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Abstract 

Size-dependent behaviours of metal foam microbeams with three different porosity distribution 

models are studied in this paper. Based on finite element model, a normal and shear deformation 

theory has been employed for the first time to investigate their structural behaviours by using 

modified strain gradient theory and considering the effects of variable material length scale 

parameter. The equations of motion and boundary conditions of system are derived from Hamilton’s 

principle. Finite element models are presented for the computation of deflections, vibration 

frequencies and buckling loads of the metal foam microbeams. The verification of proposed models 

is carried out with comparison of the numerical results available in the literature. Calculations using 

the different parameters reveal the effects of the porosity parameters (distribution and coefficient), 

small size, boundary conditions and Poisson’s ratio on the displacements, frequencies and buckling 

loads of metal foam microbeams. Some benchmark results of these structures for both models 

(modified couple stress theory and modified strain gradient theory with constant and variable material 

length scale parameter) and with/without Poison’s effect are provided for future study. 
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Nomenclature 

IGA Iso-geometric analysis 𝜎𝑖𝑗, 𝑚𝑖𝑗 , 𝑝𝑖 , 𝜏𝑖𝑗𝑘 
Stress and modified strain 

gradient stress components 

FSDT 
First order shear deformation 

theory 
𝜀𝑖𝑗 , 𝜒𝑖𝑗 , 𝛾𝑖 , 𝜂𝑖𝑗𝑘 

Strain and symmetric curvature, 

dilatation gradient and deviatoric 

stretch gradient tensors 

CST Classical shell theory 𝑢1, 𝑢2, 𝑢3 
Displacements in the 1,2 and 3 

directions of an arbitrary point 

CCT Classical continuum theory 𝛿𝑖𝑗 Kronecker delta 

MCST Modified couple stress theory 𝑒𝑖𝑗𝑘 Permutation symbol 

MSGT Modified strain gradient theory 𝜈 Poisson’s ratio 

NSGT Nonlocal strain gradient theory 𝒱 

Volume of the body, which can 

be decomposed to the cross-

sectional area 𝐴 = 𝑏𝑥ℎ and the 

length of the domain L 

CNT Carbon nanotube ℓ0, ℓ1 and ℓ2 
MLSPs of modified stress 

tensors 

MLSP Material length scale parameter 𝑢,𝑤𝑏 , 𝑤𝑠 and 𝑤𝑧 
In plane displacement and 

bending, shear and thickness 

stretching displacements 

NSDT 
Normal and shear deformation 

theory 
𝑓1(𝑧), 𝑓2(𝑧) and 𝑓3(𝑧) 

Shape function describing the 

contribution of the bending, 

shear and thickness stretching 

displacements across the 

thickness 

FEM Finite element method TBT Third order beam theory 

L, b, h Geometry of beam 𝑄𝑖𝑗 Elastic constants 

UPD Uniform porosity distribution 𝑞 Uniformly distributed load 

NUPD1 
Non-uniform porosity 

distribution 1 
𝑁0 Axial load 

NUPD2 
Non-uniform porosity 

distribution 2 
𝐼0, 𝐼1, 𝐼2, 𝐽1, 𝐽2, 𝐽3, 𝐾1, 𝐾2 Inertial constant coefficients 

𝐸 Young’s modulus 𝜔 Natural frequency 

𝜌 Mass density 𝜑𝑗 FEM shape function 

ℓ MLSP 𝛱 Total energy 

𝐸𝑚𝑎𝑥 Maximum E 
[𝐾𝑘𝑙], [𝑀𝑘𝑙], [𝐺𝑘𝑙] and 
𝐹𝑘 

FEM matrices 

𝐸𝑚𝑖𝑛 Minimum E BC Boundary condition 

𝜌𝑚𝑎𝑥 Maximum 𝜌 DMD (𝑤̅) 
Dimensionless mid-span 

deflection 

𝑒0 Porosity parameter DFF (λ̅) 
Dimensionless fundamental 

frequency 

𝑒𝑚 Porosity parameter DCBL (𝑁̅𝑐𝑟) 
Dimensionless critical buckling 

load 

ℓ𝑚𝑎𝑥 Maximum MLSP SBT Sinusoidal beam theory 

𝒰,𝑉, 𝐾 
Strain energy, external work 

and kinetic energy 
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1. Introduction 

In recent years, the stringent norms raised to achieve zero carbon emissions accompanied with low 

fuel consumption are directly effecting the engineering applications especially in the automotive and 

aerospace industries. As a result, the usage of parts manufactured by using the cellular lightweight 

materials has been increasing due to their outstanding mechanical and thermal properties. Metal 

foams have the high stiffness to weight ratio, impact and energy absorption, higher structural damping 

capacity than the solids, sound and vibration isolation, better thermal conductivity due to high surface 

area and greater cell wall conduction. Moreover, the exhibition of plateau stress can also be observed 

in metal foam structures [1]. Because of these manifold features of metal foam, researchers have been 

working on the comprehensive studies for improving and optimizing the mechanical responses of 

these structural members, which are the beams, plates and shells.  

The flexural and stability behaviours of a simply supported isotropic beams with porosity employing 

a finite element model [2, 3] and sandwich beams with a porous core using Navier’s method [4] are 

studied. Elasto-static bending and buckling responses of Timoshenko metal foam beam are studied 

based on Ritz method [5]. Natural frequency and transient analysis of metal foam beams are 

investigated using Ritz and Newmark-𝛽 methods [6]. Nonlinear Timoshenko beam model is 

developed to investigate natural frequencies of sandwich beams with metal foam core [7]. The Ritz 

method is employed to understand the elastic stability and natural frequencies of graphene platelets 

reinforced Timoshenko metal foam [8]. Nonlinear dynamic stability of metal foam beams is presented 

[9]. Dynamic responses of Timoshenko metal foam single and multi-span beams are presented for 

flexible end conditions [10]. A new method is developed to study the nondeterministic dynamic 

responses of Timoshenko metal foam beams [11]. Various boundary conditions including the flexible 

ones, the natural frequencies of higher order shear deformable metal foam beams are investigated 

[12]. A normal and shear deformation theory is used to investigate the vibration and elastic bending 
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of the metal foam beams based on iso-geometric analysis (IGA) [13]. Mechanical behaviours of 

graphene foam beams are presented by implementing Rayleigh-Ritz method [14]. An optimization 

study is performed for the stability response of beams having functionally graded faces and metal 

foam core [15].  

Elasto-static bending and stability behaviours of simply supported metal foam plate are presented in 

[16]. Navier solutions based on the stability analysis are provided for the simply support sandwich 

plate with metal foam core [17]. Differential quadrature technique is implemented to obtain the 

numerical results for the free vibrations of the third order shear deformable metal foam plate [18]. 

Nonlinear classical plate theory is applied to obtain free vibration response of the metal foam plates 

reinforced by graphene platelets [19]. The dynamic responses of sandwich metal foam plate with a 

viscoelastic core based on the modified Fouirer – Ritz method are investigated by implementing a 

first order shear deformation theory (FSDT) [20]. Natural frequency response of the elastically 

founded metal foam plates are studied [21].  

Analytical nonlinear dynamical solutions are presented based on the FSDT by employing thermal 

effects for the metal foam truncated conical panel [22]. Ballistic capacity of the sandwich panels 

having porous core is studied [23]. Employing the nonlinear classical shell theory (CST) and Navier’s 

method, resonance behaviours of metal foam cylindrical shells are investigated [24]. The Ritz method 

and FSDT are implemented to investigate the free vibration responses of metal foam cylindrical, 

spherical and shallow shells for different end conditions [25-29].  Analytical solutions based on the 

nonlinear CST are obtained to present the bending and hygrothermal stability behaviours of metal 

foam cylindrical shells [30]. The nonlinear CST is employed to analyse the stability of the metal foam 

cylindrical shells [31]. The FSDT is used to study the wave propagations in the cylindrical metal foam 

shells rested on a variable elastic foundation [32]. Functionally graded electromagnetic layers are 

used for controlling the vibration behaviours of rotating cylindrical shells with a metal foam core and 



 

5 
 

nanocomposite faces [33]. A comprehensive review based on the structural behaviours of metal foam 

structures can be found in [34].  

Although many papers are carried out to investigate structural responses of metal foams for 

macroscale structures (beams/plates/shells) using the classical continuum theory (CCT), there is still 

limit research on small-scale ones. In order to capture size effects in these structures, higher-order 

continuum models such as modified couple stress theory (MCST [35]) and modified strain gradient 

theory (MSGT [36]), nonlocal theory [37], nonlocal strain gradient theory (NSGT [38]), etc. can be 

used. Nonlocal wave propagation of porous nanobeam is studied using the Euler-Bernoulli and 

Timoshenko beam theories [39]. Navier’s method is implemented to analyse the vibrations of 

sandwich beams having carbon nanotube (CNT) reinforced faces with metal foam core with MCST 

[40] and simply-supported metal foam beams with MSGT [41]. Post-buckling of metal foam simply-

supported microbeams with variable material length scale parameter (MLSP) is investigated by 

MCST and Euler–Bernoulli theory [42]. Under periodic excitation, the vibration responses of silicon 

foam nanobeams are examined via surface elasticity theory [43]. IGA is used to present the nonlinear 

flexural responses of metal foam plate with NSGT [44]. An exponential plate theory is employed to 

study the linear and nonlinear vibration behaviours of axially loaded strain gradient metal foam 

graphene platelets reinforced microplates [45]. The vibration characteristics of CNT reinforced metal 

foam microplates are investigated under the hygrothermal effects by using a trigonometric plate 

theory [46]. The forced vibration analysis of NSGT metal foam nanoshells is revealed by employing 

the FSDT [47]. Free vibrations of cylindrical nanoshells metal foam are investigated using MCST 

and Love’s thin shell theory [48]. Using the FSDT, wave propagations of nonlocal strain gradient 

graphene platelets reinforced metal foam nanoshells are examined considering the thermal effects 

[49]. The FSDT with MCST is employed to study vibration behaviours of rotating metal foam 
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truncated sandwich conical micro-shells having graphene-platelets faces [71]. Some important 

studies based on nonlocal elasticity can be found in Refs. [56-70, 72-74]. 

