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Abstract
Pharmacokinetic (PK) models are used to extract physiological information from dynamic contrast enhanced magnetic reso-
nance imaging (DCE-MRI) sequences. Some of the most common models employed in clinical practice, such as the standard 
Tofts model (STM) or the extended Tofts model (ETM), do not account for passive delivery of contrast agent (CA) through 
diffusion. In this work, we introduce a diffusive term based on the concept of effective diffusivity into a finite element (FE) 
implementation of the ETM formulation, obtaining a new formulation for the diffusion-corrected ETM (D-ETM). A gradient-
based optimization algorithm is developed to characterize the vascular properties of the tumour from the CA concentration 
curves obtained from imaging clinical data. To test the potential of our approach, several theoretical distributions of CA 
concentration are generated on a benchmark problem and a real tumour geometry. The vascular properties used to generate 
these distributions are estimated from an inverse analysis based on both the ETM and the D-ETM approaches. The outcome of 
these analyses shows the limitations of the ETM to retrieve accurate parameters in the presence of diffusion. The ETM returns 
smoothed distributions of vascular properties, reaching unphysical values in some of them, while the D-ETM accurately 
depicted the heterogeneity of KTrans, v

e
 and v

p
 distributions (mean absolute relative difference (ARD) of 16%, 15% and 9%, 

respectively, for the real geometry case) keeping all their values within their physiological ranges, outperforming the ETM.

Keywords Finite element method · Inverse analysis · Pharmacokinetic modelling · Magnetic resonance imaging

1 Introduction

Dynamic contrast-enhanced magnetic resonance imaging 
(DCE-MRI) has long been used as a clinical tool to study 
the vasculature of different tissues, especially tumours. 
Recently, it has been employed to assess the efficacy of 
antiangiogenic treatments in tumours [1–3]. This technique 
consists on the acquisition of a series of T1-weighted images 

before, during, and after the intravenous injection of a con-
trast agent (CA). As the CA reaches the tissue of interest via 
arterial inflow, it decreases the native T1 relaxation time, 
producing an increase in the measured signal intensity. The 
following removal of CA through venous blood flow results 
in a decrease in signal intensity, returning to its baseline 
value. For each voxel, the outcome is a signal intensity ver-
sus time curve [4].

Three main approaches can be found in the literature 
to analyse these curves [5]: subjective analyses, based on 
the observation of DCE-MRI images by an experienced 
observer; semi-quantitative analyses, which extract param-
eters from the signal-time curve, such as the initial slope, 
time to peak, etc; and finally, full-quantitative analyses. The 
last approach implies the conversion of signal intensity to 
CA concentration, which can be elaborated considering 
either linear or non-linear equations [6]. Once converted to 
CA concentration, pharmacokinetic (PK) models are applied 
to extract physiological information from the images. There 
are a wide range of PK models [7], considering different 
formulations and hypotheses to analyze the DCE data. One 
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of the most common approaches is the so-called standard 
Tofts model [8] (STM). It is a compartmental model, which 
considers two different well-mixed compartments: intravas-
cular and extravascular-extracellular space (EES), and the 
exchange of CA between them. In some highly vascularized 
tissues (such as liver tissue and some type of tumours), the 
voxel volume occupied by vessels is not negligible. Tofts 
et al. [9] formulated the extended Tofts model (ETM), which 
includes an additional variable that represents the contribu-
tion of intravascular CA to signal enhancement.

These models assume that CA can only reach the region 
of interest (ROI) through blood perfusion, neglecting passive 
delivery (spatial diffusion from adjacent regions, also known 
as inter-voxel diffusion, and convection due to gradients in 
interstitial fluid pressure). The hypothesis of well-mixed 
compartments assumes that CA is distributed uniformly 
within each compartment. This approximation also under-
estimates the possible intra-voxel CA diffusion. Although 
previous works have studied the influence of this intra-voxel 
diffusion on fitted parameters [10, 11], this work will focus 
on inter-voxel diffusion. Even though convective effects may 
be relevant in some tissues, they will not be considered to 
reduce the complexity of the model. As several authors have 
pointed out [12–17], assuming no inter-voxel CA diffusion 
can lead to errors in the quantities estimated by the model, 
especially in weakly vascularized zones, such as necrotic 
regions in a tumour.

