

Aligned with these ideas, in this work we present a fully 
quadrature-free method for integrating polynomials over 
general B-rep models enclosed by trimmed spline surfaces. 
The procedure is based on two successive applications of 
the divergence theorem, reducing volumetric integrals to 
the first surface and then line integrals, that are computed 
analytically up to machine precision. Hence, this can be seen 
as a generalization of those previous works, eliminating the 
need of quadrature rules. Such an approach is particularly 
well suited to B-Rep models as it only uses a description of 
the boundaries. On the other hand, handling B-Rep models 
with octree subdivision methods may be cumbersome as 
they have to evaluate if a point in the Euclidean space lies 
inside or outside the body for every single quadrature point, 
what is not always trivial.

Furthermore, we show how this integration procedure, 
combined with a consistent polynomial approximation step, 
leads to a new analysis tool for immersed isogeometric 
methods that skips the need of complex quadrature rules. 
This new integration procedure is highly-accurate (up to 
surface-surface intersection errors), and thus enables to 
handle analysis over high-order discretizations. In compari-
son, it is known that low-order approaches, as for instance, 
octree methods, require many quadrature points to keep the 
consistency error below the discretization error such that 
optimal convergence rates are retained in simulations. Con-
sequently, it leads to high computational costs in general, 
which drastically reduces the benefits of employing high-
order discretizations.

The developed approach is presented as follows: We 
firstly introduce in Sect. 2 the basics regarding immersed 
isogeometric analysis to further detail the scope of applica-
tion of this work, and describe a consistent approximation 
step required for transforming the involved integrands into 
polynomials. Then, in Sect. 3, we discuss the geometric 
modeling via splines, trimming, and boundary-representa-
tion, as commonly undertaken in CAD. In Sect. 4, the pro-
posed quadrature-free integration over B-Reps is presented. 
Finally, in Sect. 5, we solve elliptic PDEs and perform sev-
eral numerical experiments to confirm the accuracy of the 
approach. Lastly, concluding remarks are summarized in 
Sect. 6.
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2  Immersed isogeometric analysis

With the aim of introducing immersed methods, the used 
notation, and the main ideas behind this work, let us first 
introduce a classical Poisson’s problem as our driving 
example. Even if the problem is presented in a 3D con-
text, the same ideas are directly applicable to 2D problems.

Let Ω ⊂ ℝ3 be the computational domain whose 
boundar y  i s  par t i t ioned  as  ΓN ∪ ΓD = �Ω  and 
ΓN ∩ ΓD = � .  We also define a functional space 
H1

D
(Ω) = {v ∈ H1(Ω) ∶ v|ΓD

= 0} , such that the Poisson’s 
problem reads: find u ∈ H1

D
(Ω) solution of:

where K ∈ L2(Ω)3×3 is the symmetric diffusivity operator; 
f ∈ L2(Ω) and g ∈ H−1∕2(ΓN) are the source and Neumann 
terms, respectively; and n ∈ ℝ3(�Ω) is the outward point-
ing unit normal on the boundary. For the sake of clarity, 
and without constituting any limitation, in the problem (1) 
and hereinafter we assume homogeneous Dirichlet boundary 
conditions on ΓD.

The associated weak problem can be written as: find 
u ∈ H1

D
(Ω) such that

where

(1)

−∇ ⋅ (K∇u) = f in Ω,

∇u ⋅ n = g on ΓN ,

u = 0 on ΓD,

(2)a(u, v) = b(v), ∀v ∈ H1
D
(Ω),

2.1  Immersed methods

The philosophy behind immersed methods is depicted 
in Fig.  1. It consists in embedding the computational 
domain Ω into a grid Th(Ω0) of a larger domain Ω0 , such 
that Ω ⊂ Ω0 ⊂ ℝ3 . The solution of the weak problem (3) 
is then discretized over a subset of the grid Th(Ω0) , which 
allows a decoupling of the solution discretization from the 
actual geometry. This simple and rather straightforward pro-
cedure is the one and only mesh generation task to under-
take within immersed-like approaches, making this class of 
methods very appealing. Indeed, this can largely ease the 
design-to-analysis workflow since the computational domain 
can be directly prescribed as a geometric model with any 
representation commonly used in CAD, as for instance the 
Boundary-Representation (B-Rep), detailed in Sect. 3. In 
return, the price to pay during the analysis lies in the intro-
duction of so-called cut or trimmed elements, as illustrated 
in Fig. 1. This requires the integration of quantities over 
cut elements (as discussed in the introduction, see Sect. 1). 
This work focuses on this particular challenge one would 
face when dealing with enriched or unfitted finite element 
methods over B-Rep models.

(3)
a(u, v) = ∫Ω

∇u ⋅ K∇v dΩ,

b(v) = ∫Ω

f v dΩ + ∫ΓN

g v dΓ.

Fig. 1  Immersed methods 
setting

Computational domain

Cut elements

Active non-cut elements

Cartesian grid

Inactive 
elements
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As the computational domain is Ω and not Ω0 , the parti-
tion Th(Ω0) is restricted to a subset Th(Ω) as:

Indeed, the grid Th(Ω0) naturally splits the domain Ω0 into 
three complementary partitions of elements: 

s u c h  t h a t  Th(Ω) = T
int

h
(Ω) ∪ T

Γ
h
(Ω)  a n d 

Th(Ω0) = Th(Ω) ∪ T
0(Ω0) . As depicted in Fig. 1, the ele-

ments belonging to these three subsets are denoted as cut, 
non-cut, and inactive elements, respectively.

In this work, we limit our discussion to the case of 3D 
immersed isogeometric methods, nevertheless, the presenta-
tion is kept rather general and can be easily adapted to generic 
immersed methods [28] or particular cases as, for instance, 
CutFEM [31] or Finite Cell Methods [57], among others.

To solve numerically the weak problem (3) we construct 
a discrete spline space �h(Ω0) over the grid Th(Ω0) as:

where Np

i
 denotes generic spline basis functions of degree 

p > 0 and arbitrary continuity (up to p − 1 ), and I0 is the set 
of indices of those basis functions. In this work we use ten-
sor-product B-splines, but the extensions to other cases as, 
e.g., hierarchical splines [58] or T-splines [59], is straight-
forward. For the sake of simplicity, henceforward we drop 
the superscript p from Np

i
 and assume that the spline degree 

p is constant along the three parametric directions.
The support of some basis functions of the space �h(Ω0) 

may not intersect the domain Ω and, consequently, they do 
not contribute to the solution of the problem (3). Therefore, 
we trim the space �h(Ω0) as:

that, as already studied in [9], holds optimal approximation 
properties. It is a well-known fact that the active support 
of some basis functions in �h(Ω) ( supp{Ni} ∩ Ω ) may be 
small, which could yield ill-conditioned operators. This is 
an active research topic [27, 60–62] that exceeds the scope 
of this work.

Henceforward, we assume the Dirichlet boundary ΓD to 
be such that ΓD ⊂ 𝜕Ω0 ∩ 𝜕Ω , what grants the strong enforce-
ment of Dirichlet boundary conditions. The opposite case 
( ΓD ⊄ 𝜕Ω0 ) entails the imposition of Dirichlet conditions in 
a weak sense. We refer the interested reader to [63–65] for 

(4)Th(Ω) ∶= {Q | Q ∈ Th(Ω0) ∶ Q ∩ Ω ≠ �}.

(5a)T
Γ
h
(Ω) ∶ = {Q | Q ∈ Th(Ω) ∶ Q ∩ Ω ≠ Q} ,

(5b)T
int

h
(Ω) ∶ = {Q | Q ∈ Th(Ω) ∶ Q ∩ Ω = Q} ,

(5c)T
0

h
(Ω0) ∶ = {Q | Q ∈ Th(Ω0) ∶ Q ∩ Ω = �} ,

(6)�h(Ω0) = span{N
p

i
, i ∈ I0},

(7)�h(Ω) = span{Ni ∈ �h(Ω0) ∶ supp{Ni} ∩ Ω ≠ �},

a dedicated discussion and to [62] for a study, in the case of 
spline spaces, of the inherent stability issues.