Based on the open literature investigation provided above, and to the best of authors’ knowledge, the 

structural behaviours of metal foam microbeams based on NSDT, MSGT and finite element model 

(FEM) is not available. Moreover, the effects of variable MLSP on their responses have not been 

investigated yet. This is complicated problems and thus needs further investigation to fill the gap. 

That is the main novelty and contribution of this study. To achieve this, FEM is developed to 

investigate the elastic bending, natural frequency and stability responses of metal foam microbeams 

using NSDT based on the CCT, MCST and MSGT. The effects of boundary conditions, aspect ratios, 

porosity variations, thickness to MLSP ratios and Poisson’s ratio on the structural responses of the 

metal foam microbeams are presented. The necessary of including three MLSPs in the MSGT rather 

than only in the MCST and effects of variable MLSP on the responses of metal foam microbeams are 

discussed in details.    

2. Theoretical Formulation of Metal Foam Microbeams 

By using the Cartesian coordinate system, the geometry of a metal foam beam with length (𝐿), width 

(𝑏) and height (ℎ) can be visualized in Fig.1. Within the study, various metal foam models in terms 

of the different distribution of porosity are presented, namely, uniformly (UPD), non-uniformly 1 

(NUPD1) and non-uniformly 2 (NUPD2). The distribution of the porosities is symmetric in NUPD1 

according to mid-plane, however, it is asymmetric in NUPD2.  The Young’s modulus (𝐸), mass 

density (𝜌) and MLSP (ℓ) of the metal foam models can be given by [5-10]:  

UPD: 

𝐸(𝑧) = 𝐸𝑚𝑎𝑥(1 − 𝑒0Λ)                                                                                                                                  (1𝑎) 
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𝜌(𝑧) = 𝜌𝑚𝑎𝑥√1 − 𝑒0Λ                                                                                                                                   (1𝑏) 

ℓ(𝑧) = ℓ𝑚𝑎𝑥√1 − 𝑒0Λ                                                                                                                                   (1𝑐) 

Λ =
1

𝑒0
−
1

𝑒0
(
2

𝜋
√1 − 𝑒0 −

2

𝜋
+ 1)

2

                                                                                                           (1𝑑) 

 

NUPD1: 

𝐸(𝑧) = 𝐸𝑚𝑎𝑥 [1 − 𝑒0𝑐𝑜𝑠 (
𝜋𝑧

ℎ
)]                                                                                                                 (2𝑎) 

𝜌(𝑧) = 𝜌𝑚𝑎𝑥 [1 − 𝑒𝑚𝑐𝑜𝑠 (
𝜋𝑧

ℎ
)]                                                                                                                  (2𝑏) 

ℓ(𝑧) = ℓ𝑚𝑎𝑥 [1 − 𝑒0𝑐𝑜𝑠 (
𝜋𝑧

ℎ
)]                                                                                                                    (2𝑐) 

NUPD2: 

𝐸(𝑧) = 𝐸𝑚𝑎𝑥 [1 − 𝑒0𝑐𝑜𝑠 (
𝜋𝑧

2ℎ
+
𝜋

4
)]                                                                                                          (3𝑎) 

𝜌(𝑧) = 𝜌𝑚𝑎𝑥 [1 − 𝑒𝑚𝑐𝑜𝑠 (
𝜋𝑧

2ℎ
+
𝜋

4
)]                                                                                                          (3𝑏) 

ℓ(𝑧) = ℓ𝑚𝑎𝑥 [1 − 𝑒0𝑐𝑜𝑠 (
𝜋𝑧

2ℎ
+
𝜋

4
)]                                                                                                           (3𝑐) 

where 𝐸𝑚𝑎𝑥 and 𝜌𝑚𝑎𝑥 indicates the maximum 𝐸 and 𝜌 values, respectively; 𝑒0 and 𝑒𝑚 refer the 

porosity parameters for 𝐸 and 𝜌, and can be calculated by using the following equations [5-10]: 

𝑒0 = 1 −
𝐸𝑚𝑖𝑛
𝐸𝑚𝑎𝑥

                                                                                                                                                (4𝑎) 

𝑒𝑚 = 1 − √1 − 𝑒0                                                                                                                                          (4𝑏) 
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where 𝐸𝑚𝑖𝑛 is the minimum value of 𝐸. It is noted that 𝑒0 is used to control the porosity volume 

fraction within this study. 

In order to develop the FEM model for the metal foam microbeams, the strain energy (𝒰) can be 

revealed by [36, 50-52]: 

 𝒰 =  
1

2
∫(𝜎𝑖𝑗𝜀𝑖𝑗 +𝑚𝑖𝑗𝜒𝑖𝑗 + 𝑝𝑖𝛾𝑖 + 𝜏𝑖𝑗𝑘𝜂𝑖𝑗𝑘)𝑑

𝑉

𝒱,      𝑖, 𝑗, 𝑘 = 1,2,3                                                      (5) 

where 𝜎𝑖𝑗, 𝑚𝑖𝑗, 𝑝𝑖 and 𝜏𝑖𝑗𝑘 represent the classical stress and modified stress tensors, respectively and 

𝜀𝑖𝑗, 𝜒𝑖𝑗, 𝛾𝑖 and 𝜂𝑖𝑗𝑘 are the classical strain, symmetric curvature, dilatation gradient and deviatoric 

stretch gradient tensors, respectively.  

If one uses the displacement field (𝑢1, 𝑢2, 𝑢3), then the components of the classical and modified 

strain tensors can be obtained as [36, 50-52]: 

𝜀𝑖𝑗 =
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
)                                                                                                                                      (6𝑎) 

 𝜒𝑖𝑗 =
1

4
(𝑒𝑖𝑚𝑛

𝜕2𝑢𝑛

𝜕𝑥𝑚𝑗
2 + 𝑒𝑗𝑚𝑛

𝜕2𝑢𝑛

𝜕𝑥𝑚𝑖
2 )                                                                                                            (6𝑏) 

𝛾𝑖 =
𝜕𝜀𝑚𝑚
𝜕𝑥𝑖

                                                                                                                                                        (6𝑐) 

𝜂𝑖𝑗𝑘 =
1

3
(
𝜕𝜀𝑗𝑘

𝜕𝑥𝑖
+
𝜕𝜀𝑘𝑖
𝜕𝑥𝑗

+
𝜕𝜀𝑖𝑗

𝜕𝑥𝑘
)

−
1

15
[𝛿𝑖𝑗 (

𝜕𝜀𝑚𝑚
𝜕𝑥𝑘

+ 2
𝜕𝜀𝑚𝑘
𝜕𝑥𝑚

) + 𝛿𝑗𝑘 (
𝜕𝜀𝑚𝑚
𝜕𝑥𝑖

+ 2
𝜕𝜀𝑚𝑖
𝜕𝑥𝑚

) + 𝛿𝑘𝑖 (
𝜕𝜀𝑚𝑚
𝜕𝑥𝑗

+ 2
𝜕𝜀𝑚𝑗

𝜕𝑥𝑚
)] (6𝑑) 

where 𝛿𝑖𝑗 and 𝑒𝑖𝑗𝑘 state the Kronecker delta and permutation symbol.  
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Constitutive relations are depicted by using the modified stress tensors and Poisson’s effect for a 

linear elastic metal foam beam as [36, 50-52]: 

𝜎𝑖𝑗 = (
𝐸(𝑧)

1 + 𝜈
) 𝜀𝑖𝑗 + [

𝜈𝐸(𝑧)

(1 + 𝜈)(1 − 2𝜈)
] 𝜀𝑘𝑘𝛿𝑖𝑗                                                                                          (7𝑎) 

𝑝𝑖 = (
𝐸(𝑧)ℓ0

2(𝑧)

1 + 𝜈
)𝛾𝑖                                                                                                                                    (7𝑏) 

𝜏𝑖𝑗𝑘 = (
𝐸(𝑧)ℓ1

2(𝑧)

1 + 𝜈
) 𝜂𝑖𝑗𝑘                                                                                                                               (7𝑐) 

𝑚𝑖𝑗 = (
𝐸(𝑧)ℓ2

2(𝑧)

1 + 𝜈
)  𝜒𝑖𝑗                                                                                                                               (7𝑑) 

where ℓ0, ℓ1 and ℓ2 can be the associated MLSPs of modified stress tensors. If one sets ℓ0 = ℓ1 = 0, 

the MCST formulation is obtained. By setting the MLSP to zero, the CCT formulation is derived.  

The displacement field of NSDT used for the numerical computations can be provided in the form of 

[50, 51, 53, 54]: 

𝑢1(𝑥, 𝑧, 𝑡) = 𝑈(𝑥, 𝑧, 𝑡) = 𝑢(𝑥, 𝑡) − 𝑓1(𝑧)
𝜕𝑤𝑏(𝑥, 𝑡)

𝜕𝑥
+ 𝑓2(𝑧)

𝜕𝑤𝑠(𝑥, 𝑡)

𝜕𝑥
                                             (8𝑎) 

𝑢3(𝑥, 𝑡) = 𝑊(𝑥, 𝑡) = 𝑤𝑏(𝑥, 𝑡) + 𝑤𝑠(𝑥, 𝑡) + 𝑓3(𝑧) 𝑤𝑧(𝑥, 𝑡)                                                                 (8𝑏) 

 𝑓1(𝑧) =
4𝑧3

3ℎ2
, 𝑓2(𝑧) = 𝑧 −

8𝑧3

3ℎ2
  𝑎𝑛𝑑   𝑓3(𝑧) = 1 −

4𝑧2

ℎ2
                                                                       (8𝑐) 

where 𝑢,𝑤𝑏 , 𝑤𝑠 𝑎𝑛𝑑 𝑤𝑧  are the components of in-plane and transverse displacements, respectively. 