Previous works have developed different methods to 
include the diffusive phenomenon in the model. The models 
developed by Jia et al. [13] and Koh et al. [14] accounted 
for inter-voxel CA diffusion, but lacked information about 
other physiological properties, like those parameters defined 
in the STM or the ETM [8, 9]. Pellerin et al. [15], first, and 
Fluckinger et al. [16], next, have created models that, keep-
ing the formulation proposed by Tofts et al. [8], added a term 
to account for CA diffusion. Pellerin et al. [15] proposed 
a combined diffusion-perfusion (DP) that incorporated CA 
diffusion to the STM. However, since it required fitting all 
model parameters at once, the resulting computational cost 
was excessively high. Fluckinger et al. [16] solved this issue 
by implementing a voxel-wise approach to compute CA dif-
fusion. To do so, they considered some simplifications, such 
as homogeneity in cellularity and diffusivity among neigh-
bouring voxels, that might not apply to many types of tis-
sues. Later, Cantrell et al. [17] proposed a diffusion compen-
sated Tofts model and applied it to intracranial aneurysms. 
This approach considered a known diffusivity coefficient and 
handled separately the contributions due to diffusion and to 
extravasation to reduce the computational cost. Their method 
is based on the results obtained from the ETM, which may 
differ from true values in some tumours where CA diffusion 
plays an important role. In those cases, the applicability of 
the model is limited. More recently, Sinno et al. [18] have 

developed a new transport model (Cross Voxel Exchange 
Model, CVXM) that includes both the diffusion and the con-
vection phenomena into the STM formulation. In their work, 
they quantified the error in the parameters retrieved by the 
STM due to ignoring passive transport mechanisms, show-
ing the importance of convective and diffusive processes in 
DCE-MRI data. The implementation of the model was based 
on a discrete formulation, similar to previous works [15, 
16]. They tested the model both on in silico and experimen-
tal xenograft data, considering only 1D geometries. Except 
Cantrell et al. [17], other authors based their works on the 
STM, which is only accurate in poorly vascularized tissues 
[19]. To extend the range of application of the diffusion-cor-
rected models, the present work is based on the ETM, which 
is accurate on both weakly and highly vascularized regions.

Therefore, this study proposes a finite element (FE)-based 
model to include a diffusive term in the ETM [9] formula-
tion with the aim of using this model to solve an inverse 
problem that provides an estimation of vascular properties 
of the tumour from DCE-MRI sequences. To achieve this 
aim, we first define the formulation of a diffusion-corrected 
extended Tofts model that accounts for the effect of CA dif-
fusion and perfusion and we implement it on a FE model. 
Second, we develop a gradient-based optimization method to 
fit this model to the clinical imaging data to extract vascular 
properties. And third, we test the performance and accu-
racy of this inverse method in different simulated theoretical 
cases. Hence, this approach aims to benefit from the com-
putational efficiency of the finite element method (FEM) to 
fit all analysed volumes simultaneously while keeping an 
affordable computational cost. Thus, the modelling approach 
here proposed can be applied to analyze the heterogeneous 
behavior characteristic of tumours, avoiding simplifications 
and approximations that reduce the range of application of 
the model.

2  Materials and methods

This section is divided into three different parts. In the first 
one, a whole description of the model formulation is pre-
sented in detail. The second comprises the computational 
implementation of this model in the FE-based commercial 
software ANSYS (Ansys Inc., TX, USA). And finally, there 
is a complete description of the algorithm that solves the 
inverse problem of curve-fitting.

2.1  Diffusion‑corrected extended Tofts Model 
(D‑ETM)

The transport mechanisms in biological tissues have 
long been of interest among physicians and researchers. 
Nicholson and collaborators [20–25] studied thoroughly 
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this process, establishing a general formulation for the 
diffusion of particles in the brain [22]. In this work, they 
compared the densely packed cells of the brain and their 
interstitial spaces to a porous medium with two phases, 
an intra- and extracellular phase. They then formulated 
the equations of the diffusive process in brain based on 
the general equation of diffusion in porous media, which 
is a process that has also been widely studied by many 
authors [26–28].

In the present work, this diffusion formulation is added to 
the general form of the ETM. There is a distinction between 
two different scales: a macro-scale, where the extravasation 
contribution to the concentration averaged in the representa-
tive volume element (RVE) as well as the diffusion of CA 
between adjacent RVEs are studied (Fig. 1b); and the micro-
scale, which is defined within the RVE and consists of a het-
erogeneous distribution of cells, vessels and EES (Fig. 1a). 
The size of the RVE must be large enough to achieve length 
scale separation, containing sufficient number of cells and, 
at the same time, it must be small enough so that CA concen-
tration can be averaged in it without adding significant error. 
Therefore, Eq. 1 describes the main transport mechanisms 
for a RVE:

where:

• Ct(x, t) is the total CA concentration, averaged in the 
RVE (VT ) 

 From now on, we will refer to Ct(x, t) as Ct(x, t) to facili-
tate the formulation

• x is the coordinates vector in the macroscopic domain of 
the tissue

• X is the coordinates vector in the microscopic domain of 
the RVE

  The relation between the macroscopic (x) and the 
microscopic (X) coordinate systems is defined through 
the homogenization process defined in Eqs. 2 and 3

• Deff(x) is the effective diffusion coefficient for that RVE. 
Considering that each RVE contains a heterogeneous 
distribution of cells and vessels, we can compare the dif-
fusive process of CA to the diffusion in a porous medium, 
as stated previously [22, 25–29]. A further detailed study 
of this variable is included below (Sect. 2.1.1)