Thus, by means of the assumption ΓD ⊂ 𝜕Ω0 ∩ 𝜕Ω , we 
can define the space:

that allows us to discretize the continuous weak problem (3) 
as: find uh ∈ �D

h
(Ω) solution of:

where the discrete versions of the bilinear form a and the 
linear form b are decomposed as:

The computation of the integrals over non-cut elements 
Q ∈ T

int

h
(Ω) is straightforward and can be performed using 

classical quadrature schemes. However, the evaluation of 
integrals over cut elements Q ∈ T

Γ
h
(Ω) is a challenging prob-

lem and one of the Achilles’ heels of isogeometric immersed 
methods in 3D (see the related discussion in Sect. 1). The main 
contribution of this article regards the computation of those 
integrals through a quadrature-free approach for the case of cut 
elements defined as B-Rep models. This procedure is presented 
in Sect. 4. Nonetheless, this method is only applicable to the 
case in which the integrands are polynomial functions. Thus, 
before introducing it, in the next section the integrals in (10) are 
transformed such as they only rely on polynomial integrands.

2.2  Polynomial approximation of finite element 
operators

When considering spline discretizations over the grid Th(Ω) , 
the terms ∇uh , ∇vh , and vh in the operators (10) take polyno-
mial forms ∀Q ∈ Th(Ω) . On the contrary, the datum quantities 
involved (i.e., K , f, and g) may not be polynomials in general.

Hence, to work with integrals that only present polyno-
mial integrands, we seek to exploit a key result introduced 

(8)�
D
h
(Ω) = {vh ∈ �h(Ω) ∶ vh |ΓD

= 0}.

(9)a(uh, vh) = b(vh), ∀vh ∈ �
D
h
(Ω),

(10)

a(uh, vh) =
∑

Q∈T int

h
(Ω)

∫Q

∇uh ⋅ K∇vh dQ

+
∑

Q∈T Γ
h
(Ω)

∫Q∩Ω

∇uh ⋅ K∇vh dQ,

b(vh) =
∑

Q∈Tint
h
(Ω)

∫Q

f vh dQ

+
∑

Q∈TΓ
h
(Ω)

∫Q∩Ω

f vh dQ +
∑

Q∈Tint
h
(Ω)

∫Q∩ΓN

g vh dΓ

+
∑

Q∈TΓ
h
(Ω)

∫Q∩ΓN

g vh dΓ.
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in [66]: It is possible to perform a polynomial approxi-
mation of the integrands in (10) without deteriorating the 
solution. More specifically, instead of solving the prob-
lem (9), we consider the following approximate problem: 
find ūh ∈ �D

h
(Ω) solution of:

where the discrete forms in (10) are replaced by:

that involves the following polynomial approximations:

In the approximations above, the projection spaces must 
be chosen carefully, such that the introduced consistency 
errors do not pollute the numerical solution. Thus, by recall-
ing [66, Theorem 13], we know that the projection of K , f, 
and g into spline spaces of degree q ≥ p − 1 yields a solu-
tion ūh that approximates optimally the true solution u, 
presenting convergence order p for the error measured in 
the H1 semi-norm when the mesh size h → 0 . In [66], the 
authors also observed, through numerical experiments, that 
a projection degree q > p − 1 yields optimal convergence 
order also respect to the L2 norm of the error (rate p + 1).

Remark 1 The non-polynomial nature of the quantities K , 
f, and g may derive from an additional mapping that fur-
ther deforms the domain Ω0 (see, e.g., [67]). A numerical 
example addressing this case is presented in Sect. 5.2.1 (the 
multi-perforated quarter of annulus). On the contrary, these 
quantities might be low-order polynomials (even zero-order 
polynomials) by construction and it is therefore not neces-
sary to project them into polynomial spaces.

In [66], the projections (13) are performed patch-wise. 
Nevertheless, the same error estimates hold in the case they 

(11)ā(ūh, vh) = b̄(vh), ∀vh ∈ �
D
h
(Ω),

(12)

ā(ūh, vh) =
∑

Q∈T int

h
(Ω)

∫Q

∇ūh ⋅ K̄∇vh dQ

+
∑

Q∈T Γ
h
(Ω)

∫Q∩Ω

∇ūh ⋅ K̄∇vh dQ,

b̄(vh) =
∑

Q∈Tint

h
(Ω)

∫Q

f̄ vh dQ

+
∑

Q∈TΓ
h
(Ω)

∫Q∩Ω

f̄ vh dQ

+
∑

Q∈Tint

h
(Ω)

∫Q∩ΓN

ḡ vh dΓ

+
∑

Q∈TΓ
h
(Ω)

∫Q∩ΓN

ḡ vh dΓ,

(13)K̄ = ΠhK, f̄ = Πhf , ḡ = Πhg.

are carried out in an element-wise way, that is the case of 
this work. This results in polynomial approximations that 
are element-wise discontinuous. Thus, for each element 
Q ∈ Th(Ω) we introduce a local L2-projector:

where ℚq1,q2,…,qm
 denotes the space of tensor-product poly-

nomials with degrees (q1, q2,… , qm) along the m parametric 
directions.

By employing a tensor-product Bernstein basis, the pro-
jected quantities K̄ , f̄  , and ḡ restricted to element Q can be 
expressed as:

where K̄(Q)

k
∈ ℝ3×3 , f̄ (Q)

k
∈ ℝ , and ḡ(Q)

k
∈ ℝ are the projec-

tion coefficients, and B�

k
 are tensor-product Bernstein poly-

nomials defined over Q and with degrees � = (q, q, q) such 
that

We refer the interested reader to the Sect. 1 of Appen-
dix  A for a discussion about tensor-product Bernstein 
polynomials.

2.3  Operators assembly through lookup tables

In what follows, we detail the assembly of the elemental 
stiffness matrix and the right-hand-side vector associated 
to the operators (12). Thus, plugging the projections (15) 
into (12), a single entry of the elemental matrix and vector 
can be computed as:

where  Ni,Nj ∈ � (Ω) are test and trial basis functions, 
respectively. In the expressions above it is easy to realize 
that all the integrands restricted to a single element Q are 
polynomials: 

(14)Πh
Q
∶ L2(Q) → ℚq, q, q(Q), ∀Q ∈ Th(Ω),

(15)

K̄|Q =

(q+1)3∑
k=1

B
�

k
K̄

(Q)

k
,

f̄ |Q =

(q+1)3∑
k=1

B
�

k
f̄
(Q)

k
,

ḡ|Q =

(q+1)3∑
k=1

B
�

k
ḡ
(Q)

k
,

(16)ℚq, q, q(Q) = span{B
�

k
k = 1,… , (q + 1)3}.

(17)

�
(Q)

ij
=

(q+1)3∑
k=1

K̄
(Q)

k
∶ ∫Q∩Ω

B
�

k

(
∇Ni ⊗ ∇Nj

)
dQ,

�
(Q)

i
=

(q+1)3∑
k=1

f̄
(Q)

k ∫Q∩Ω

B
�

k
Ni dQ +

(q+1)3∑
k=1

ḡ
(Q)

k ∫Q∩ΓN

B
�

k
Ni dΓ,
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 Notice also that the functions Ni , Nj , and B�

k
 are naturally 

defined over the full support of each element Q, and not only 
over its active part Q ∩ Ω.

Finally, by exploiting their polynomial nature, the ele-
ment integrals in (17) can be computed as: 

 where B�
�
 and B�

�
 are tensor-product Bernstein polynomials 

w i t h  d e g r e e s  � = (2p + q, 2p + q, 2p + q)  a n d 
� = (p + q, p + q, p + q) . �(Q)

i,j,k,�
∈ ℝ3×3 and �(Q)

i,k,�
, �

(Q)

i,k,�
∈ ℝ 

are element dependent constant coefficients that can be cal-
culated by means of the Bézier extraction operators [68–70] 
associated to the spline space �h(Ω).

Then, the assembly of the operators (17) reduces to the 
computation of the coefficients �(Q)

i,j,k,�
 , �(Q)

i,k,�
 , and �(Q)

i,k,�
 , as well 

as the integrals1:

Thus, the integrals �3D
Q,�

 and �2D
Q,�

 can be precomputed for 
every element Q and stored in lookup tables, that will be 
accessed along the assembly process to create the elemental 
operators, in a similar way as proposed in [66].

Nevertheless, as discussed in Sect. 1, the computation of 
the integrals (20) is a challenging task. In the case of non-cut 
elements, their evaluation is straightforward: It can be 
precomputed analytically for a single unit cube and subse-
quently adapted to every non-cut element’s domain through 
simple transformations (translations and scalings). But in the 
case of cut elements the evaluation of the integrals �3D

Q,�
 and 

(18a)B
�

k

(
∇Ni ⊗ ∇Nj

)|Q ∈ ℚ2p+q, 2p+q, 2p+q(Q) ,

(18b)B
�

k
Ni|Q ∈ ℚp+q, p+q, p+q(Q) .