If one sets the 𝑓3(𝑧) = 0, then a third order beam theory (TBT) formulation is obtained. 

The classical and modified strains can be revealed based on the employed NSDT by: 
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𝜀𝑥 =
𝜕𝑈

𝜕𝑥
= 𝑢′ − 𝑓1𝑤𝑏

′′ + 𝑓2𝑤𝑠
′′                                                                                                                 (9𝑎) 

𝜀𝑧 =
𝜕𝑊

𝜕𝑧
= 𝑓3

′𝑤𝑧                                                                                                                                        (9𝑏) 

𝜀𝑥𝑧 =
𝛾𝑥𝑧
2
=
𝜕𝑊

𝜕𝑥
+
𝜕𝑈

𝜕𝑧
=
1

2
𝑓3( 𝑤𝑏

′ + 2𝑤𝑠
′ + 𝑤𝑧

′)                                                                                     (9𝑐) 

𝜒𝑥𝑦 = 
1

4
[−(1 + 𝑓1

′)𝑤𝑏
′′ − (1 − 𝑓2

′)𝑤𝑠
′′ − 𝑓3𝑤𝑧

′′ ]                                                                               (9𝑑) 

𝜒𝑦𝑧 =
1

2
(
𝜕𝜃𝑧
𝜕𝑦

+
𝜕𝜃𝑦

𝜕𝑧
) =

1

4
(−𝑓1

′′𝑤𝑏
′ + 𝑓2

′′𝑤𝑠
′ − 𝑓3

′𝑤𝑧
′)                                                                      (9𝑒) 

𝛾𝑥 = 𝑢′′ − 𝑓1𝑤𝑏
′′′ + 𝑓2𝑤𝑠

′′′ + 𝑓3
′𝑤𝑧

′                                                                                                            (9𝑓) 

𝛾𝑧 = −𝑓1
′𝑤𝑏

′′ + 𝑓2
′𝑤𝑠

′′ + 𝑓3
′′𝑤𝑧                                                                                                               (9𝑔) 

𝜂𝑥𝑥𝑥 =
1

5
[2𝑢′′ − 2𝑓1𝑤𝑏

′′′ − 𝑓3
′𝑤𝑏

′ + 2𝑓2𝑤𝑠
′′′ − 2𝑓3

′𝑤𝑠
′ − 𝑓3

′𝑤𝑧
′]                                                       (9ℎ) 

𝜂𝑧𝑧𝑧 =
1

5
[𝑓1

′𝑤𝑏
′′ − 𝑓3𝑤𝑏

′′ − 𝑓2
′𝑤𝑠

′′ − 2𝑓3𝑤𝑠
′′ + 2𝑓3

′′𝑤𝑧 − 𝑓3𝑤𝑧
′′]                                                       (9𝑖) 

𝜂𝑦𝑦𝑥 = 𝜂𝑦𝑥𝑦 = 𝜂𝑥𝑦𝑦 =
1

15
[−3𝑢′′ + 3𝑓1𝑤𝑏

′′′ − 𝑓3
′𝑤𝑏

′ − 3𝑓2𝑤𝑠
′′′ − 2𝑓3

′𝑤𝑠
′ − 2𝑓3

′𝑤𝑧
′]                (9𝑗) 

𝜂𝑧𝑧𝑥 = 𝜂𝑧𝑥𝑧 = 𝜂𝑥𝑧𝑧 =
1

15
[−3𝑢′′ + 3𝑓1𝑤𝑏

′′′ + 4𝑓3
′𝑤𝑏

′ − 3𝑓2𝑤𝑠
′′′ + 8𝑓3

′𝑤𝑠
′ + 8𝑓3

′𝑤𝑧
′]                (9𝑘) 

𝜂𝑥𝑥𝑧 = 𝜂𝑥𝑧𝑥 = 𝜂𝑧𝑥𝑥 =
1

15
[−4𝑓1

′𝑤𝑏
′′ + 4𝑓3𝑤𝑏

′′ + 8𝑓3𝑤𝑠
′′ + 4𝑓2

′𝑤𝑠
′′ + 4𝑓3𝑤𝑧

′′ − 3𝑓3
′′𝑤𝑧]           (9𝑙) 

𝜂𝑦𝑦𝑧 = 𝜂𝑦𝑧𝑦 = 𝜂𝑧𝑦𝑦 =
1

15
[𝑓1

′𝑤𝑏
′′ − 𝑓3𝑤𝑏

′′ − 𝑓2
′𝑤𝑠

′′ − 2𝑓3𝑤𝑠
′′ − 3𝑓3

′′𝑤𝑧 − 𝑓3𝑤𝑧
′′]                        (9𝑚) 
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𝜒𝑥𝑥 = 𝜒𝑦𝑦 = 𝜒𝑧𝑧 = 𝜒𝑥𝑧 = 𝛾𝑦 = 𝜂𝑧𝑧𝑦 = 𝜂𝑧𝑦𝑧 = 𝜂𝑦𝑧𝑧 = 𝜂𝑦𝑦𝑦 = 𝜂𝑥𝑦𝑧 = 𝜂𝑦𝑧𝑥 = 𝜂𝑧𝑥𝑦 = 𝜂𝑥𝑧𝑦

= 𝜂𝑧𝑦𝑥 = 𝜂𝑦𝑥𝑧 = 0                                                                                                            (9𝑛) 

The detailed formulations of classical and modified strain tensors based on the employed NSDT can 

be found in [50-52]. 

The stress-strain relations for metal foam microbeams can be noted by:  

{

𝜎𝑥
𝜎𝑧
𝜎𝑥𝑧

} = [
𝑄11 𝑄13 0
𝑄13 𝑄33 0
0 0 𝑄44

] {

𝜀𝑥
𝜀𝑧
2𝜀𝑥𝑧

}                                                                                                            (10𝑎) 

𝑄11(𝑧) = 𝑄33(𝑧) =
𝐸(𝑧)(1−𝑣)

(1−2𝑣)(1+𝑣)
  with Poisson's effect   (10𝑏) 

𝑄13(𝑧) =
𝑣𝐸(𝑧)

(1−2𝑣)(1+𝑣)
   with Poisson's effect (10𝑐) 

𝑄11(𝑧) = 𝑄33(𝑧) =
𝐸(𝑧)

1−𝑣2
  without Poisson's effect   (10𝑑) 

𝑄13(𝑧) =
𝑣𝐸(𝑧)

1−𝑣2
  without Poisson's effect   (10𝑒) 

𝑄44(𝑧) =
𝐸(𝑧)

2(1 + 𝑣)
                                                                                                                                      (10𝑓) 

{
𝑝𝑥
𝑝𝑧
} =

𝐸(𝑧)ℓ0
2(𝑧)

1 + 𝜈
{
𝛾𝑥
𝛾𝑧
}                                                                                                                             (10𝑔) 

{
 
 

 
 
𝜏𝑥𝑥𝑥
𝜏𝑧𝑧𝑧
𝜏𝑥𝑦𝑦
𝜏𝑥𝑧𝑧
𝜏𝑧𝑥𝑥
𝜏𝑧𝑦𝑦}

 
 

 
 

=
𝐸(𝑧)ℓ1

2(𝑧)

1 + 𝜈

{
 
 

 
 
𝜂𝑥𝑥𝑥
𝜂𝑧𝑧𝑧
𝜂𝑥𝑦𝑦
𝜂𝑥𝑧𝑧
𝜂𝑧𝑥𝑥
𝜂𝑧𝑦𝑦}

 
 

 
 

                                                                                                                (10ℎ) 

{
𝑚𝑥𝑦

𝑚𝑦𝑧
} =

𝐸(𝑧)ℓ2
2(𝑧)

1 + 𝜈
{
𝜒𝑥𝑦
𝜒𝑦𝑧

}                                                                                                                        (10𝑖) 
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Based on the displacement field of NSDT, the strain energy (𝒰) of the metal foam microbeams can 

be depicted by: 

𝒰 =
1

2
∫ [(𝑄11𝜀𝑥

2 + 2𝑄13𝜀𝑥𝜀𝑧 + 𝑄11𝜀𝑧
2 + 𝑄44𝛾𝑥𝑧

2) +
𝐸ℓ0

2

1 + 𝜈
(𝛾𝑥

2 + 𝛾𝑧
2) +

𝐸ℓ1
2

1 + 𝜈
(𝜂𝑥𝑥𝑥

2 + 𝜂𝑧𝑧𝑧
2

𝑉

+ 3𝜂𝑥𝑦𝑦
2 + 3𝜂𝑥𝑧𝑧

2 + 3𝜂𝑧𝑥𝑥
2 + 3𝜂𝑧𝑦𝑦

2) +
𝐸ℓ2

2

1 + 𝜈
(2𝜒𝑥𝑦

2 + 2𝜒𝑦𝑧
2)] 𝑑𝑉               (11) 

The potential energy of the uniformly distributed load 𝑞, axial load  𝑁0 and kinetic energy of metal 

foam microbeams are presented by: 

𝑉 = −
1

2
∫ 𝑁0 {(

𝜕𝑤𝑏
𝜕𝑥

)
2

+ (
𝜕𝑤𝑠
𝜕𝑥

)
2

+ (
𝜕𝑤𝑧
𝜕𝑥

)
2

+ 2
𝜕𝑤𝑏
𝜕𝑥

𝜕𝑤𝑠
𝜕𝑥

+ 2
𝜕𝑤𝑏
𝜕𝑥

𝜕𝑤𝑧
𝜕𝑥

+ +2
𝜕𝑤𝑠
𝜕𝑥

𝜕𝑤𝑧
𝜕𝑥

}𝑑𝑥
𝐿

0

−∫ {𝑞(𝑤𝑏+𝑤𝑠 + 𝑓3(𝑧)𝑤𝑧}𝑑𝑥
𝐿

0

                                                                                        (12) 