• KTrans(x) is the extravasation rate for that RVE

(1)

�Ct(x, t)

�t
= �⋅

(
Deff (x)∇Ct(x, t)

)

+ KTrans(x)
(
Cp(t) − Ce(x, t)

)
+ vp(x)

dCp(t)

dt

(2)Ct(x, t) =
1

VT
∫VT

Ct(X, x, t)dV

• vp(x) is the volume fraction of blood plasma in the RVE
• Cp(t) is the CA concentration in the blood plasma vol-

ume, which follows the same temporal function in every 
RVE and only varies with time

• Ce(x, t) is the averaged CA concentration in the extracel-
lular subvolume (VE ) of the RVE. Considering that the 
microscopic scale is unknown (we have no information 
about the subvolume VE of the RVE), we assume the 
hypothesis of well-mixed compartments presented by 
Tofts [9]. This hypothesis considers an infinite diffusiv-
ity coefficient of CA in the subvolume VE , what implies 
that there cannot be any spatial gradient of Ce in the sub-
volume VE . Therefore: 

Fig. 1  a Insight on the different scales considered in the model. The 
RVE consists of a certain volume occupied by cells, another region 
which corresponds to the microvasculature and the rest of the volume 
(coloured in light yellow), which is the EES (V

E
 ). The concentration 

of CA within the EES volume of the RVE is averaged (Eq. 3). The 
two different coordinate systems (x and X) are detailed. Panel b Dif-
ferent processes taking place in the RVE (V

T
 ) that are considered in 

the proposed model. Apart from the perfusion process (solid green 
arrows) and the contribution of microvasculature to the total con-
centration, diffusion between adjacent RVEs (dotted blue arrows) is 
included
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 From now on, we will refer to Ce(x, t) as Ce(x, t) to facili-
tate the understanding of the equations

This well-mixed compartments hypothesis validates the Tofts 
equation for the compartmental model:

where ve(x) is the volume fraction of the EES in the RVE, 
defined as v

e
=

V
E

V
T

.
Substituting Eq. 4 in Eq. 1, we obtain Eq. 5, which is the 

general form of the diffusion-corrected ETM (D-ETM), for-
mulated in terms of the total concentration in the RVE:

A table summarizing all model parameters, their definition 
and units can be found in Appendix A.

2.1.1  Effective diffusivity

Different authors have formulated equations that relate the 
effective diffusivity to different geometrical characteristics 
of the porous material [29–31]. Given that the geometrical 
structure of the solid phase (cells and vessels) is unknown, we 
assume that the equivalent diffusivity is related to the tortuos-
ity [22]. Tortuosity ( � ) quantifies the increase in path-length 
of a diffusing particle due to the existence of obstacles in its 
way [32]. It is defined as:

Tao and Nicholson [25] used the Monte Carlo method to 
simulate the diffusion of particles on different porous struc-
tures and different cell geometries and fitted the simulated 
data to obtain the value of Deff  for each case. Applying Eq. 6 
to these values, they obtained a value of tortuosity ( � ) for 
each simulated structure and cell geometry and found that 
tortuosity was independent on the considered cell geometry 
and was only dependent on the porosity ( � ) of the structure:

Substituting Eq. 7 in Eq. 6 we obtain the definition of an 
equivalent diffusivity (Deff ). Considering that porosity ( � ) 
is defined as the volume fraction of ”empty” space in the 
material, its equivalence to ve is straightforward:

(3)Ce(x, t) =
1

VE
∫VE

Ce(X, x, t)dV

(4)Ct(x, t) = ve(x)Ce(x, t) + vp(x)Cp(t)

(5)

�Ct(x, t)

�t
= �⋅

(
Deff (x)∇Ct(x, t)

)

+
KTrans

ve
(x)

(
Cp(t)(ve(x) + vp(x)) − Ct(x, t)

)
+ vp(x)

dCp(t)

dt

(6)� =

√
D

Deff

(7)� =

√
3 − E

2

Where D is the diffusion coefficient of CA in free medium, 
which is known. Using this formulation, we can consider 
different effective diffusion coefficients per element without 
adding more unknowns to the model.

2.2  Forward FE model

Once the theoretical formulation is defined, the next step is 
to implement it into the FE software to generate CA vs time 
curves from given sets of parameters. Equation 5 is imple-
mented into ANSYS diffusion module [33], including the 
extravasation term and the contribution of the blood plasma 
fraction as non-linear generation terms.

The numerical formulation obtained for Eq. 5 is defined 
as:

Where, for an element e:

• ce is the nodal concentration vector and ċe is its temporal 
derivative

• n are the element shape functions
• Cd

e  is the element diffusion damping matrix and it is 
defined as: 

• Kd
e  is the element diffusion conductivity matrix and it is 

defined as: 

 where D is the diffusion coefficient matrix, further 
defined

• r
g

e is the element diffusing substance generation load vec-
tor and it is defined as: 

 where g is the generation load vector. The integration 
volume Ωe corresponds to the volume of the finite ele-
ment e.