(19a)
∫Q∩Ω

B
�

k

(
∇Ni ⊗ ∇Nj

)
dQ

=

(2p+q+1)3∑
𝛼=1

�
(Q)

i,j,k,𝛼 ∫Q∩Ω

B�
𝛼
dQ

(19b)∫Q∩Ω

B
�

k
Ni dQ =

(p+q+1)3∑
�=1

�
(Q)

i,k,� ∫Q∩Ω

B�
�
dQ

(19c)∫Q∩ΓN

B
�

k
Ni dQ =

(p+q+1)3∑
�=1

�
(Q)

i,k,� ∫Q∩ΓN

B�
�
dΓ

(20)�
3D
Q,�

= ∫Q∩Ω

B�
�
dQ, �

2D
Q,�

= ∫Q∩ΓN

B�
�
dΓ.

�
2D
Q,�

 is far from simple. For that purpose, in Sect. 4 we pro-
pose a quadrature-free approach for the common case in 
which the active part of elements ( Q ∩ Ω ) can be defined 
through a B-Rep, discussed in Sect. 3.

3  Geometric modeling via boundary 
representation

In this section, we introduce the notation and some basic 
concepts about splines and geometric modeling. Hence, we 
provide a mathematical way of describing the active part of 
the cut elements Q ∩ Ω , discussed in the previous section, by 
means of B-Rep representations. This constitutes the basis 
for the integration method presented in Sect. 4.

3.1  Spline representation

Splines are considered a de facto standard in Computer-
Aided Design and have been extensively studied in the lit-
erature, see for instance [71–73]. Among the different repre-
sentation techniques available, in this work we focus on the 
use of polynomial mappings, and more specifically, B-spline 
and Bézier curves and surfaces. A B-spline or Bézier curve 
c can be expressed in the form:

where Np

i
 are univariate basis functions, either B-splines or 

Bernstein polynomials, of degree p, and Pi ∈ ℝd are their 
associated control points, where d is the number of spatial 
dimensions. In Appendix A we provide further details about 
Bernstein polynomials (Appendix A.1 and A.2) and Bézier 
geometries (Appendix A.3), that are extensively used in this 
work. For an in-depth discussion about B-splines, we refer 
the interested reader to the existing literature [71–73].

Using tensor-product combinations of those basis func-
tions, B-spline and Bézier surfaces S can be constructed as:

where Np1
i

 and Np2
j

 are univariate B-spline or Bernstein basis 
functions of degrees p1 and p2 , respectively, and Pi,j ∈ ℝd 
are the associated control points. For the sake of simplicity, 
we assumed the parametric domains of the mappings (21) 
and (22), Dom(c) and Dom(S) , to be [0,  1] and [0, 1]2 , 
respectively.

(21)c ∶ [0, 1] → ℝ
d, x̃ ↦ c(x̃) =

n∑
i=1

N
p

i
(x̃)Pi,

(22)

S ∶ [0, 1]2 → ℝ
d,

(x̂1, x̂2) ↦ S(x̂1, x̂2)

n1∑
i=1

n2∑
j=1

N
p1
i
(x̂1)N

p2
j
(x̂2)Pi,j,

1 Due to the fact that ℚp+q, p+q, p+q ⊂ ℚ2p+q, 2p+q, 2p+q , the integrals 
∫
Q∩Ω

B�
�
dQ in  (19b) can be computed as linear combinations of the 

integrals �3D
Q,�

.
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3.2  Trimmed surfaces and boundary 
representations

Simple spline mappings (21) and (22) cannot represent com-
plex real-world geometries. Instead, the multitude of these 
geometric objects are usually combined for such a purpose. 
More specifically, Boolean operations (namely, unions, dif-
ferences, and/or intersections) of several geometrical entities 
are commonly adopted in Computer-Aided Design [71]. By 
means of these operations, volumetric geometries are often 
represented in an implicit way: the volume enclosed by a set 
of, possibly trimmed, boundaries surfaces. This paradigm, 
known as Boundary Representation (B-Rep) [74, 75] and 
extensively used in industrial modeling tools, is considered 
throughout this work.

As illustrated in Fig. 2, we consider a domain V ⊂ ℝ3 , non-
simply connected in general, whose boundary �V is defined by 
a set of connected faces Fi, i = 1,… , nF , such as:

The domain V may correspond to the active part of the cut 
elements Q ∩ Ω discussed in Sect. 2.1.

(23)�V = ∪
nF
i=1

Fi.

We consider the faces Fi to be defined as trimmed 
B-spline or Bézier surfaces that are piecewise smooth. 
Every trimmed face Fi is composed of two elements: an 
underlying spline surface mapping Si of the form (22), 
and a group of connected curvilinear segments 
�̂�i,j ⊂ Dom(Si), j = 1,… , nc,i , that delimit the active region 
of Dom(Si) (see Figs.  3 and 4). We denote this active 
region as F̂i ⊂ Dom(Si).

Fig. 2  Boundary representation 
of a volumetric domain V 

x1
x2

x3

V

F2

F1

F6

F5

F7

F3
F4

Fig. 3  Description of the 
involved geometrical entities 
in the definition of trimmed 
parametric surfaces

Fig. 4  Boundary representation of trimmed faces. External bounda-
ries follow a counter-clockwise orientation while the internal ones are 
clockwise oriented
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Each segment �̂�i,j is the image of a spline curve map-
ping ĉi,j ∶ [0, 1] → �̂�i,j of the form (21). Thus, the boundary 
of the active region F̂i is:

therefore, we can define Fi as:

We again refer to Fig. 3 where all the introduced quantities 
are depicted for an illustrative example.

Remark 2 To work exclusively with pure polynomial repre-
sentations, instead of (rational) piecewise polynomials, in this 
work we only consider non-rational Bézier curves and sur-
faces. Using only Béziers does not constitute any limitation: 
By refining at its internal knots, any face Fi , defined by means 
of B-spline curves and surfaces, can be easily split into a set of 
trimmed Bézier faces, whose underlying curves and surfaces 
are Béziers (see Fig. 5). On the other hand, the exclusive use 
of non-rational polynomials may be a limiting factor as it turns 
impossible the creation of exact conic curves and surfaces.

This limitation can be circumvented in the case of the resolu-
tion of elliptic PDEs using immersed IGA. As discussed in [67], 
in those cases it is possible to approximate the geometry of the 
cut elements Q ∩ Ω ∀Q ∈ T

Γ
h
(Ω) by means of Bézier curves 

and surfaces of degree p, the same as the solution’s discretiza-
tion, and still preserve optimal approximation properties.

4  Quadrature‑free integration 
of polynomials over B‑Reps

In this section, we deal with the integration of polynomi-
als over a domain V whose bounding faces Fi are repre-
sented as trimmed Bézier surfaces, as described in the 

(24)
𝜕F̂i = ∪

nc,i

j=1
�̂�i,j,

�̂�i,j = {x̂ ∈ ℝ
2 | x̃ ∈ [0, 1] x̂ = ĉi,j(x̃)},

(25)Fi = {x ∈ ℝ
3 | x̂ ∈ F̂i x = Si(x̂)}.

previous section. More specifically, we seek to compute 
the integral:

where a ∶ V → ℝ is a polynomial function. This addresses 
the computation of the integrals �3D

Q,�
 over cut elements Q ∩ Ω 

as described in (20).
The approach presented in this section consists in the 

successive application of the divergence theorem, as simi-
larly done, for instance, in [45, 51, 54, 76]. Let us first 
recall here the classical divergence theorem, also known 
as Gauss-Ostrogradsky’s theorem.

Theorem 1 Let V be a subset of ℝ3 which is compact and has 
a piecewise smooth boundary �V  . Let A be a three-dimen-
sional vector field, such that A ∶ V → ℝ3 and A ∈ [C1(V)]3 , 
then:

where ∇⋅ is the divergence operator and n ∶ �V → ℝ3 is the 
outward pointing unit normal on the boundary �V .