𝐾 =
1

2
∫[𝐼0 {(

𝜕𝑢

𝜕𝑡
)
2

+ (
𝜕𝑤𝑏
𝜕𝑡

)
2

+ (
𝜕𝑤𝑠
𝜕𝑡
)
2

+ 2(
𝜕𝑤𝑏
𝜕𝑡

) (
𝜕𝑤𝑠
𝜕𝑡
)} − 2𝐼1

𝜕𝑢

𝜕𝑡

𝜕2𝑤𝑏
𝜕𝑥𝜕𝑡

+ 𝐼2 (
𝜕2𝑤𝑏
𝜕𝑥𝜕𝑡

)

2𝐿

0

+ 2𝐽1
𝜕𝑢

𝜕𝑡

𝜕2𝑤𝑠
𝜕𝑥𝜕𝑡

+ 2𝐽2 {(
𝜕𝑤𝑏
𝜕𝑡

) (
𝜕𝑤𝑧
𝜕𝑡
) + (

𝜕𝑤𝑠
𝜕𝑡
) (
𝜕𝑤𝑧
𝜕𝑡
)} − 2𝐽3

𝜕2𝑤𝑏
𝜕𝑥𝜕𝑡

𝜕2𝑤𝑠
𝜕𝑥𝜕𝑡

+ 𝐾1 (
𝜕2𝑤𝑠
𝜕𝑥𝜕𝑡

)

2

+ 𝐾2 (
𝜕𝑤𝑧
𝜕𝑡
)
2

] 𝑑𝑥                                                                                    (13) 

where t depicts time, and the associated inertial coefficients are provided by: 

(𝐼0, 𝐼1, 𝐼2, 𝐽1, 𝐽2, 𝐽3, 𝐾1, 𝐾2) = ∫  𝜌 (1, 𝑓1, 𝑓1
2, 𝑓2, 𝑓3, 𝑓1𝑓2, 𝑓2

2, 𝑓3
2)𝑑𝑧

+
ℎ
2

−
ℎ
2

                                               (14) 

To develop the FEM model using the variation formulation, Hermite-cubic polynomial function is 

employed to present displacement functions 𝑢(𝑥, 𝑡), 𝑤𝑏(𝑥, 𝑡), 𝑤𝑠(𝑥, 𝑡) and 𝑤𝑧(𝑥, 𝑡) as: 
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𝑢(𝑥, 𝑡) =∑𝑢𝑗𝜑𝑗(𝑥)𝑒
𝑖𝜔𝑡,

4

𝑗=1

                                                                                                                        (15𝑎) 

𝑤𝑏(𝑥, 𝑡) =∑𝑤𝑏𝑗𝜑𝑗(𝑥)𝑒
𝑖𝜔𝑡,

4

𝑗=1

                                                                                                                   (15𝑏) 

𝑤𝑠(𝑥, 𝑡) =∑𝑤𝑠𝑗𝜑𝑗(𝑥)𝑒
𝑖𝜔𝑡,

4

𝑗=1

                                                                                                                    (15𝑐) 

𝑤𝑧(𝑥, 𝑡) =∑𝑤𝑧𝑗𝜑𝑗(𝑥)𝑒
𝑖𝜔𝑡,

4

𝑗=1

                                                                                                                   (15𝑑) 

where 𝜔 is the natural frequency. 

Nodal unknowns are revealed in the from of: 

𝑢𝑗 = [𝑢, 𝑢,𝑥]                                                                                                                                                   (16𝑎) 

𝑤𝑏𝑗 = [𝑤𝑏 , 𝑤𝑏,𝑥]                                                                                                                                           (16𝑏) 

𝑤𝑠𝑗 = [𝑤𝑠, 𝑤𝑠,𝑥]                                                                                                                                             (16𝑐) 

𝑤𝑧𝑗 = [𝑤𝑧, 𝑤𝑧,𝑥]                                                                                                                                            (16𝑑) 

By using the total energy (𝛱) of metal foam microbeams and Lagrange’s equations, the governing 

equations are obtained as: 

𝛱 = 𝑈 + 𝑉 − 𝐾                                                                                                                                               (17) 

 
𝜕𝛱

𝜕𝑞𝑗
−
𝜕

𝜕𝑡
(
𝜕𝛱

𝜕𝑞̇𝑗
) = 0                                                                                                                                      (18) 

where 𝑞𝑗 depicting the values of (𝑢𝑗, 𝑤𝑏𝑗, 𝑤𝑠𝑗 ,𝑤𝑧𝑗).  
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The developed FEM for flexural, elastic stability and free vibration problems are is revealed by: 

[
 
 
 
 
[𝐾11]  

[𝐾12]
𝑇

[𝐾13]
𝑇

[𝐾14]
𝑇

[𝐾12]

[𝐾22]

  [𝐾23]
𝑇

  [𝐾24]
𝑇

[𝐾13]

[𝐾23]

[𝐾33]

    [𝐾34]
𝑇  

[𝐾14]

[𝐾24]

[𝐾34]

[𝐾44]]
 
 
 
 

{
 
 

 
 
{𝑢𝑗}

{𝑤𝑏𝑗}

{𝑤𝑠𝑗}

{𝑤𝑧𝑗}}
 
 

 
 

=

{
 

 
{0}
{𝐹2}

{𝐹3}

{𝐹4}}
 

 
                                                                                      (19𝑎) 

(

 
 

[
 
 
 
 
[𝐾11]  

[𝐾12]
𝑇

[𝐾13]
𝑇

[𝐾14]
𝑇

[𝐾12]

[𝐾22]

  [𝐾23]
𝑇

  [𝐾24]
𝑇

[𝐾13]

[𝐾23]

[𝐾33]

    [𝐾34]
𝑇  

[𝐾14]

[𝐾24]

[𝐾34]

[𝐾44]]
 
 
 
 

−𝑁0

[
 
 
 
 
[0]  

[0]𝑇

[0]𝑇

[0]𝑇

[0]
[𝐺22]

  [𝐺23]
𝑇

    [𝐺24]
𝑇

[0]

[𝐺23]

[𝐺33]

    [𝐺34]
𝑇  

[0]

[𝐺24]

[𝐺34]

[𝐺44]]
 
 
 
 

)

 
 

{
 
 

 
 
{𝑢𝑗}

{𝑤𝑏𝑗}

{𝑤𝑠𝑗}

{𝑤𝑧𝑗}}
 
 

 
 

= {

{0}
{0}

{0}

{0}

}              (19𝑏) 

(

 
 

[
 
 
 
 
[𝐾11]  

[𝐾12]
𝑇

[𝐾13]
𝑇

[𝐾14]
𝑇

[𝐾12]

[𝐾22]

  [𝐾23]
𝑇

  [𝐾24]
𝑇

[𝐾13]

[𝐾23]

[𝐾33]

    [𝐾34]
𝑇  

[𝐾14]

[𝐾24]

[𝐾34]

[𝐾44]]
 
 
 
 

− 𝜔2

[
 
 
 
 
[𝑀11]  

[𝑀12]
𝑇

[𝑀13]
𝑇

[𝑀14]
𝑇

[𝑀12]

[𝑀22]

  [𝑀23]
𝑇

  [𝑀24]
𝑇

[𝑀13]

[𝑀23]

[𝑀33]

    [𝑀34]
𝑇  

[0]

[𝑀24]

[𝑀34]

[𝑀44]]
 
 
 
 

)

 
 

{
 
 

 
 
{𝑢𝑗}

{𝑤𝑏𝑗}

{𝑤𝑠𝑗}

{𝑤𝑧𝑗}}
 
 

 
 

= {

{0}
{0}

{0}
{0}

}        (19𝑐) 

where [𝐾𝑘𝑙], [𝑀𝑘𝑙], [𝐺𝑘𝑙] matrices and 𝐹𝑘 nodal force vector can be found in [50-53].  

The kinematic boundary conditions can be provided by: 

𝑆𝑖𝑚𝑝𝑙𝑦 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑆𝑆): 𝑢 = 0,𝑤𝑏 = 0,𝑤𝑠 = 0,𝑤𝑧 = 0 𝑎𝑡 𝑥 = 0; 𝑤𝑏 = 0,𝑤𝑠 = 0,𝑤𝑧 = 0 𝑎𝑡 𝑥 = 𝐿 

𝐶𝑙𝑎𝑚𝑝𝑒𝑑 (𝐶𝐶): 𝑢 = 𝑤𝑏 = 𝑤𝑏,𝑥 = 𝑤𝑠 = 𝑤𝑠,𝑥 = 𝑤𝑧 = 𝑤𝑧,𝑥 = 0 𝑎𝑡 𝑥 = 0 𝑎𝑛𝑑 𝑥 = 𝐿

3. Numerical Examples 

Metal foam microbeams with three different porosity distribution models, whose materials properties 

are 𝐸𝑚𝑎𝑥 = 200 𝐺𝑃𝑎 , 𝜈 = 0.3, 𝜌𝑚𝑎𝑥 = 7800 𝑘𝑔/𝑚3, ℓ𝑚𝑎𝑥 = 17.6 𝜇𝑚 [9], are analyzed. The 

effects of porosity distribution (UPD, NUPD1 and NUPD2), porosity parameters, Poisson’s ratio, 

small size and boundary conditions (BC) on their displacements, frequencies and buckling loads are 

studied. Three MLSPs of MSGT are the same  (ℓ = ℓ0 = ℓ1 = ℓ2) and two cases are considered: 
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constant value (ℓ = ℓ𝑚𝑎𝑥) and variable one (ℓ ≠ ℓ𝑚𝑎𝑥). The necessary of including three MLSPs in 

the MSGT rather than only in the MCST and effects of variable MLSP on the responses of metal 

foam microbeams are discussed in details. For convenience, the dimensionless mid-span deflections 

(DMDs), fundamental frequencies (DFFs) and critical buckling loads (DCBLs) are normalized as 

𝑤̅ = 𝑤
103𝐸𝑚𝑎𝑥ℎ

3

12𝑞𝐿4
,  λ̅ =

𝜔𝐿2

ℎ
√
𝜌𝑚𝑎𝑥

𝐸𝑚𝑎𝑥
 and 𝑁̅𝑐𝑟 = 𝑁0

12𝐿2

𝐸𝑚𝑎𝑥ℎ3
. 