The time discretization scheme is derived from the backward 
Euler implicit method and is defined as:

Where:

(8)Deff =
2D

3 − ve

(9)Cd
e
ċe + Kd

e
ce = r

g

e

(10)C
d

e
= ∫

Ωe

nn
T
d(Ωe)

(11)Kd
e
= ∫

Ωe

(
∇nT

)T
D∇nT d(Ωe)

(12)r
g

e = ∫
Ωe

gnT d(Ωe)

(13)un+1 = un + �Δt u̇n+1 + (1 − �)Δt u̇n
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• un is the nodal degree of freedom (DOF) values at time 
tn

• � is the transient integration parameter. If � = 0 an 
explicit algorithm is used, whereas if � = 1 an implicit 
algorithm is employed

• Δt = tn+1 − tn is the time step size
• u̇n is the time rate of the nodal DOF values at time tn , 

computed at previous time point

Implementing this time discretization scheme on Eq. 9 leads 
to Eq. 14:

Where R is the substance generation matrix and Kd is the 
assembled diffusion conductivity matrix. The terms ct+1 and 
ct are the nodal concentration vectors resulting from evaluat-
ing the nodal concentration matrix ( C ) at given time points. 
kTrans , ve and vp are the nodal variables vectors. Finally, ct+1

p
 

and ċpt+1 are the scalars resulting of evaluating the arterial 
input function (AIF) and the derivative of the AIF vectors 
( cp and ċp ) at given time points. To distinguish between 
the regular dot product and the Hadamard operations, we 
employ a specific notation for the pointwise product ( ⊙ ) 
and division ( ⊘ ). The diffusion coefficients matrix D for 
each element is:

Where veelem is the element average of the nodal ve vari-
able. Considering as a first approach isotropic diffusion, 
Dxx = Dyy = Dzz = D.

Due to the dynamic nature of the physical process, tran-
sient effects were included. Although the transient integra-
tion parameter was set to � = 1 , which makes the solution 
unconditionally stable, the influence of the transient effects 
still affected the accuracy of the solution depending on the 
time step ( Δt ). We conducted several experimental error 
analyses and concluded that a time step of 1s ensured the 
consistency of the solution, while keeping an affordable 
computational cost.

Initial values were provided to initialize the transient sim-
ulations. Both the nodal concentration and its time derivative 
were set to zero for t=0s ( C(t0) = Ċ(t0) = 0).

The AIF is interpolated to match this time resolution. 
Since both generated curves and fitted curves are obtained 
using the same model, no interpolation is needed to perform 
the fitting process.

(14)

Cd c
t+1 − ct

Δt
= −Kdct+1 + R

(
(kTrans ⊘ ve)⊙ (ve + vp)c

t+1
p

)

− R
(
(kTrans ⊘ ve)⊙ ct+1

)
+ Rvpċp

t+1

⎡⎢⎢⎢⎢⎣

2Dxx

3−velem
e

0 0

0
2Dyy

3−velem
e

0

0 0
2Dzz

3−velem
e

⎤⎥⎥⎥⎥⎦

Regarding the boundary conditions, we assumed that no 
CA could diffuse across the boundaries of the geometry, 
considering the tumour as an ”isolated” entity with respect 
to adjacent tissues. Although it may not be biologically cor-
rect for tissues that are not surrounded by physical barriers, 
this condition facilitates the formulation and is consistent 
with literature [8, 9, 15, 16].

2.3  Solving the inverse problem

Imaging data is usually processed as a voxelized geometry. 
However, the method proposed here can be applied to any 
complex geometry, like those obtained from imaging seg-
mentation. Although the conversion from a voxelized discre-
tization to a FE mesh approximates the data, since the spatial 
resolution of the latter is expected to be equal to or higher 
than the spatial resolution of the former, the error added to 
the data is small.

After implementing the D-ETM equation in ANSYS, we 
can simulate the CA transport for a certain tissue. There-
fore, the next step is fitting the model to the concentration-
time curves obtained from imaging. This inverse problem of 
curve fitting is solved using an iterative method based on the 
non-linear least squares method [34].

Being a gradient based method, it needs to compute the 
derivative of the total concentration C(t) with respect to each 
nodal parameter, known as the Jacobian matrix.

Typically, this matrix is obtained numerically using the 
finite differences method. This option leads to an excessively 
high computational cost, since the number of simulations 
( Totalsim ) needed to compute this matrix increases linearly 
with the number of time points and nodal variables and 
quadratically with the number of nodes.

where Nnodes is the number of nodes in the model, Ntime is 
the number of time points and Nparameters is the number of 
unknowns to be fitted per node. Even for small cases, this 
numerical analysis requires an excessive computational cost 
that cannot be considered.