By applying the divergence theorem, the three-dimen-
sional integral (26) is transformed into, first, surface, and 
then line integrals that can be evaluated analytically with 
machine precision accuracy. This is possible in the present 
context due to the polynomial nature of the successive 
integrands which ease the formation of the antiderivatives 
involved in the integration process.

4.1  From volume integral to surface integrals

To apply the divergence theorem, let us first rewrite the ini-
tial integral (26) in the same form as the one in (27):

(26)I3D = ∭V

a dV ,

(27)∭V

∇ ⋅ A dV = ∬
�V

A ⋅ n dS ,

Fig. 5  Split of a trimmed 
B-spline surface into trimmed 
Bézier surfaces
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The vector field A ∶ V → ℝ3 can be expressed as:

with ei as the Cartesian unit vectors and Qi ∶ V → ℝ as the 
antiderivatives of a, computed by:

Here �1 , �2 , �3 , �1 , �2 , and �3 are real constants, such that 
�1 + �2 + �3 = 1 . Since a is a polynomial function, the com-
putation of the antiderivatives in (30) is straightforward [see 
Appendix A, Eq. (59)]. Furthermore, due to this polynomial 
nature, the continuity requirements of the divergence theo-
rem are granted for the vector field A.

Applying the divergence theorem to (28) we obtain:

where we recall that n ∶ �V → ℝ3 is the outward pointing 
unit normal on the boundary �V  . Recalling the definition of 
the boundary �V  in (23), the integral (31) can be split as:

where ni are the outward pointing unit normals of the sur-
faces Si , i = 1,… , nF . Exploiting the parametric representa-
tion of the surfaces Si , these unit normal vector fields can 
be expressed as:

where the normal vectors Ni are computed as:

In (34) we assumed that the surface parameterization is ori-
ented such that the cross-product Ni points out of V. Plug-
ging (33) into the expression of the surface integrals I2D 
in (32), they become:

(28)I3D = ∭V

∇ ⋅ A dV .

(29)A(x) = A1(x)e1 + A2(x)e2 + A3(x)e3,

(30)

A1(x1, x2, x3) = �1 ∫
x1

0

a(�, x2, x3)d� + �1,

A2(x1, x2, x3) = �2 ∫
x2

0

a(x1, �, x3)d� + �2,

A3(x1, x2, x3) = �3 ∫
x3

0

a(x1, x2, �)d� + �3.

(31)I3D = ∬
�V

A ⋅ n dS ,

(32)I3D =

nF∑
i=1

I2D
i

=

nF∑
i=1

∬Fi

A ⋅ ni dSi ,

(33)ni ∶ Img(Si) → ℝ
3, x ↦

�
Ni

‖Ni‖◦Si
−1

�
(x),

(34)Ni ∶ Dom(Si) → ℝ
3, x̂ ↦

(
𝜕Si

𝜕x̂1
×

𝜕Si

𝜕x̂2

)
(x̂).

(35)I2D
i

= ∬Fi

A ⋅

�
Ni

‖Ni‖◦Si
−1

�
dSi ,

for i = 1,… , nF . And pulling back these integrals to the 
parametric domain of Si , we obtain:

where the integrands r̂i are defined as:

Interestingly, the normalization and the inversion involved in 
the definition of the unit normal vectors (33) vanish after the 
pull-back, as observed in [46], for instance. Furthermore, as 
the surface Si is assumed to be polynomial, then the compo-
sition A◦Si is also a polynomial bivariate, but with a higher 
degree. Additionally, the non-normalized normal vector 
field Ni is also a polynomial since it is computed as the 
product of polynomial terms (the partial derivatives of Si 
are polynomials). Finally, the scalar product of two polyno-
mial vector fields, A◦Si and Ni , is a polynomial scalar field. 
Consequently, r̂i is a polynomial. In the case of Bernstein 
polynomials we refer the interested reader to Appendix A: 
see Eq. (75) for the details of the composition A◦Si between 
a trivariate and a surface; and Eq. (71) for the multiplications 
of multivariate polynomials involved in the cross and scalar 
products of Eqs. (34) and (37), respectively.

Remark 3 The integrals I2D
i

 in (36) are equivalent to the 
boundary integrals �2D

Q,�
 depicted in (20) and required for the 

assembly of boundary conditions in immersed methods (see 
Sect. 2).

Remark 4 In the case of non-trimmed Bézier surfaces, like 
the one depicted in Fig. 5, the integrals (36) can be easily 
evaluated analytically using Eq. (69).

Remark 5 In some situations the normal fields ni of the 
surfaces Si may be aligned with one of three the Carte-
sian axes. This occurs quite often in the case of immersed 
methods for solving PDEs, presented in Sect. 2, in which 
the integration domains V correspond to the cut elements 
Q ∩ Ω ∀Q ∈ Th(Ω) of the grid embedded in a B-Rep geom-
etry. In that particular situation many faces Fi will be planar 
trimmed surfaces parallel to the Cartesian axes. For those 
cases, a wise choice of the coefficients �1 , �2 , and �3 in the 
antiderivatives (30) will make the scalar product A ⋅ ni van-
ish, minimizing the number of two-dimensional integrals 
to be computed. For instance, in the case of a face Fi that 
is perpendicular to the z Cartesian axis, choosing �3 = 0 
will make the term A ⋅ ni vanish. Nevertheless, for a given 
domain V the coefficients �1 , �2 , and �3 must be set once and 
for all, and cannot be independently chosen for every face 

(36)I2D
i

= ∬F̂i

r̂i dx̂,

(37)
r̂i ∶ Dom(Si) → ℝ,

x̂ ↦ r̂i(x̂) =
(
A◦Si

)
(x̂) ⋅ Ni(x̂).
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Fi of V. Thus, an optimal strategy may be to set �1 , �2 , and 
�3 independently for every V such that the largest number of 
surface integrals vanish for that specific domain.

4.2  Evaluating the surface boundary integrals

Applying again the divergence theorem (27), we can trans-
form the two-dimensional integrals I2D

i
 in (36) into line 

integrals as:

where m̂i ∶ 𝜕F̂i → ℝ2 is the outward pointing unit normal 
on the boundary 𝜕F̂i . The vector field R̂i ∶ Dom(Si) → ℝ2 
is defined such that r̂i = ∇̂ ⋅ R̂i , as for instance:

and �1 , �2 , �1 , and �2 are real constants, such that �1 + �2 = 1.
Splitting the boundary 𝜕F̂i according to (24) we obtain:

where m̂i,j ∶ Img(ĉi,j) → ℝ2 are the outward pointing unit 
normals of the curves ĉi,j , i = 1,… , nc,i . Exploiting the para-
metric representation of the curves ĉi,j , these unit normal 
vector fields can be expressed as,

where the normal vectors M̂i,j are computed as:

In the previous expression, we assume that the curves ĉi,j 
are oriented such as the external boundaries of F̂i present a 
counter-clockwise orientation, while the internal ones are 
clockwise oriented (see Fig. 4).

Plugging  (41) into the expression of the line inte-
grals I1D involved in (40), they become:

Finally, pulling back these integrals to the parametric 
domain of the underlying curves ĉi,j , we obtain:

(38)I2D
i

= ∫
𝜕F̂i

R̂i ⋅ m̂i d𝓁i,

(39)
R̂i(x̂1, x̂1) =

(
𝛿1 ∫

x̂1

0

r̂i(𝜎, x̂2) d𝜎 + 𝜖1

)
e1

+

(
𝛿2 ∫

x̂2

0

r̂i(x̂1, 𝜎) d𝜎 + 𝜖2

)
e2,

(40)I2D
i

=

nc,i∑
j=1

I1D
i,j

=

nc,i∑
j=1

∫
�̂�i,j

R̂i ⋅ m̂i,j d𝓁i,j,

(41)m̂i,j ∶ Img(ĉi,j) → ℝ
2, x̂ ↦

�
M̂i,j

‖M̂i,j‖
◦ĉ−1

i,j

�
(x̂),

(42)M̂i,j ∶ Dom(ĉi,j) → ℝ
2, x̃ ↦

dĉi,j

dx̃
(x̃) × e3.