3.1 Verification studies  

Since there are no available results for metal foam microbeams with various BCs using MSGT and 

NSDT. Thus, two verification studies are carried out: (a) metal foam macro-beams with various BCs 

using NSDT and (b) simply-support metal foam microbeams with MSGT and sinusoidal beam theory 

(SBT). 

Tables 1-3 present the maximum deflections, fundamental frequencies and critical buckling loads of 

metal foams beams. The obtained results are compared with those by Fang et al. [13] and Chen et al. 

[5] who used NSDT and FSDT. It should be noted that the results with Poisson’s effect given in Table 

3 are obtained based on the constitutive relation 𝑄11 =
𝐸(𝑧)(1−𝜈)

(1+𝜈)(1−2𝜈)
  for NSDT and 𝑄11 =

𝐸(𝑧)

1−𝜈2
 for 

TBT. The present results agree well with those using IGA and Ritz method. Some new results from 

TBT and NSDT are given as benchmark for future study in Tables 3 and 4.  

To verify for metal foam microbeams with the size effect, Tables 5 and 6 show the comparison of 

deflections and natural frequencies predicted by the present approach and Wang et al. [42] using the 

SBT. For comparison purpose, the constitutive relation 𝑄11 =
𝐸(𝑧)(1−𝜈)

(1+𝜈)(1−2𝜈)
  for both NSDT and TBT 

in case of with Poisson’s effect. An excellent agreement is found for all values of size effect 

(ℎ/ℓ)  and the porosity parameters (distribution and coefficients) confirming the validity of the 

present approach for the analysis of metal foam microbeams. Due to different theory, there is the 
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slightly variation in results of two models (TBT, SBT) and their results with NSDT, which includes 

the normal strain effect. Fig. 2 plots the results for three types of porosity distribution with respect to 

size effect (ℎ/ℓ) and porosity coefficient (𝑒0). As 𝑒0 increases and ℎ/ℓ decreases, the DFFs/DCBLs 

decrease and DMDs increase. The greatest DMDs are for UPD distribution and the smallest one is 

for NUPD1 one. If one considers the inclusion of Poisson's effect, this leads to decrease displacements 

and increase buckling loads and frequencies. It should be noted that the results without Poisson’s 

effect for microbeams agree better with those from experiments [55]. Thus, some new results without 

this effect for both MSGT and MCST are given in Tables 5-7 for the future reference. The 

corresponding ratios of the results of C-C metal foam microbeams versus ℎ/ℓ are plotted in Fig. 3. 

Regardless of the porosity distribution, they are the same trend and nearly identical. At micron scale 

(ℎ/ℓ = 1), they are around 2.35, 1.55 and 0.42 for DCBL, DFF and DMD, respectively and gradually 

reach 1 as (ℎ/ℓ = 20). This confirms the importance of including three MLSPs in the MSGT rather 

than only in the MCST on the analysis of metal foam microbeams, especially at very small size ℎ/ℓ ∈

[0, 20]. 

3.2 Parameter studies 

In this section, effects of variable MLSP on the behaviours of metal foam microbeams are examined 

in details. It can be observed from Tables 8-10 that the results of variable MLSP (ℓ ≠ ℓ𝑚𝑎𝑥)  have 

smaller DMDs and higher DFFs/DCBLs than the constant one (ℓ = ℓ𝑚𝑎𝑥). In other words, the size-

dependent of variable MLSP is stronger than constant one and depends on porosity distribution 

especially when ℎ/ℓ = 1. When the ratios of DFFs obtained for different ℎ/ℓ ratios are examined, it 

can be determined that with the increase of the porosity parameter, they do not change in the analysis 

with a constant MLSP for UPD. However, it is observed that they decrease with the increase of the 

porosity parameter for NUPD1. This decrease becomes evident even with an increment in the aspect 

ratio. This observation is valid for all boundary conditions. Moreover, in the case of using variable 
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MLSP, it is found that the ratios of DFFs obtained at different ℎ/ℓ ratios decrease in contrast for UPD 

with constant MSLP. Same observation is seen for the results produced by NUPD1. Based on the 

evaluations performed for the computational results of DMD and DCBL studies, it is revealed that 

all the statements explained above are also valid for these mechanical behaviours. 

At this size, the ratios of DMD are approximately 2.1, 1.7 and 1.65 for UPD, NUPD2 and NUPD1 as 

revealed in Fig. 4. These ratios reach unity as ℎ/ℓ increase. It can be seen in Fig. 4 that DMDs increase 

and DCBLs/DFFs decrease with the rise of porosity coefficient (𝑒0) and ℎ/ℓ. This phenomenon can 

be explained by the increasing porosity coefficient leads to decrease both stiffness and density 

however, the reduction of the first one is more than second one. The variation of results among three 

porosity distributions is evident as 𝑒0 increases. UPD metal foam microbeam has the largest DMDs 

and smallest DFFs/DCBLs. When the numerical results obtained for DMD, DCBL and DFF are 

examined, it is observed that the effect of variable MLSP is more dominant in the results of DMD 

and DCBL than those of DFF. With the increase in ℎ/ℓ value, the ratio between the results of MSGT 

and MCST approaches 1, but numerical analysis associated with a strong size effect draws attention 

to the fact that there is a remarkable difference between the results produced by these two nonlocal 

theories. For the three metal foam microbeam models, first vibration mode shapes are depicted in Fig. 

5. While there is axial mode is observed for constant MLSP (ℓ = ℓ𝑚𝑎𝑥), strong coupling between 

shear and bending components for variable one. 

5. Conclusion 

This paper investigates microbeams made of metal foams accompanied with various porosity models 

using the TBT and quasi-3D beam theories based on the MSGT. The governing equations are derived 

from Hamilton’s principle and two nodes beam element is used to solve this problem. The present 

approach is validated by comparing the results with those available in the literature. Some important 
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effects related to small size, porosity coefficient, Poisson’s ratio, variable MLSPs and end conditions 

on the behaviours of metal foam microbeams are discussed. Especially for very small scale (ℎ/ℓ ∈

[0, 20]), it is necessary to include three variable MLSPs in the MSGT for accuracy study of metal 

foam microbeams. Moreover, the effects of variable MLSP on structural responses of metal foam 

microbeams are significant for all cases in this paper. Especially, the ratios of DFFs obtained for 

different ℎ/ℓ ratios are constant with the increasing of porosity parameter for UPD with constant 

MLSP. However, if one employs a variable MLSP for UPD, the ratio mentioned above changes with 

a change in the porosity parameter. Same statement can be provided for the results computed based 

on DMD and DCBL analysis. It is noteworthy that UPD metal foam microbeam has the largest DMDs 

and smallest DFFs/DCBLs for all cases. Some new results of these structures for both models (MCST, 

MSGT with constant and variable MLSP) and with/without Poison’s effect can be used for future 

studies.  
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Table 1: Comparison the maximum displacements of metal foam beams under uniform load with 

various 𝐿/ℎ and BCs (𝑒0  = 0.5). 

BCs 
Porosity 

distribution 
Reference 𝐿/ℎ =5 10 20 40 

CF 

UPD 
Fang et al. [13] (Q3D) 0.00007 0.00114 0.01813 0.28976 

Present (Q3D) 0.00007 0.00114 0.01811 0.28934 

NUPD1 
Fang et al. [13] (Q3D) 0.00006 0.00092 0.01466 0.23422 

Present (Q3D) 0.00006 0.00092 0.01465 0.23384 

NUPD2 
Fang et al. [13] (Q3D) 0.00007 0.00111 0.01765 0.28216 

Present (Q3D) 0.00007 0.00111 0.01764 0.28176 

CC 

UPD Present (Q3D) 0.000002 0.00003 0.00039 0.00605 

NUPD1 Present (Q3D) 0.000002 0.00002 0.00032 0.00490 

NUPD2 Present (Q3D) 0.000002 0.00003 0.00038 0.00589 

CS 

UPD Present (Q3D) 0.000004 0.00005 0.00079 0.01257 

NUPD1 Present (Q3D) 0.000003 0.00004 0.00064 0.01017 

NUPD2 Present (Q3D) 0.000004 0.00005 0.00077 0.01217 

SS 

UPD Present (Q3D) 0.000008 0.00012 0.00190 0.03026 

NUPD1 Present (Q3D) 0.000007 0.00010 0.00154 0.02447 

NUPD2 Present (Q3D) 0.000008 0.00012 0.00185 0.02947 
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Table 2: Comparison the natural frequencies for metal foam beams with various BCs (𝐿/ℎ = 10, 𝑒0= 

0.5) 