Therefore, we propose an alternative semi-analytical 
computation of the Jacobian matrix. We can re-write Eq. 14 
as:

where:

(15)Totalsim = Nnodes
2NtimeNparameters

(16)
Act+1 = ΔtR

(
(kTrans ⊘ ve)⊙ (ve + vp)c

t+1
p

+ vpċp
t+1

)
+ Cdct

(17)A = Cd + ΔtKd + ΔtR(kTrans ⊘ ve)
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The derivative of C with respect to the different parameters 
can be obtained from Eq. 16 by applying the product rule on 
the left hand side of the equation:

• For KTrans : 

• For ve : 

 where Kd(ve) =
�Kd

�ve
 . Kd is the assembled matrix of ele-

mental diffusion conductivity matrices, which are defined 
by Eq. 11. To build these matrices, we define D as: 

 Where, for an element e, vee =
1

N

∑N

i=0
ve

i . N is the num-
ber of nodes in the element and vei are the nodal values of 
ve . The derivative of Kd

e
 with respect to nodal ve ( Kd

e
(ve) ) 

is exported from ANSYS by deriving the components of 
D with respect to the nodal ve values, obtaining: 

 Each elemental matrix Kd
e
(ve) is generated introducing 

this matrix in Eq. 11. Finally, these elemental matrices 
are assembled to build the global matrix Kd(ve).

• For vp : 

To compute Eqs. 18, 19, 20, matrices Cd and R are exported 
from ANSYS along with Kd(ve) . After solving these equa-
tions, the Jacobian matrix is obtained by concatenating the 
matrices computed in Eqs. 18, 19, 20:

(18)

A
𝜕ct+1

𝜕kTrans
= ΔtR⊙

(
ct+1
p

(ve + vp)⊘ ve − ct+1 ⊘ ve

)

+ Cd 𝜕ct

𝜕kTrans

(19)

A
𝜕ct+1

𝜕ve
= −ΔtKd(ve)⊙ ct+1

+ Δt
(
R⊙ (kTrans ⊘ ve

2)⊙ ct+1 − vpc
t+1
p

)
+ Cd 𝜕c

t

𝜕ve

⎡⎢⎢⎢⎣

2D

(3−ve
e)

0 0

0
2D

(3−ve
e)

0

0 0
2D

(3−ve
e)

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

−2D

N(3−
1

N

∑N

i=0
ve

i)2
0 0

0
−2D

N(3−
1

N

∑N

i=0
ve

i)2
0

0 0
−2D

N(3−
1

N

∑N

i=0
ve

i)2

⎤⎥⎥⎥⎥⎦

(20)

A
𝜕ct+1

𝜕vp
= ΔtR⊙

(
(kTrans ⊘ ve)c

t+1
p

)
+ RIċp

t+1 + Cd 𝜕c
t

𝜕vp

This matrix is included in the least-squares method to fit 
the CA concentration-time curves to Eq. 5. We tested this 
analytical computation in small-sized models, comparing it 
to the numerically computed Jacobian. Results were promis-
ing, as both matrix and convergence were similar between 
the two methods. Further information about these results can 
be found in Appendix B.

The optimization algorithm developed takes as inputs an 
initial set of values of the unknowns, as well as the curves to 
be fitted. The model proposed defines a set of three param-
eters (KTrans , ve and vp ) per node. This implies that the algo-
rithm needs to fit three times the number of nodes simulta-
neously. Starting from the initial seed provided, a forward 
simulation of the D-ETM is executed, obtaining a first set of 
curves that are then used to initialize the cost function. Then, 
the numerical matrices needed for the Jacobian computation 
( Cd , R and Kd(ve) ) are exported by running several scripts 
on ANSYS. Once the Jacobian is obtained, the minimization 
solver computes the updated set of parameters, finishing the 
first iteration. A schematic pseudocode of this process is 
presented in algorithm 1.

The cost function (CF) defined for the method is a stand-
ard sum of squared differences (Eq. 21), which has proven 
to be effective in the simulated cases:

Where Ntime is the total number of time points, yi is the value 
of the reference concentration at time point i and fi(xj) is the 
value at time point i of the curve obtained from running a 
simulation of D-ETM with given xj vector of parameters.

Other cost functions that only consider a fraction of the 
time points, like those proposed in [15], were tested. Never-
theless, they showed convergence problems, leading to the 
algorithm getting caught in local minima distant from the 
global optimum.