(43)I1D
i,j

= ∫
�̂�i,j

R̂i ⋅

�
M̂i,j

‖M̂i,j‖
◦ĉ−1

i,j

�
d𝓁i,j .

where, as for the two-dimensional case, the normalization 
and the inversion involved in the definition of the unit nor-
mal vectors (41) vanish after the pull-back. We gather all the 
integrand terms together as:

where

As the curve  ĉi,j is a Bézier, the composition R̂i◦ĉi,j is a 
higher degree univariate polynomial. Additionally, the non-
normalized normal vector field M̂i,j is also a polynomial 
since it is computed from Bézier derivatives. Finally, the 
scalar product of two polynomial vector fields, R̂i◦ĉi,j and 
M̂i,j , is a polynomial scalar field. Consequently, t̃i,j is a poly-
nomial. Therefore, the integrals (45) can be easily evaluated 
in an analytic way, with machine precision accuracy, without 
the need for quadrature schemes.

Further details for the case of Bernstein polynomials are 
provided in Appendix A: the composition R̂i◦ĉi,j between a 
bivariate and a curve is detailed in Eq. (75); the derivative 
involved in (42) is easily determined by computing the 
derivatives of the Bernstein basis functions as described 
in (58); the scalar product in (46) can be evaluated by com-
puting the product of the individual components (Eq. (66)) 
and then summing the resulting expressions (Eq. (65)); 
finally, the 1D integrals (45) can be analytically deter-
mined using the expression (63).

Remark 6 The Remark 5 is extensible to the line integrals 
detailed above. In some situations (see for instance Fig. 4), 
some boundaries �̂�i,j may be aligned with the Cartesian axes. 
In those cases, the constants �1 and �2 arising in the anti-
derivatives (39) can be chosen such as the product R̂i ⋅ m̂i,j 
vanishes in some of those boundaries. These constants can 
be chosen independently for every face integral I2D

i
 such as 

the number of 1D integrals to be evaluated is minimized.

4.3  Polynomial degree

The reader may have noticed that due to the involved com-
positions, A◦Si and R̂i◦ĉi,j , as well as the products of Bézier 
curves and surfaces, the resulting polynomial term t̃i,j can 
potentially present a very high degree. In this section, we 
detail the computation of this degree, as well as the order of 
other terms involved in the intermediate steps.

(44)I1D
i,j

= ∫
1

0

(
R̂i◦ĉi,j

)
⋅ M̂i,j dx̃,

(45)I1D
i,j

= ∫
1

0

t̃i,j dx̃,

(46)
t̃i,j ∶Dom(ĉi,j) = [0, 1] → ℝ,

x̃ ↦ t̃(x̃) =
(
R̂i◦ĉi,j

)
(x̃) ⋅ M̂i,j(x̃).
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For the sake of simplicity, hereinafter we assume that the 
polynomial a to integrate, as well as the Bézier mappings 
Si and ĉi,j , have constant degrees along all their parametric 
directions and for all their components:

with r ≥ 0 , s > 0 , and c > 0 , and where the polynomial 
spaces ℚ follow the notation introduced in Sect. 2.2. Accord-
ing to the definitions (34) and (42) it is straightforward to 
obtain the degrees of the fields Ni and M̂i,j as:

and using (30), the order of A is computed as:

Thus, the degrees of A◦Si and r̂i [recall Eq. (37)] are:

Analogously to the case of A , the degree of R̂i (Eq. 39), 
and its composition R̂i◦ĉi,j , are simply computed as:

Finally, the polynomial term t̃i,j presents a degree:

The degree of t̃i,j can be potentially very high what may 
induce numerical instabilities. Nevertheless, in the examples 
of Sect. 5.2.2 very high order polynomials were involved 
(in the order of hundreds) but no instabilities were noticed. 
This is due to the fact that we use Bézier curves and sur-
faces that are expressed in terms of Bernstein polynomials, 
known to be numerically more stable than other choices, as, 
for instance, monomial or Lagrange bases. Along with this 
work, we compute derivatives, integrals, additions, and mul-
tiplications of Bernstein polynomials, that are stable opera-
tions, but we never evaluate polynomials. See Appendix A 
for further details.

5  Numerical experiments

In this section, we show the performance of the presented 
quadrature-free approach by means of numerical experi-
ments. In a first set of examples, in Sect. 5.1, we apply the 
method to the computation of simple integrals in 2D and 3D 

(47)a ∈ ℚr,r,r; Si ∈ ℚs,s ×ℚs,s ×ℚs,s; ĉi,j ∈ ℚc ×ℚc,

(48)
Ni ∈ ℚ2s−1, 2s−1 ×ℚ2s−1, 2s−1 ×ℚ2s−1, 2s−1,

M̂i,j ∈ ℚc−1 ×ℚc−1,

(49)A ∈ ℚr+1, r, r ×ℚr, r+1, r ×ℚr, r, r+1.

(50)
A◦Si ∈ ℚt, t ×ℚt, t ×ℚt, t, t = 2(3r + 1),

r̂i ∈ ℚ3s(r+1)−1, 3s(r+1)−1.

(51)
R̂i ∈ ℚ3s(r+1), 3s(r+1)−1 ×ℚ3s(r+1)−1, 3s(r+1),

R̂i◦ĉi,j ∈ ℚ6sc(r+1)−c ×ℚ6sc(r+1)−c.

(52)t̃i,j ∈ ℚ6sc(r+1)−1.

domains and compare them with standard methods based 
on the use of boundary-conforming quadrature schemes. 
Afterwards, in Sect. 5.2 we apply it to the solution of ellip-
tic PDEs using the immersed isogeometric framework pre-
sented in Sect. 2.

5.1  Computation of integrals over B‑reps

Figures 6 and 7 present two numerical studies used to vali-
date the presented integration strategy. The two-dimensional 
case, described in Fig. 6, consists of a quadratic Bézier sur-
face which is trimmed by three holes and a vertical curved 
slice. The three-dimensional case, described in Fig.  7, 
involves a trimmed domain defined by the intersection of 
a cube and a free-form cubic trivariate. We compute the 
mass M and the center of gravity CM of these two geom-
etries, defined by: 

 where the density is considered to be constant � = 1.
Reference values of (53) are obtained through boundary-

conformal quadrature schemes created by reparameter-
izing the interior of V with a technique similar to the one 
presented in [14]. This approach subdivides the domain of 
integration and leads to integration sub-cells. Standard quad-
rature rules can then be used to integrate numerically. For 
the sake of comparison, an overkill number of quadrature 
points ( 64 × 64 × 64 ) were used within each integration cell 
for both examples.

The obtained results are presented in Table 1. For the 
2D-geometry (Fig. 6), the computed relative differences, 
compared with the reparameterization approach, are below 
10−15 , i.e., close to machine precision. Nevertheless, for the 
3D-geometry (Fig. 7), relative differences of the order of 
10−7 were noticed.

Remark 7 We associate the larger differences in the 3D case 
to the intrinsic tolerances involved in some geometric opera-
tions. In this work we employ algorithms provided by Open 
CASCADE Technology [77] which is an open source C++ 
library designed for geometric modeling applications. For 
instance, in the specific case of surface-surface intersections 
between B-spline or Bézier surfaces, Open CASCADE lim-
its the lowest tolerance to 10−7 , which truncates the achiev-
able accuracy and agrees with the results reported in Table 1. 
Similar tolerances apply to other non-linear operations. 
These limitations are not exclusive of Open CASCADE, as 

(53a)M = ∫V

�(x)dx,

(53b)CM =
1

M ∫V

x�(x)dx ,
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Fig. 6  The two-dimensional trimmed geometry for the validation of the quadrature-free integration procedure

Fig. 7  The three-dimensional 
trimmed geometry for the 
validation of the quadrature-free 
integration procedure

Table 1  Comparison of the 
quadrature-free integration 
for the 2D and 3D trimmed 
geometries depicted in Figs. 6 
and 7, respectively

The mass and the center of mass are evaluated and compared to reference values obtained with an alterna-
tive approach based on reparameterization

Reference Quad-free Relative diff.

2D geo: M 2.100230243261870 2.100230243261870 < 10−15

C
M
⋅ e

1
0.914136125211735 0.914136125211735 < 10−15

C
M
⋅ e

2
0.859802811586580 0.859802811586580 < 10−15

3D geo: M 0.444790448933688 0.444790378608127 1.58 × 10−7

C
M
⋅ e

1
0.469169723257000 0.469169674580198 1.03 × 10−7

C
M
⋅ e

2
0.400642146493445 0.400642138814180 1.91 × 10−8

C
M
⋅ e

3
0.457115007608867 0.457114990479802 3.74 × 10−8
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similar issues can be found in other commercial and non-
commercial geometric kernels available: Tolerances of the 
order of 10−7 are more than enough for most of the applica-
tions these tools are designed for. On the other hand, we use 
Irit [78], an open-source geometric modeler, for other 2D 
operations, as it is the case of the computation of intersec-
tions between planar spline curves. The involved tolerances 
in Irit can be tuned according to our needs, which allows 
us to reach a higher accuracy for the 2D problem. In addi-
tion, it is important to remark that these limitations pollute 
the geometrical approximation not just for the presented 
quadrature-free method, but as well for other approaches, 
as for instance, for surface and volumetric untrimming, as 
previously discussed in [67]. Nevertheless, we believe that 
the obtained results confirm the viability of the quadrature-
free integration strategy for 3D geometries.