BCs 
Porosity 

distribution 
Reference 

Natural frequencies 

Mode 1 Mode 2 Mode 3 

CF 

UPD 
Fang et al. [13] (Q3D) 0.0859 0.5152 1.3564 

Present (Q3D) 0.0859 0.5152 1.3565 

NUPD1 
Fang et al. [13] (Q3D) 0.0875 0.5649 1.3794 

Present (Q3D) 0.0953 0.5649 1.4379 

NUPD2 
Fang et al. [13] (Q3D) 0.0870 0.5216 1.3717 

Present (Q3D) 0.0870 0.5215 1.3711 

CC 

UPD 
Fang et al. [13] (Q3D) 0.51848 1.3516 2.4087 

Present (Q3D) 0.5186 1.3518 2.4102 

NUPD1 
Fang et al. [13] (Q3D) 0.5653 1.4541 2.5424 

Present (Q3D) 0.5654 1.4543 2.5441 

NUPD2 
Fang et al. [13] (Q3D) 0.5248 1.3669 2.4334 

Present (Q3D) 0.5248 1.3667 2.4339 

CS 

UPD 
Fang et al. [13] (Q3D) 0.3672 1.1218 1.4168 

Present (Q3D) 0.3673 1.1218 2.1739 

NUPD1 
Fang et al. [13] (Q3D) 0.4043 1.2159 1.4379 

Present (Q3D) 0.4043 1.2160 2.3192 

NUPD2 
Fang et al. [13] (Q3D) 0.3719 1.1350 1.4342 

Present (Q3D) 0.3729 1.1352 2.1946 

SS 

UPD Present (Q3D) 0.2384 0.9114 1.4168 

NUPD1 Present (Q3D) 0.2639 0.9969 1.4379 

NUPD2 Present (Q3D) 0.2414 0.9209 1.4294 
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Table 3: Comparison the critical buckling loads of metal foam beams with different BCs (𝑒0= 0.5)

0 1
110 2

110

0.5
( ; )

1

x
cr

N E h
P A

A v
 

   

BCs 
Porosity 

distribution 
Reference 

With Poisson’s effect Without Poisson’s effect 

𝐿/ℎ =5 10 20 𝐿/ℎ =5 10 20 

CF 

UPD 
Present (TBT) 0.01057 0.00270 0.0006792 0.00943 0.00240 0.0006038 

Present (Q3D)  0.01076 0.00272 0.0006825 0.00952 0.00241 0.0006052 

NUPD1 

Chen et al. [5] (FBT) - 0.00334 0.0008402 - - - 

Present (TBT) 0.01295 0.00333 0.0008400 0.01563 0.00297 0.0007469 

Present (Q3D) 0.01317 0.00336 0.0008440 0.01167 0.00298 0.0007485 

NUPD2 

Chen et al. [5] (FBT) - 0.00276 0.0006939 - - - 

Present (TBT) 0.01080 0.00276 0.0006934 0.00963 0.00246 0.0006169 

Present (Q3D) 0.01111 0.00281 0.0007054 0.00977 0.00248 0.0006215 

CC 

UPD 
Present (TBT) 0.11841 0.03894 0.0105739 0.10912 0.03503 0.0094292 

Present (Q3D) 0.12321 0.03993 0.0107076 0.11169 0.03551 0.0094887 

NUPD1 

Chen et al. [5] (FBT) - - 0.0130109 - - - 

Present (TBT) 0.13151 0.04643 0.0129526 0.12215 0.04192 0.0115632 

Present (Q3D) 0.13508 0.04747 0.0131092 0.12408 0.04243 0.0116328 

NUPD2 

Chen et al. [5] (FBT) - - 0.0108060 - - - 

Present (TBT) 0.12050 0.03973 0.0107997 0.11108 0.03574 0.0096308 

Present (Q3D) 0.12599 0.04112 0.0110561 0.11391 0.03638 0.0097380 

CS 

UPD 
Present (TBT) 0.07175 0.02100 0.0054849 0.06519 0.01876 0.0048836 

Present (Q3D) 0.07382 0.02129 0.0055200 0.06630 0.01893 0.0048993 

NUPD1 

Chen et al. [5] (FBT) - - 0.0067559 - - - 

Present (TBT) 0.08302 0.02547 0.0067520 0.07588 0.02283 0.0060153 

Present (Q3D) 0.08487 0.02579 0.0067936 0.07688 0.02299 0.0060339 

NUPD2 

Chen et al. [5] (FBT) - - 0.0056383 - - - 

Present (TBT) 0.07357 0.02159 0.0056446 0.06686 0.01932 0.0050259 

Present (Q3D) 0.07614 0.02208 0.0057345 0.06817 0.01954 0.0050630 

SS 

UPD 
Present (TBT) 0.03894 0.01057 0.0027017 0.03503 0.00943 0.0024053 

Present (Q3D) 0.03937 0.01061 0.0027042 0.03530 0.00945 0.0024050 

 

NUPD1 

Chen et al. [5] (FBT) - - 0.0033387 - - - 

Present (TBT) 0.04643 0.01295 0.0033349 0.04198 0.01156 0.0029763 

Present (Q3D) 0.04686 0.01299 0.0033378 0.04219 0.01159 0.0029693 

NUPD2 

Chen et al. [5] (FBT) - - 0.0028688 - - - 

Present (TBT) 0.03973 0.01080 0.0027601 0.03574 0.00963 0.0024555 

Present (Q3D) 0.04058 0.01096 0.0027951 0.03617 0.00970 0.0024697 
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Table 4: DFFs and DMDs of metal foam beams with different BCs (𝑒0= 0.5).  

BCs 
Porosity 

distribution 
Reference 

DFFs DMD 

𝐿/ℎ =5 10 20 𝐿/ℎ =5 10 20 

CF 

UPD 
Present (TBT)  0.8877 0.9082 0.9136 19.6743 19.0856 18.9366 

Present (Q3D) 0.8934 0.9112 0.9155 19.5032 18.9821 18.8659 

NUPD1 
Present (TBT) 0.9790 1.0080 1.0158 16.1231 15.4788 15.3154 

Present (Q3D) 0.9852 1.0112 1.0178 15.9839 15.3968 15.2590 

NUPD2 
Present (TBT) 0.8968 0.9179 0.9235 19.2654 18.6823 18.5347 

Present (Q3D) 0.9046 0.9231 0.9277 19.0091 18.4897 18.3725 

CC 

UPD 
Present (TBT) 4.6994 5.4597 5.7260 0.5857 0.4426 0.4059 

Present (Q3D) 4.7612 5.5001 5.7502 0.5723 0.4369 0.4027 

NUPD1 
Present (TBT) 4.9476 5.9530 6.3338 0.5278 0.3717 0.3315 

Present (Q3D) 5.0098 5.9966 6.3604 0.5164 0.3670 0.3290 

NUPD2 
Present (TBT) 4.7395 5.5140 5.7864 0.5754 0.4338 0.3974 

Present (Q3D) 4.8083 5.5662 5.8246 0.5608 0.4264 0.3924 

CS 

UPD 
Present (TBT) 3.5547 3.8801 3.9793 1.0111 0.8670 0.8305 

Present (Q3D) 3.5839 3.8954 3.9880 0.9932 0.8600 0.8269 

NUPD1 
Present (TBT) 3.8246 4.2714 4.4145 0.8724 0.7146 0.6746 

Present (Q3D) 3.8558 4.2884 4.4241 0.8578 0.7090 0.6717 

NUPD2 
Present (TBT) 3.5871 3.9199 4.0217 0.9919 0.8491 0.8130 

Present (Q3D) 3.6236 3.9446 4.0405 0.9710 0.8385 0.8055 

SS 

UPD 
Present (TBT) 2.4121 2.5268 2.5588 2.1686 2.0177 1.9799 

Present (Q3D) 2.4167 2.5281 2.5591 2.1491 2.0129 1.9788 

 

NUPD1 

Present (TBT) 2.6379 2.7973 2.8430 1.8106 1.6449 1.6035 

Present (Q3D) 2.6434 2.7990 2.8434 1.7956 1.6413 1.6026 

NUPD2 
Present (TBT) 2.4319 2.5523 2.5860 2.1250 1.9754 1.9380 

Present (Q3D) 2.4432 2.5604 2.5931 2.9070 1.9610 1.9269 
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Table 5. Comparison the displacements of S-S metal foam microbeams under uniform load for 

various  ℎ/ℓ (𝑒0 = 0.5, 𝐿/ℎ = 10)   

Porosity 

distribution 
Reference Theory 

Poisson’s  

effect 

ℎ/ℓ (𝑒0 = 0.5) 𝑒0 (ℎ/ℓ = 1) 

ℎ/ℓ = 1 4 8 0.1 0.4 0.8 

UPD 

Wang et al. [42]  

(SBT, 𝜀𝑧 = 0) 
MSGT 

x 
1.1556 8.1887 11.7705 0.8174 1.0426 1.8209 

Present  

(TBT, 𝜀𝑧 = 0) 

MSGT 
x 1.1717 8.2326 11.7883 0.8288 1.0571 1.8463 

- 1.2034 10.1377 16.1618 0.8512 1.0857 1.8963 

MCST 
x 3.3278 11.5119 13.1330 2.3538 3.0023 5.2438 

- 3.6088 15.6761 18.8248 2.5525 3.2558 5.6866 

Present  

(𝜀𝑧 ≠ 0) 

MSGT 
x 1.5577 10.8133 15.4110 1.1018 1.4054 2.4546 

- 1.5660 11.4029 16.8476 1.1076 1.4128 2.4677 

MCST 
x 3.5481 14.3302 16.8976 2.5096 3.2010 5.5910 

- 3.6191 15.6631 18.7895 2.5598 3.2652 5.7029 

NUPD1 

Wang et al. [42]  

(SBT, 𝜀𝑧 = 0) 
MSGT 

x 
1.0925 7.1132 9.8378 0.8135 1.0061 1.4743 

Present  

(TBT, 𝜀𝑧 = 0) 

MSGT 
x 1.1074 7.1532 9.8512 0.8248 1.0198 1.4946 

- 1.1432 8.9510 13.5942 0.8477 1.0514 1.5526 

MCST 
x 3.0736 9.6401 10.8184 2.3348 2.8482 4.0305 

- 3.3753 13.2266 15.5028 2.5368 3.1176 4.4889 

Present  

(𝜀𝑧 ≠ 0) 