The solver method chosen to perform the minimization 
was the Trust Region Reflective (TRF) algorithm [35]. 
Although the commonly used Levenberg-Marquardt (LM) 
[36] is also suitable for our purposes, the TRF algorithm 
(in its Scipy [37] implementation) handles sparse matrix. 
Given the nature of our problem, working with matrices in 
sparse format for the Jacobian computation dramatically 
reduced the use of system memory (around 98% reduction). 
We compared the performance of the LM algorithm against 

J =

⎡⎢⎢⎢⎢⎢⎢⎣

�c1
1

�kTrans
1

…
�c1

nnode

�kTrans
nnode

�c1
1

�ve1
…

�c1
nnode

�vennode

�c1
1

�vp1

…
�c1

nnode

�vpnnode

⋮

�cntime
1

�kTrans
1

…
�cntime

nnode

�kTrans
nnode

�cntime
1

�ve1
…

�cntime
nnode

�vennode

�cntime
1

�vp1

…
�cntime

nnode

�vpnnode

⎤⎥⎥⎥⎥⎥⎥⎦

(21)CF =

Ntime∑
i=0

(yi − fi(xj))
2
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the TRF (converting the matrices to dense format for the LM 
method). Both methods retrieved accurately the reference 
values and the number of iterations needed was similar in 
both cases.

The proposed curve generation and curve fitting pro-
cesses were executed in a cluster composed of 480 CPUs 
and 1088 GB of RAM. Specifically, the resources employed 
for the benchmark problem and the real tumour geometry 
were: 16 CPUs and 16GB RAM and 24 CPUs and 32GB 
RAM, respectively. The optimization time of the benchmark 
problem was 1.5h on average (fitting 360 time points on 
339 nodes) and for the tumour geometry was around 10h on 
average (fitting 360 time points on 955 nodes). The optimi-
zation algorithm was developed in Python and APDL and 
the forward simulations were generated on ANSYS 2019R2. 

orders of magnitude) to parallelize several 2D simulations 
rather than studying all of them as a 3D case.

The geometries correspondent to both cases were meshed 
using linear quadrilateral diffusion elements (PLANE238 in 
ANSYS manuals ) of size 0.15 mm, which generates a mesh 
of higher density than of most of the clinical and experimen-
tal imaging data.

Similarly to previous works [10], the diffusion coefficient 
D was given a value of 2.6E-04 mm2/s, which is consistent 
with experimental measurements [14, 40]. Considering the 
formulation of the diffusive term of the model proposed here 
(Eq. 5), the diffusion coefficient was constant in both cases.

The AIF used in the simulations (Fig. 2) was inspired 
on the clinical data collected within the European research 
project PRIMAGE [38].

Fig. 2  AIF used for the simulations

35

Algorithm 1 Pseudocode of the optimization process
1: Generate an initial set of parameters (P0) Initial seed
2: while (cost function > Threshold 1) or (δ >Threshold 2) do

Convergence criteria.
3: Run forward FE model with the current set of parameters (Pi)

Obtain fitted curves
4: Evaluate CF
5: Export numerical matrices from ANSYS Export Cd, R and Kd(ve)
6: Compute Jacobian matrix
7: Define new set of parameters Pi+1 = Pi + where δ is computed by

the TRF [ ] via the gradient.
8: end while

3  In silico simulations

To test the performance of the optimization algorithm pro-
posed and to compare the D-ETM to the ETM, two different 
sets of simulated tissue concentration time courses have been 
generated from the forward FE model of the D-ETM and 
some sets of known parameters (KTrans , ve , vp and D).

The first case corresponds to a simple two-dimensional 
(2D) geometry, where the distribution of parameters gener-
ates a CA distribution that is completely dependent on diffu-
sion. The second case, on the other hand, is based on a more 
complex geometry inspired in clinical data of tumours [38].

Although the proposed method can be applied to both 
2D and three-dimensional (3D) cases, given the common 
resolution of imaging data (slice thickness is usually several 
times the pixel size), we focused on 2D geometries to keep 
the computational cost affordable. Due to this size differ-
ence, the effects of out-of-plane diffusion are expected to be 
negligible in comparison with the in-plane diffusion [16]. 
In terms of computation, it is dramatically faster (up to two 
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3.1  Benchmark problem

This case is based on the one proposed by Pellerin et al. [15], 
which was also included in the work of Fluckiger et al. [16]. 
Given the importance of these contributions into the study of 
CA diffusion process, we consider this case as a benchmark 
problem for PK models that incorporate diffusion.

Hence, we simulated a slice of a circular, radially sym-
metric, tissue. The definition of both the geometry and the 
distribution of parameters aims to generate an extreme case 
of a distribution of CA that is diffusion-limited. To do so, the 
circle is divided into two different regions: a highly perfused 
rim and a necrotic core.

Initially, the parameters values chosen were similar to 
those used by Fluckiger et al. [16]: KTrans = 0.2 min−1 in the 
rim and 0.05 min−1 in the core; a constant value of ve equal 

to 0.5 in the whole model; and, finally vp = 0.05 in the rim 
and 0.005 in the core.