Remark 8 For computing the quantities (53) in the case of 
the 2D-geometry (Fig. 6), the integration procedure can 
be directly started from Eq. (36), by replacing r̂i(x̂) with (
𝜌◦Si

)
(x̂) and 

(
𝜌◦Si

)
(x̂)Si(x̂) ⋅ ek, k = 1, 2, 3 , respectively.

5.2  Immersed isogeometric analysis

In this section, we demonstrate the effectiveness of the 
quadrature-free approach for solving PDEs in the context of 
the immersed isogeometric framework presented in Sect. 2. 
In particular, we perform a series convergence analyses 
for Poisson’s problem in different 2D (Sect. 5.2.1) and 3D 
(Sect. 5.2.2) immersed domains. Optimal error convergence 
rates are retrieved in all the cases. Finally, in Sect. 5.2.3, 
the flexibility and robustness of the proposed approach is 
demonstrated in the case of geometries that present a level 
complexity analogous to the ones found in real industrial 
applications.

For all the studied cases, we consider the approximated 
Poisson’s problem (11), previously discussed in Sect. 2. We 
adopt manufactured solutions:

except for the complex geometries in Sect. 5.2.3. Accord-
ingly, the source and Neumann terms, f and g, are defined as: 

 The Dirichlet boundary ΓD will be defined for each particu-
lar case, and, consequently, Neumann boundary conditions 
will be applied on ΓN = �Ω ⧵ ΓD.

The choice of such regular functions as target solutions 
(Eq. 54) is motivated by the aim of focusing our study on the 

(54)
uex(x, y) = sin(�x) sin(�y) in 2D,

uex(x, y, z) = sin(�x) sin(�y) sin(�z) in 3D,

(55a)f = −Δuex ,

(55b)g = ∇uex ⋅ n .

consistency error, mainly controlled by numerical integra-
tion and geometric representation errors, while keeping the 
discretization error small. The approximation properties of 
trimmed spline spaces for the solution of elliptic PDEs have 
been previously studied in [67].

5.2.1  Poisson’s problem for 2D trimmed‑geometries

Let us first tackle the Poisson’s problem for several two-
dimensional problems:

– a square with a circular hole (Fig. 8),
– a square with a free-form hole (Fig. 9),
– a multi-perforated quarter annulus (Fig. 10).

Several solution degrees are considered: i.e., from p = 1 
for the trimmed squares, and p = 2 for the annulus, to 
p = 4 . Importantly, the presence of conic sections require 
to perform some geometric approximations such that the 
integrals in the finite element operators involve only non-
rational polynomials. As already discussed in Remark 2, to 
do so we rely on the results proven in [67] which reveal that 
approximating the elements’ geometry using degree p leads 
to optimal numerical results. Therefore, Béziers of degree p 
are used to approximate the rational geometrical quantities 
at the element level.

In addition, it is important to remark the presence of a 
non-identity mapping in the problem depicted in Fig. 10. 
This leads to the introduction of an extra non-polynomial 
term in the bilinear form (see Remark 1) that is approxi-
mated through a local polynomial projection, as discussed 
in Sect. 2.2.

The H1 and L2 relative norms of the solution errors are 
evaluated along with the analyses. Optimal convergence 
rates, p and p + 1 , respectively, are retrieved for the three 
cases, see Figs. 8,  9, and 10.

In the case of the plate with a hole case (Fig. 8), the L∞ 
norm was also studied observing an optimal convergence 
behavior2.

In addition, for that particular test case, the results of 
the proposed immersed approach were compared against 
the ones obtained using a boundary-fitted method. As it 
can be seen in Fig. 8, for a fixed element size h, both 
results are comparable in terms of accuracy for all the 
computed norms.

In Figs.  8,  9, and 10, the H1 and L2 norms were computed 
using tensor-product Gauss-Legendre quadrature rules with 
p + 6 points per direction for the active non-cut elements, 
including the elements of the boundary-fitted method. For 
the cut-elements, the norms were evaluated by means of 
2 The L∞ norm of a quantity f ∈ L∞(Ω) is known to be lower 
bounded by the L2 norm as ||f ||2

L2(Ω)
≤ C||f ||2

L∞(Ω)
 , where C is a con-

stant equal to the volume of the domain Ω.
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the reparameterization approach already employed during 
the validation of the integrals computed in Sect. 5.1, using 
p + 6 points per direction for every integration sub-cell. On 
the other hand, in Fig. 8, the L∞ norm was computed using 
64 equally distributed points along each direction for every 
non-cut element and integration sub-cell.

The numerical solutions obtained with the quadrature-
free approach enable to validate the present methodology 
for two-dimensional cases.

Nevertheless, it is important to remark that for the finest 
discretizations in the case p = 4 , the error reaches a plateau 
(around 10−10 for the relative L2 error norms, and around 
10−8 for the relative H1 and L∞ norms). For those cases, the 

discretization error becomes lower than the error induced 
by geometrical operations as, for instance, the slicing of 
the domain Ω into elements. See the related discussion in 
Remark 7. Similar plateaux were observed in [67, 79].

5.2.2  Poisson’s problem for simple 3D trimmed‑geometries

To go one step further, we perform several analyses on 
three-dimensional trimmed domains. We consider four 
trimmed domains with several levels of complexity. Each 
of them consists in a cube with length L = 1000 with dif-
ferent trimmed regions:
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Fig. 11  Poisson’s problem over 
a cube with a planar trimmed 
region
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Fig. 13  Poisson’s problem 
over a cube with a cylindrical 
trimmed region
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– a simple planar cut (Fig. 11),
– a free-form cut (Fig. 12) which is defined by a bi-quad-

ratic surface with the following control points: 

– one-quarter of a cylinder (Fig. 13),
– one-eighth of a sphere (Fig. 14).

As for the 2D-cases, we study the convergence rate in both 
H1 and L2 relative norms for several spline degrees. The 
norms are again evaluated via a reparameterization proce-
dure. The obtained results confirm the theoretical expecta-
tions: Optimal convergence rates are confirmed.

The curves created by Open CASCADE [77] during the 
surface-surface intersections are represented as B-splines of 
high degree and possibly rational. Such high order curves 
may lead to very high degrees during the polynomial com-
positions, as detailed in Sect. 4.3. As for the 2D-cases, and 
according to Remark 2, it is always possible to approximate 
at the element level those geometrical entities with Béziers 
of degree equal to the solution degree. This turns out to be 
mandatory in the case of rational curves and surfaces. For 
all trimmed cubes included in this section, the curves arising 
from surface-surface intersections were approximated at ele-
ment level using Bézier curves of degree p. In the same way, 
for the cases in Figs. 13 and 14, the underlying rational sur-
faces were also approximated at element level with Bézier 
surfaces of degree p along both parametric directions.

Thus, for the case of the planar cut described in Fig. 11, 
the accuracy of the surface-surface intersections is very good 
due to the simplicity of the underlying geometric slices (just 
straight lines). Consequently, in this particular example, the 
convergence rates are optimal, even for p = 4 over the fin-
est mesh (see again Fig. 11). The cube with the cylindrical 
removal also presents optimal convergence rates as shown in 
Fig. 13. We observe that for this geometry, the surface–sur-
face intersections are also precisely computed using Open 
CASCADE [77]: The intersection curves are straight lines in 
the parametric domain of the cylindrical surface. However, in 
the case of the free-form trimmed cube (Fig. 12) and spheri-
cal trimmed cube (Fig. 14), the optimal convergence rates 
start to deteriorate for the finest discretization and p = 4 . 
This is due to the fact that the intersection curves are no 
longer straight lines in the parametric domain of the trim-
ming surfaces, thus, they are strongly influenced by the used 
tolerance values, as already discussed in Remark 7. Let us 
mention that similar results were previously observed in [67].