MSGT 
x 1.4741 9.3808 12.8476 1.0967 1.3571 1.9920 

- 1.4835 9.9431 14.0816 1.1027 1.3654 2.0074 

MCST 
x 3.3107 12.0711 13.9192 2.4932 3.0599 4.3907 

- 3.3874 13.2240 15.4783 2.5443 3.1282 4.5081 

NUPD2 

Wang et al. [42]  

(SBT, 𝜀𝑧 = 0) 
MSGT 

x 
1.1207 7.9842 11.5082 0.8162 1.0244 1.5743 

Present  

(TBT, 𝜀𝑧 = 0) 

MSGT 
x 1.1354 8.0254 11.5248 0.8276 1.0382 1.5907 

- 1.1659 9.8755 15.7925 0.8501 1.0664 1.6278 

MCST 
x 3.2351 11.2527 12.8532 2.3493 2.9510 4.6500 

- 3.5068 15.3154 18.4188 2.5484 3.2011 4.9945 

Present  

(𝜀𝑧 ≠ 0) 

MSGT 
x 1.5082 10.4649 14.9194 1.1003 1.3797 2.1045 

- 1.5164 11.0621 16.3846 1.1061 1.3871 2.1157 

MCST 
x 3.4408 13.8823 16.3656 2.5053 3.1435 4.8741 

- 3.5137 15.2458 18.3012 2.5558 3.2088 4.9878 
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Table 6. Comparison the fundamental frequencies of S-S metal foam microbeams for various 

 ℎ/ℓ, 𝑒0(𝐿/ℎ = 10). 

Porosity 

distribution 
Reference Theory 

Poisson’s 

effect 

ℎ/ℓ (𝑒0 = 0.5) 𝑒0 (ℎ/ℓ = 1) 

ℎ/ℓ = 1 4 8 0.1 0.4 0.8 

UPD 

Wang et al. 

[42]  

(SBT, 𝜀𝑧 = 0) 

MSGT x 36.5809 13.7403 11.4598 39.8889 37.5344 32.6498 

Present  

(TBT, 𝜀𝑧 = 0) 

MSGT 
x 36.3244 13.7029 11.4510 39.6093 37.2712 32.4209 

- 35.8432 12.3489 9.7802 39.0846 36.7775 31.9914 

MCST 
x 21.5565 11.5882 10.8489 23.5059 22.1184 19.2400 

- 20.7005 9.9310 9.0621 22.5725 21.2401 18.4760 

Present  

(𝜀𝑧 ≠ 0) 

MSGT 
x 31.4697 11.9448 10.0057 34.3155 32.2900 28.0879 

- 31.3871 11.6340 9.5723 34.2255 32.2053 28.0142 

MCST 
x 20.8538 10.3765 9.5556 22.7397 21.3974 18.6128 

- 20.6543 9.9285 9.0647 22.5221 21.1926 18.4347 

NUPD1 

Wang et al. 

[42]  

(SBT, 𝜀𝑧 = 0) 

MSGT x 37.6097 14.7371 12.5299 39.9812 38.2000 36.2565 

Present  

(TBT, 𝜀𝑧 = 0) 

MSGT 
x 37.3519 14.6950 12.5212 39.7027 27.9378 36.0045 

- 36.7617 13.1372 10.6596 39.1618 37.3641 35.3264 

MCST 
x 22.4217 12.6581 11.9482 23.5998 22.7024 21.9257 

- 21.3962 10.8072 9.9818 22.6412 21.6996 20.7761 

Present  

(𝜀𝑧 ≠ 0) 

MSGT 
x 32.3460 12.8222 10.9563 34.3940 32.8567 31.1692 

- 32.2435 12.4563 10.4676 34.3010 32.7573 31.0495 

MCST 
x 21.5845 11.3035 10.5260 22.8135 21.8825 20.9942 

- 21.3440 10.8024 9.9845 22.5898 21.6477 20.7222 

NUPD2 

Wang et al. 

[42]  

(SBT, 𝜀𝑧 = 0) 

MSGT x 37.1428 13.9141 11.5888 39.9161 37.8641 35.1080 

Present  

(TBT, 𝜀𝑧 = 0) 

MSGT 
x 36.8730 13.8712 11.5750 39.6364 37.5941 34.8067 

- 36.3786 12.5049 9.8854 39.1087 37.0890 34.3696 

MCST 
x 21.8500 11.7145 10.9605 23.5279 22.3024 20.3755 

- 20.9859 10.0417 9.1564 22.5900 21.4131 19.6573 

Present  

(𝜀𝑧 ≠ 0) 

MSGT 
x 31.9719 12.1389 10.1666 34.3392 32.5838 30.2890 

- 31.8813 11.8075 9.7029 34.2485 32.4939 30.1876 

MCST 
x 21.1707 10.5399 9.7071 22.7587 21.5892 19.9067 

- 20.9527 10.0595 9.1812 22.5397 21.3727 19.6706 
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Table 7. The critical buckling loads of S-S metal foam microbeams under point and uniform load 

for various  ℎ/ℓ, 𝑒0(𝐿/ℎ = 10)   

Porosity 

distribution 
Reference Theory 

Poisson’s 

effect 

ℎ/ℓ (𝑒0 = 0.5) 𝑒0 (ℎ/ℓ = 1) 

ℎ/ℓ = 1 4 8 𝑒0=0.1 0.4 0.8 

UPD 

Present  

(TBT, 𝜀𝑧 = 0) 

MSGT 
x 109.5788 15.5951 10.8908 154.9247 121.4588 69.5400 

- 106.6972 12.6670 7.9459 150.8506 118.2648 67.7113 

MCST 
x 38.6030 11.1538 9.7758 54.5777 42.7881 24.4979 

- 35.6000 8.1931 6.8221 50.3320 39.4596 22.5922 

Present  

(𝜀𝑧 ≠ 0) 

MSGT 
x 82.4275 11.8744 8.3319 116.5376 91.3639 52.3095 

- 81.9930 11.2613 7.6222 115.9233 90.8823 52.0337 

MCST 
x 36.1978 8.9607 7.5988 51.1771 40.1221 22.9715 

- 35.4913 8.1992 6.8346 50.1783 39.3391 22.5232 

NUPD1 

Present  

(TBT, 𝜀𝑧 = 0) 

MSGT 
x 115.0899 17.9469 13.0292 155.6770 125.9239 85.9403 

- 112.3358 14.3459 9.4452 151.4676 122.1469 82.7361 

MCST 
x 41.7973 13.3164 11.8637 55.0211 45.1037 31.8749 

- 38.0637 9.7089 8.2822 50.6447 41.2096 28.6221 

Present  

(𝜀𝑧 ≠ 0) 

MSGT 
x 87.1265 13.6866 9.9917 117.0802 94.6343 64.4894 

- 86.5721 12.9138 9.1175 116.4443 94.0597 63.9936 

MCST 
x 38.7939 10.6350 9.2219 51.5129 41.9739 29.2521 

- 37.9204 9.7095 8.2945 50.4844 41.0618 28.4938 

NUPD2 

Present  

(TBT, 𝜀𝑧 = 0) 

MSGT 
x 113.0899 15.9980 11.1398 155.1459 123.6800 80.7273 

- 110.1305 13.0036 8.1317 151.0465 120.4109 78.8882 

MCST 
x 39.7099 11.4106 9.9885 54.6823 43.5329 27.6281 

- 36.6358 8.3861 6.9725 50.4123 40.1342 25.7243 

Present  

(𝜀𝑧 ≠ 0) 

MSGT 
x 85.1384 12.2700 8.6062 116.7020 93.0704 61.0199 

- 84.6786 11.6084 7.8375 116.0832 92.5693 60.6980 

MCST 
x 37.3278 9.2497 7.8457 51.2641 40.8577 26.3531 

- 36.5569 8.4236 7.0168 50.2584 40.0301 25.7550 
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Table 8. DFFs of the metal foam microbeams for various  𝑒0, 𝐿/ℎ, ℎ/ℓ and BCs 

𝐿/ℎ 
Porosity 

distribution ℎ/ℓ 
S-S C-F C-C 

𝑒0 =0.1 0.5 0.8 0.1 0.5 0.8 0.1 0.5 0.8 

MSGT (ℓ = ℓ𝑚𝑎𝑥) 

5 

UPD 

1 8.4140 7.7162 6.8870 3.6040 3.3051 2.9500 19.1581 17.5693 15.6813 

2 5.2613 4.8250 4.3065 1.9965 1.8310 1.6342 11.0139 10.1005 9.0151 

8 2.8802 2.6414 2.3575 1.0709 0.9821 0.8766 5.7833 5.3037 4.7338 

NUPD1 

1 8.4167 7.8310 7.4440 3.6139 3.4062 3.2883 19.1644 17.8308 16.9496 

2 5.2892 5.0594 4.9856 2.0058 1.9120 1.8761 11.0993 10.7567 10.7669 

8 2.9117 2.8636 2.8988 1.0834 1.0708 1.0933 5.8264 5.6088 5.4819 

20 

UPD 

1 10.0118 9.1815 8.1948 3.6126 3.3130 2.9569 22.8645 20.9683 18.7150 

2 5.5824 5.1194 4.5693 2.0102 1.8435 1.6454 12.7062 11.6525 10.4003 

8 3.0501 2.7971 2.4965 1.0924 1.0018 0.8942 6.8748 6.3047 5.6272 

NUPD1 

1 10.0288 9.4041 9.0344 3.6186 3.3929 3.2595 22.9203 21.5715 20.8013 

2 5.6058 5.3319 5.2215 2.0186 1.9196 1.8794 12.7642 12.1626 11.9339 

8 3.0880 3.0666 3.1577 1.1061 1.0988 1.1321 6.9575 6.8907 7.0612 

MSGT (ℓ ≠ ℓ𝑚𝑎𝑥) 