When running the optimization algorithm on this case, 
we observed that, although the cost function was reduced 
to values close to zero, the parameters returned were dif-
ferent from the true ones. Upon closer examination, we 
noticed the existence of several local minima close to the 
global optimum. Figure 3 shows two different nodes where 
the true values of the model parameters were the same, and 
so were the generated CA curves. However, although the 
fitted curve is almost identical to the reference one, the 
two sets of fitted parameters are different between them 
and both differ from the true values. It must be noted that 
some of the parameters retrieved are unphysical: KTrans 
and vp below zero in the second case of Fig. 3. Even when 
applying bounds to keep the parameters within physical 
ranges ( KTrans greater than zero and ve and vp between zero 
and one), the optimization algorithm still got caught in a 
local minimum.

This meant that the success of the optimization process 
was dependent on the initial seed. The curves shown in 
Fig. 3 were obtained using as initial seed a set of values that 
was a random distribution of values between 0.4 min−1 and 
0, for KTrans ; between 0.2 and 0.8 for ve ; and between 0 and 
0.1 for vp . In this case, the optimization method retrieved 
accurate results only if the initial seed was very close to the 
true values.

We attribute this problem to the numerical instability pro-
duced by the radial symmetry, both in geometry and param-
eters, which produces a set of identical curves at nodes with 
similar values. To prove this hypothesis, we created two 
additional simulations. In the first one, the parameters were 
kept constant for each region, while the geometry was modi-
fied to suppress the axial symmetry. The results obtained 
from these simulations are detailed in Appendix C. In the 
second simulation, the geometry was preserved, while the 
parameters were changed by random distributions of values 
within a range. Such, KTrans was assigned values between 
0.25 min−1 and 0.15 min−1 in the rim and between 0.05 min−1 
and 0 min−1 in the core. vp , on the other hand, was given val-
ues between 0.08 and 0.03 in the rim, and between 0.01 and 
0 in the core. ve maintained its original values. The initial 
seed was the same as in the previous simulation.

Results obtained with the ETM on this simulation are 
consistent with previous works [15, 16]. The KTrans , mainly, 
and the vp maps, to a lesser extent, show an averaging pat-
tern with respect to the reference values. Besides, the ve map 
returns unphysical values (ve>1 and ve<0) in the necrotic 
region. Even if the KTrans and vp in the necrotic region are 
not exactly zero, the enhancement curve of these nodes is 
completely dependent on diffusion. Thus, these curves can-
not be accurately fitted to the Tofts formulation. Besides, the 

Fig. 3  Two of the sets of curves (simulated and fitted) correspondent 
to some of the nodes within the necrotic region of the first simula-
tion of the benchmark problem. The true values for both nodes are: 
KTrans=0.05 min−1 , ve=0.5 and v

p
=0.005. The fitted values are: in the 

first case, KTrans=0.15 min−1 , ve=0.41 and v
p
=0.01; and, in the second 

case: KTrans=-0.09 min−1 , ve=0.25 and v
p
=-0.001. These results dem-

onstrate the convergence of the inverse method to a local minima
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vascularized regions adjacent to the necrotic ones are also 
influenced by these values, since there is diffusion of CA 
from the former to the latter. This diffusive process results 
in a lower CA concentration, which is then fitted to KTrans 
values below the true ones. vp is not as affected by this effect 
as KTrans is, resulting in a better fit for this parameter. The 
distributions obtained with the D-ETM are very accurate 
for KTrans and vp , while the fitted ve map shows higher error, 
especially in the necrotic region. This error is related to the 
influence of the variable in the global solution. If we take a 
look at Eq. 19, we can see that the value of this derivative is 
dependent on the value of KTrans and vp . Therefore, in those 
necrotic regions, where these parameters present values 
close to zero, the derivative depends only on the diffusive 
term. Due to the definition of this term (Eq. 6), the influence 
of ve is limited. Thus, because of its low effect on the global 
solution, the optimization algorithm is not able to retrieve 
accurate results for ve , especially on necrotic regions.

A quantitative comparison between the outcome of both 
models is presented in Table 1. Since both the true and initial 
values for the simulations are a function of randomness, ten 
cases with different true and initial sets of parameters were 
tested to validate the robustness of the method. Considering 
that reference values for KTrans and vp reached zero in the 
necrotic region, the use of relative error metrics is unfeasi-
ble. The absolute error, measured as the absolute difference 
between the fitted and the reference value, was selected to 
compare the performance of both models.

Different error thresholds were defined to compare the 
performance of both models. Threshold for KTrans was set 
to 0.01 min−1 , which is the maximum precision of the DP 
model [15]. Similarly, the threshold for vp was set at 0.001, 
a value that can be considered as sufficient precision for this 
kind of models. Due to the impact of ve maps on the global 
solution, its threshold was set to 0.15.

The D-ETM clearly outperforms the ETM, especially on 
KTrans maps. While only 19% of nodes fitted by the ETM are 
within a 0.01  min-1 range from the reference value, 72% of 
those retrieved by the D-ETM fall into that range. Besides, 
the KTrans mean absolute error in the ETM is around four 
times higher than the one correspondent to the D-ETM.