Let us also study the involved polynomial degrees for the 
four examples included in this section according to the esti-
mation detailed in Sect. 4.3. Applying the quadrature-free 

� =

⎛
⎜⎜⎝

0 L∕2 L 0 L∕2 L 0 L∕2 L

L∕4 L∕4 L∕2 3L∕4 L∕2 L∕4 L∕2 3L∕4 L∕4

0 0 0 L∕2 L∕2 L∕2 L∕2 3L∕4 L∕4

⎞
⎟⎟⎠

approach to solve the Poisson’s problem (11), we can iden-
tify the polynomial integrand a [recall Eq. (26)] with the 
term B�

k

(
∇Ni ⊗ ∇Nj

)|Q ∈ ℚ2p, 2p, 2p (Eq.  (18), where we 
assumed K̄ to be the identity and therefore the projection 
degrees to be � = (0, 0, 0) ). Considering, as discussed 
above, that the degrees of approximated surfaces and curves 
are s = c = p , the final degree of the polynomial term t̃i,j 
becomes [recall Eq. (52)]:

Unsur pr is ingly,  the  degree w  i s  very high: 
w = {17, 119, 377, 863} for p = {1, 2, 3, 4} , respectively. 
Nevertheless, despite these high orders, no instabilities were 
noticed in the results of Figs. 11, 12, 13 and 14. As pre-
viously discussed in Sect. 4.3, this is due to the fact that 
the proposed integration strategy does not require polyno-
mial evaluations. An in-depth discussion can be found in 
Appendix A. Nevertheless, we noticed that the results start 
to deteriorate for degree p = 5 , for which the total polyno-
mial degree of t̃i,j becomes w = 1649 . This is due to the fact 
that the values of the binomial coefficients that appear in 
the Bernstein polynomial multiplications and compositions 
(Eqs. 66,67,71,76) are very large. Double precision vari-
ables (64bits) are not enough for representing those num-
bers with sufficient precision, which pollutes all subsequent 
computations.

Finally, regarding the computational cost, we observe 
that the slicing process as well as the posterior approxima-
tion step are not particularly expensive operations. Thus, 
for instance, for the example of Fig. 14 with 16 × 16 × 16 
elements, the intersection of the geometry with the Carte-
sian background grid took around 10.8 seconds running in a 
single core of an Intel i7-8559U 2.7 GHz processor. For that 
specific case, the approximation stage, took 3.3, 3.9, 4.6, and 
5.8 seconds, for degrees p = {1, 2, 3, 4} , respectively. It is 
important to note that these operations (slicing and approxi-
mation) are easily parallelizable, and therefore, the total time 
can be significantly reduced by using all the cores available 
on modern processor architectures.

5.2.3  Poisson’s problem on complex 3D 
trimmed‑geometries

To show the viability of the quadrature-free approach to han-
dle complex 3D geometries, we consider the two CAD mod-
els shown in Figs. 15 and 16. These B-Rep geometries have 
been extracted from the Open CASCADE database [77]. 
Generating a boundary-conforming volumetric parameteri-
zation of these geometries is far from a simple task. Instead, 
the B-Rep models are immersed into Cartesian grids (see 
Sect. 2). The solutions are discretized with C1-continuous 
quadratic B-spline basis functions. Again, we solve Poisson’s 

(56)t̃i,j ∈ ℚw, with w = 12p3 + 6p2 − 1.
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problem with homogeneous Dirichlet boundary condition 
applied on the bottom surfaces and a constant Neumann 
boundary condition inside the cylindrical tubes (see again 
Figs. 15 and 16). In order to build the finite element opera-
tors, the presented quadrature-free approach is applied. The 
obtained solutions are depicted in Figs. 15 and 16.

The stiffness matrices associated with these examples 
were ill-conditioned due to the presence of small cut ele-
ments. In order to solve this issue, the associated linear sys-
tems were preconditioned using a Jacobi preconditioner as 
described in [61].

Regarding the computational cost of the geometric opera-
tions, for the example in Fig. 15 the slicing process and sub-
sequent approximation stage took 55.0 and 84.8 seconds, 
respectively; while 46.2 and 68.5 seconds were measured, 
respectively, for the test in Fig. 16. As in the previous sec-
tions, these times were obtained using a single core of an 
Intel i7-8559U 2.7 GHz processor.

We believe that these two complex geometries highlight 
the viability of the developed approach to deal with designs 
of industrial complexity level.

6  Conclusions

We have presented a novel approach for the solution of par-
tial differential equations on B-Rep geometries by means of 
immersed isogeometric discretizations that do not require 
quadrature schemes. For such purpose, we developed a new 
quadrature-free technique for the evaluation of integrals with 
polynomial integrands over B-Reps enclosed by trimmed 
non-rational spline surfaces.

This technique is based on two successive applications 
of the divergence theorem, transforming 3D integrals into 
line integrals that are eventually computed analytically. 
The involved steps require the creation and manipulation of 
(potentially) very high-degree polynomials. Nevertheless, 
we do not perform explicit evaluation of such functions, but 
just operations as additions or multiplications (using Bern-
stein bases), that are known to be more stable. The accuracy 
of this integration method has been verified numerically 
by evaluating integrals of low order polynomials over 2D 
and 3D domains and comparing the obtained results against 
reference solutions computed through boundary-conformal 
quadrature schemes.

To apply such an integration method to the resolution 
of PDEs over CAD models using immersed Galerkin dis-
cretizations, we transform the integrands of the finite ele-
ment operators into polynomials. Thus, relying on [66] we 
create local polynomial approximations of those integrands 
for every element. In addition, according to [67], we also 
approximate at element level the rational B-splines, that 
may define the geometry, as non-rational Bézier curves 

and surfaces. This opens the door to the application of the 
method to B-Reps enclosed by rational splines.

The combination of the results in [66, 67] theoretically 
guarantees the optimal approximation properties of the pro-
posed method for elliptic problems. This approach is directly 
extendable to other non-elliptic problems, however, suitable 
approximation properties are not backed up by theoretical 
evidences.

A series of numerical experiments support our claims. 
Thus, the method’s performance is illustrated by a series of 
elliptic problems on immersed 2D and 3D geometries, some 
of which present rational geometries. Optimal convergence 
rates were confirmed in all the cases. Finally, and to prove 
the potential of the method, its real applicability is demon-
strated with a couple of 3D B-Rep models with an industrial 
level of geometrical complexity.

In this work, we particularize our study to the case of 
isogeometric discretizations. Nevertheless, the ideas behind 
are straightforwardly extendable to other immersed meth-
ods as, for instance, the finite cell method or CutFEM/IGA 
[31–33], or to other discretization techniques like XFEM or 
high-order virtual element [80, 81] methods. In addition, 
the quadrature-free integration could be also handy for the 
evaluation of the right-hand-side integrals involved in the 
moment fitting techniques [53].

Appendix: A Bernstein polynomials

In this Appendix we discuss the construction of polynomi-
als using Bernstein bases. We first introduce, in A.1, the 
Bernstein basis, its main properties, and the construction 
of univariate polynomials. Afterwards, in A.2, we discuss 
its generalization to the case of tensor-product polynomials. 
And finally, in A.3 we present the case of multi-dimensional 
vector polynomials. Most of the constructions detailed in 
this Appendix are rather classical and can be found, for 
instance, in [82].

A.1 Bernstein basis and univariate polynomials

Let us first introduce the Bernstein polynomials basis for a 
degree p ≥ 0:

It is well-known that this basis constitutes an appealing 
alternative to monomials in terms of numerical stability 
when it comes to floating-point operations [82].

In addition, the Bernstein basis presents some handy 
properties that simplify the manipulation of polynomials. 

(57)B
p

i
(t) =

(
p

i

)
ti(1 − t)p−i, i = 0,… , p.
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For instance, their derivatives can be easily computed as a 
function of lower degree polynomials. Thus, for p > 0 : 

 In the same way, their primitives can be computed using 
polynomials of higher degree:

that yields:

In addition, any Bernstein polynomial of degree p − 1 , with 
p > 0 , can be expressed as a combination of polynomials 
of degree p as:

Using the Bernstein basis, a univariate real polynomial f(t) 
of degree p can be expressed as:

where fi ∈ ℝ . Applying (58), (59), (60), and (61) to each 
Bernstein basis function of the polynomial f(t), it is straight-
forward to compute the derivative of f(t), its antiderivative, 
integrate it over the domain [0, 1], and express it using a 
basis of degree p + 1 , respectively. In particular, due to its 
particular interest in this work, the integral of f(t) over the 
domain [0, 1] is detailed:

This result can be directly applied to the computation of the 
integral (45), in Sect. 4. We remark that in this operation no 
polynomial evaluations are involved, simply the linear com-
bination of the coefficients fi , what makes this computation 
stable even for high degree polynomials.