5 

UPD 

1 8.3930 6.0175 3.8084 3.3906 2.2919 1.4412 18.7923 12.6761 7.9338 

2 5.0133 3.6843 2.6779 1.9005 1.3886 1.0017 10.4763 7.6180 5.4540 

8 2.8512 2.5186 2.1945 1.0595 0.9339 0.8124 5.7168 5.0187 4.3503 

NUPD1 

1 8.3964 6.9632 6.2456 3.4173 2.6216 2.3409 18.8500 15.7229 14.4389 

2 5.0679 4.2013 3.9696 1.9173 1.5732 1.4802 10.6963 9.1136 8.6797 

8 2.8857 2.7742 2.7962 1.0730 1.0352 1.0536 5.7766 5.4235 5.2325 

20 

UPD 

1 9.4227 6.3870 4.0396 3.3996 2.3023 1.4536 21.5149 14.5624 9.1830 

2 5.3187 3.9065 2.8374 1.9147 1.4041 1.0178 12.1004 8.8633 6.4146 

8 3.0192 2.6665 2.3233 1.0813 0.9545 0.8313 6.8034 6.0016 5.2243 

NUPD1 

1 9.4630 7.1879 6.4034 3.4141 2.5922 2.3088 21.6573 16.5624 14.7871 

2 5.3531 4.3794 4.1262 1.9271 1.5746 1.4825 12.1975 10.0051 9.4267 

8 3.0587 2.9669 3.0504 1.0955 1.0626 1.0933 6.8913 6.6643 6.8116 
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Table 9. DCBLs of the metal foam microbeams for various  𝑒0, 𝐿/ℎ, ℎ/ℓ and BCs  

𝐿/ℎ 
Porosity 

distribution ℎ/ℓ 
S-S C-F C-C 

𝑒0 =0.1 0.5 0.8 0.1 0.5 0.8 0.1 0.5 0.8 

MSGT (ℓ = ℓ𝑚𝑎𝑥) 

5 

UPD 

1 107.8373 76.2738 48.4042 30.1038 21.2925 13.5125 366.7850 259.4285 164.6364 

2 33.5771 23.7492 15.0715 9.2964 6.5754 4.1728 112.4131 79.5103 50.4582 

8 10.0603 7.1157 4.5157 2.7251 1.9275 1.2232 32.2435 22.8060 14.4729 

NUPD1 

1 108.7205 82.3297 62.0275 30.2497 22.5304 16.6875 372.8811 295.2095 234.3500 

2 33.9436 26.1653 20.2949 9.3808 7.1611 5.4907 114.1473 90.1331 71.9865 

8 10.2807 8.3596 6.8163 2.7914 2.3043 1.9301 32.7162 25.4589 19.3438 

20 

UPD 

1 118.1943 83.5993 53.0531 30.0011 21.2199 13.4664 474.2265 335.4223 212.8630 

2 36.7443 25.9894 16.4932 9.3068 6.5827 4.1775 146.9083 103.9089 65.9418 

8 10.9677 7.7575 4.9230 2.7628 1.9541 1.2401 43.4085 30.7030 19.4845 

NUPD1 

1 118.5980 87.7100 64.4961 30.0980 22.2401 16.3415 476.4162 354.4231 262.1758 

2 37.0542 28.1947 21.5426 9.3842 7.1360 5.4482 148.2327 113.1244 86.7138 

8 11.2425 9.3251 7.8780 2.8324 2.3516 1.9904 44.4663 36.7226 30.7818 

MSGT (ℓ ≠ ℓ𝑚𝑎𝑥) 

5 

UPD 

1 95.5302 36.9380 11.7866 26.6548 10.2697 3.2532 324.6126 124.6600 39.2254 

2 30.4864 13.8477 5.8274 8.4310 3.8046 1.5881 101.8412 45.6766 18.9137 

8 9.8586 6.4690 3.9125 2.6691 1.7480 1.0558 31.5620 20.6197 12.4303 

NUPD1 

1 97.7536 49.7706 32.0255 27.0048 13.2744 8.4255 341.0745 192.3514 129.9320 

2 31.1783 18.0759 12.8853 8.5649 4.8417 3.4218 106.1242 65.0071 47.0004 

8 10.0985 7.8467 6.3407 2.7384 2.1553 1.7967 32.1902 23.9169 17.7531 

20 

UPD 

1 104.6949 40.4539 12.8910 26.5711 10.2575 3.2625 419.9742 162.0304 51.4707 

2 33.3550 15.1327 6.3593 8.4458 3.8253 1.6042 133.2915 60.2998 25.2462 

8 10.7470 7.0500 4.2635 2.7068 1.7749 1.0730 42.5226 27.8614 16.8337 

NUPD1 

1 105.5947 51.2424 32.4004 26.7859 12.9735 8.1973 425.1576 208.6001 132.3565 

2 33.7881 19.0208 13.4524 8.5526 4.8039 3.3942 135.3488 76.5664 54.1745 

8 11.0298 8.7287 7.3518 2.7784 2.2002 1.8570 43.6277 34.3673 28.6750 
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Table 10. DMDs of the metal foam microbeams for various  𝑒0, 𝐿/ℎ, ℎ/ℓ and BCs 

𝐿/ℎ 
Porosity 

distribution 
ℎ/ℓ 

S-S C-F C-C 

𝑒0 =0.1 0.5 0.8 0.1 0.5 0.8 0.1 0.5 0.8 

MSGT (ℓ = ℓ𝑚𝑎𝑥) 

5 

UPD 

1 1.1859 1.6767 2.6421 10.1018 14.2822 22.5054 0.2745 0.3881 0.6115 

2 3.8097 5.3862 8.4875 32.8993 46.5136 73.2946 0.9021 1.2754 2.0097 

8 12.7228 17.9878 28.3445 114.1889 161.4425 254.3956 3.2599 4.6089 7.2625 

NUPD1 

1 1.1765 1.5550 2.0661 10.0467 13.4458 18.0925 0.2700 0.3409 0.4295 

2 3.7689 4.8915 6.3098 32.5919 42.6196 55.4859 0.8881 1.1231 1.4047 

8 12.4484 15.2963 18.7330 111.5177 135.3998 162.3473 3.2115 4.1193 5.4118 

20 

UPD 

1 1.0871 1.5370 2.4219 10.1911 14.4084 22.7043 0.2142 0.3029 0.4773 

2 3.4968 4.9439 7.7904 32.9122 46.5319 73.3234 0.6937 0.9808 1.5455 

8 11.7152 16.5632 26.0998 111.4272 157.5379 248.2429 2.3692 3.3497 5.2783 

NUPD1 

1 1.0834 1.4650 1.9924 10.1572 13.7379 18.6848 0.2132 0.2863 0.3865 

2 3.4676 4.5573 5.9648 32.6394 42.9139 56.1974 0.6874 0.9003 1.1738 

8 11.4288 13.7783 16.3079 108.6918 130.9454 154.7796 2.3131 2.8031 3.3488 

MSGT (ℓ ≠ ℓ𝑚𝑎𝑥) 

5 

UPD 

1 1.3387 3.4626 10.8539 11.4129 29.6946 94.2206 0.3103 0.8103 2.5934 

2 4.1961 9.2396 21.9608 36.3055 80.8346 194.8835 0.9969 2.2390 5.4752 

8 12.9833 19.7872 32.7171 116.6466 178.5149 296.0970 3.3361 5.1471 8.6014 

NUPD1 

1 1.3090 2.5764 4.0082 11.2417 22.7337 35.7340 0.2952 0.5238 0.7757 

2 4.1043 7.0881 9.9468 35.6814 63.0051 89.1607 0.9557 1.5607 2.1557 

8 12.6737 16.2981 20.1359 113.6879 144.8745 174.7686 3.2669 4.4041 5.9358 

20 

UPD 

1 1.2273 3.1762 9.9673 11.5080 29.8341 93.9522 0.2420 0.6280 1.9823 

2 3.8522 8.4908 20.2051 36.2765 80.2109 191.6185 0.7649 1.6950 4.0621 

8 11.9558 18.2255 30.1373 113.7442 173.5607 287.1952 2.4193 3.6965 6.1237 

NUPD1 

1 1.2168 2.5078 3.9663 11.4113 23.5392 37.2453 0.2388 0.4858 0.7649 

2 3.8029 6.7557 9.5522 35.8146 63.7809 90.3090 0.7528 1.3306 1.8813 

8 11.6493 14.7197 17.4751 110.8127 139.9998 165.9662 2.3578 2.9967 3.5985 
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Figure 1. Metal foam porosity models  
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Figure 2. The results of S–S metal foam microbeams with respect to 𝑒0 and ℎ/ℓ ( 𝐿/ℎ = 10, ℓ =

ℓ𝑚𝑎𝑥)  
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a) DMDs 

  
b) DCBLs 

  
c) DFFs 

Figure 3. The results of C-F metal foam microbeams from MSGT obtained from variable MLSP with 

respect to 𝑒0  (𝐿/ℎ = 5, 𝑒0 = 0.5) 
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Figure 4. The results ratios of C-C metal foam microbeams between MSGT and MCST and those 

between variable and constant MLSP with respect to ℎ/ℓ (𝐿/ℎ = 10, 𝑒0 = 0.5).  

  

  

  
 a) Ratios between MSGT and MCST  b)  Ratios between variable and constant MLSP – 

MSGT 
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Figure 5. The fundamental vibration mode shapes of C-C metal foam microbeams (𝑒0 = 0.5, ℎ/ℓ =

1, 𝐿/ℎ = 10)  

 

  
a)  UPD 

  
b)  NUPD1 

  

c)  NUPD2 
ℓ = ℓ𝑚𝑎𝑥 ℓ ≠ ℓ𝑚𝑎𝑥 