Let us know introduce now a second polynomial g(t) 
of degree q ≥ 0:

(58a)
dB

p

0
(t)

dt
= −pB

p−1

0
(t) ,

(58b)
dB

p

i
(t)

dt
= pB

p−1

i−1
(t) − pB

p−1

i
(t) for 0 < i < p ,

(58c)
dB

p
p(t)

dt
= pB

p−1

p−1
(t) .

(59)∫ B
p

i
(t)dt =

1

p + 1

p+1∑
j=i+1

B
p+1

j
(t),

(60)∫
1

0

B
p

i
(t)dt =

1

p + 1
.

(61)B
p−1

i
(t) =

p − i

p
B
p

i
(t) +

i + 1

p
B
p

i+1
(t).

(62)f (t) =

p∑
i=0

B
p

i
(t)fi,

(63)∫
1

0

f (t)dt =
1

p + 1

p∑
i=0

fi.

In the case q = p , the addition (subtraction) of f(t) and g(t) it 
is easily computed by adding (subtracting) their coefficients:

On the other hand, if q < p , g(t) must be firstly written in the 
Bernstein basis of degree p, applying (61) p − q times, and 
then the expression (65) can be directly used.

The multiplication of polynomials is another operation 
that is extensively used in Sect. 4. The product f(t)g(t) yields 
a new polynomial of degree p + q that can be computed as:

Based on that, the composition of two polynomials f◦g(t) 
is expressed as:

where the terms g(t)i(1 − g(t))p−i , i = 1,… , p , can be evalu-
ated by means of the polynomials product expression (66).

A.2 Multivariate polynomials

The univariate construction (62) can be extended to the case 
of m-dimensional tensor-product polynomials as:

where (p1, p2,… , pm) are the non-negative degrees along 
the m parametric directions, and i = (i1, i2,… , im) the multi-
index accounting for all the univariate indices. Operations 
defined for univariate polynomials, as derivatives  (58), 
primitives (59), or degree raising (61), can now be applied 
for every parametric direction independently. For instance, 
the computation of antiderivatives along different directions 
is required in Eqs. (30) and (39). On the other hand, the 
integral of h(t1,… , tm) over a domain [0, 1]m can be easily 
computed as:

(64)g(t) =

q∑
i=0

B
q

i
(t)gi.

(65)f (t) ± g(t) =

p∑
i=0

B
q

i
(t)(fi ± gi).

(66)
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p+q�
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B
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(67)
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i=0

B
p

i
(g(t))fi

=

p∑
i=0

(
p

i

)
g(t)i(1 − g(t))p−ifi,

(68)

h(t1, t2,… , tm)

=

p1∑
i1=0

p2∑
i2=0

⋯

pm∑
im=0

B
p1
i1
(t1)B

p2
i2
(t2)⋯B

pm
im
(tm)hi,
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As discussed in Remark 4, for the case of non-trimmed 
Bézier patches, the surface integral (36) can be directly 
computed using the expression above. The same applies to 
the integral (26) in the case the integration domain is a unit 
cube (what is applicable to integration over non-cut elements 
Q ∈ T

int

h
(Ω) as discussed in Sect. 2). This is the case of the 

evaluation of integrals over the non-cut elements discussed 
in Sect. 2. We also remark here that, as for the univariate 
case (60), no polynomial evaluations are required for com-
puting this integral, only a linear combination of the coef-
ficients hi.

We now consider a second m-dimensional polynomial 
l(t1,… , tm) with non-negative degrees (q1,… , qm):

where li ∈ ℝ . The multiplication of two m-dimensional poly-
nomials, analogously to (66), results in a polynomial with 
degrees (p1 + q1,… , pm + qm) that can be computed as:

A.3 Vector polynomials

The univariate and multivariate polynomials studied above 
constitute the foundation for the construction of Bézier curves, 
surfaces, and other higher dimensional geometric objects. 
In particular, following the polynomial constructions (62) 
and (68), Bézier curves and surfaces can be expressed as: 

(69)
∫

1

0 ∫
1

0

⋯∫
1

0

h(t1, t2,… , tm)dt1dt2 … dtm

=
1∏m

j=1

�
pj + 1

� �
i

hi.

(70)

l(t1, t2,… , tm)

=

q1∑
i1=0

q2∑
i2=0

⋯

qm∑
im=0

B
q1
i1
(t1)B

q2
i2
(t2)⋯B

qm
im
(tm)li,

(71)

h(t, … , tm) l(t, … , tm) =

p1+q1∑
i1=0

⋯

pm+qm∑
im=0

B
p1+q1
i1

(t1)⋯B
pm+qm
im

(tm)

min(p1,i1)∑
j1=max(0,i1−q1)

⋯

min(pm,im)∑
jm=max(0,im−qm)

(
p1
j1

)(
q1

i1 − j1

)

(
p1 + q1

i1

) ⋯

(
pm
jm

)(
qm

im − jm

)

(
pm + qm

im

) hj1,…,jm
li1−j1,…,im−jm

.

(72a)c(t) =

p∑
i=0

B
p

i
(t)ci,

 where ci, Si1,i2 ∈ ℝd and d is the spatial dimension. The sin-
gle coordinate components of c and S are themselves scalar 
polynomials and can expressed as: 

 for k = 1,… , d , and where ek are the unit vectors along the 
Cartesian directions.

Thus, operations like partial derivatives, or cross and 
scalar products between Bézier curves and surfaces, like 
the ones used in Sect. 4, can be carried out by using its 
individual coordinate components  (73) and combining 
them according to the operations detailed in previous sec-
tions for scalar univariate and multivariate polynomials. 
Among all the operations, due to its higher complexity, in 
what remains we detail the composition between multi-
variate Béziers.

We consider two multivariate Béziers F ∶ ℝs
→ ℝd and 

G ∶ ℝm
→ ℝs of the form: 

 that have non-negative degrees (p1, p2,… , ps) and 
(q1, q2,… , qm) , respectively. Gi ∈ ℝs and Fi ∈ ℝd are 
the associated control points, and � = (i1, i2,… , is) and 
� = (j1, j2,… , jm) the corresponding multi-indices. We want 
to compute the composition F◦G(t1,… , tm) ∶ ℝm

→ ℝd . 
Wo rk i n g  w i t h  t h e  c o o r d i n a t e  c o m p o n e n t s 
Gk(t1,… , tm) = G(t1,… , tm) ⋅ ek, k = 1,… , s , we obtain:

 Every term Bqk
ik
◦Gk(t1,… , tm), k = 1,… , s , is the composi-

tion between a univariate Bernstein polynomial and a 
m-dimensional scalar polynomial expressed in a tensor-
product Bernstein basis:

(72b)S(t1, t2) =

p1∑
i1=0

p2∑
i2=0

B
p1
i1
(t1)B

p2
i2
(t2)Si1,i2 ,

(73a)ck(t) = c(t) ⋅ ek =

p∑
i=0

B
p

i
(t)ci ⋅ ek,

(73b)

Sk(t1, t2) = S(t1, t2) ⋅ ek

=

p1∑
i1=0

p2∑
i2=0

B
p1
i1
(t1)B

p2
i2
(t2)Si1,i2 ⋅ ek,

(74a)F(r1,… , rs) =

p1∑
i1=0

⋯

ps∑
is=0

B
p1
i1
(r1)⋯B

ps
is
(rs)Fi ,

(74b)G(t1,… , tm) =

q1∑
j1=0

⋯

qm∑
jm=0

B
q1
j1
(t1)⋯B

qm
jm
(tm)Gj ,

(75)
F◦G(t1,… , tm) =

p1∑
i1=0

⋯

ps∑
is=0

B
p1
i1
◦G1(t1,… , tm)

⋯B
ps
is
◦Gs(t1,… , tm)Fi.
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 where the products are computed performing multipli-
cations between multi-dimensional scalar polynomials, 
detailed in Eq. (71).
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