Due to the great effect of the unphysiological values of 
ve returned by the ETM on the absolute error, this metric 
will not be used to compare the models. The fraction of 
nodes whose error is below 0.15, however, is not affected 
by these values. While only 55% of the values obtained 
using the ETM are within the error range, almost 78% of 
the ones retrieved by the D-ETM fall into this range. Despite 
experiencing difficulties retrieving the correct ve maps, the 
D-ETM shows a great improvement with respect to the 
ETM. Besides, all of the ve values fitted using the D-ETM 
were within the physiological range [0,1].

The mean absolute error of D-ETM vp maps is around 
half the error obtained by the ETM. Nevertheless, this 
parameter does not seem to be as affected by diffusion as 
the other two.

Although the error retrieved by suppressing the homoge-
neity in the distributions of parameters (Fig. 4) was lower 
than the error obtained by removing the axial symmetry in 
geometry (Appendix C), these results demonstrate that the 
combination of both factors was causing the convergence of 
the algorithm to local minima.

3.1.1  Analysis of the mesh effect

The influence of mesh size on the convergence of both the 
forward and the inverse models was tested using the bench-
mark problem geometry. Two different meshes were gener-
ated: the first one discretized the geometry using 0.15 mm 
size elements, while the element size on the second one was 
half that value. The number of nodes on the two simulations 
were 339 and 777, respectively. The same type of elements 
(linear quadrilateral diffusion elements) was used on both 
models. On both cases, the sets of true and initial values 
were random distributions between the ranges defined previ-
ously. Just as in the benchmark problem, ten different simu-
lations were generated for the finer mesh, to eliminate the 
influence of randomness on the result.

The results presented in table 2 show that the method 
reduces the error when refining the mesh. Nevertheless, 
the slight increase in accuracy does not justify the greater 
computational cost associated to the finer mesh. The finer 

Table 1  Comparison of error 
metrics between the D-ETM 
and the ETM for the benchmark 
problem

KTrans absolute error is measured in min−1 . Results were computed from ten simulations

D-ETM ETM

Absolute error Fraction of nodes 
error < threshold

Absolute error Fraction of nodes 
error < threshold

Mean SD Mean (%) SD (%) Mean SD Mean (%) SD (%)

KTrans 8.14E-03 1.18E-03 71.54 6.03 3.71E-02 6.93E-04 19.03 2.19
ve 9.53E-02 4.42E-03 77.58 1.42 7.78E+06 5.46E+05 54.57 0.53
vp 3.79E-04 7.45E-05 94.13 3.02 7.08E-03 2.71E-04 74.93 1.35
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mesh model needed twice the time of the original model to 
fit the curves. Therefore, the element size selected for the 
simulations was 0.15 mm, a tradeoff between accuracy and 
computational cost.

3.2  Real tumour geometry

A second set of simulations was generated to test the per-
formance of the D-ETM in real geometries and vascular 
properties with a heterogeneous distribution. The geom-
etry corresponded to a tumour slice of around 20 mm2 , 
while the vascular properties were inspired by clinical data 
[38].

The vascular properties distribution is divided into three 
different zones: a highly perfused region, an intermediate 
region and a necrotic region. Depending on the zone, the 
assigned parameters were: for KTrans , random values between 
0.4 and 0.3 min−1 , between 0.25 and 0.1 min−1 and between 

0.05 and 0 min−1 , for the three respective regions. ve values 
were randomly selected within a range between 0.85 and 
0.75 for the necrotic region and 0.6 and 0.4 for the other 
two. Finally, vp random distribution ranged from 0.08 to 
0.03 for the highly perfused nodes, between 0.05 and 0.03 
in the intermediate region and between 0.01 and 0.005 in 
the necrotic one.

The convergence of the inverse method was tested by pro-
viding random distributions of parameters as initial values. 
The ranges for KTrans , ve and vp were the same as in the previ-
ous case: [0,0.4] min−1 , [0.2,0.8] and [0,0.1], respectively. 
Following the procedure described in the previous case, ten 
simulations with different reference and initial values were 
generated.

The heterogeneous reference maps generated clearly 
expose the limitations of the ETM in accurately captur-
ing the KTrans distributions (Fig. 5). While the D-ETM pro-
vides an almost exact distribution for KTrans and vp and an 

Fig. 4  Second simulation of the 
benchmark problem. Com-
parison between the reference 
values and the parameters 
returned by the D-ETM and 
the ETM. Results show that 
the D-ETM accurate retrieves 
the distribution of KTrans and 
v
p
 , while the ETM show an 

averaging pattern, especially for 
KTrans . Although not as accurate 
as the other parameters, the ve 
map returned by the D-ETM is 
within the physiological range 
[0,1], while the distribution 
obtained from the ETM reaches 
values close to infinity in the 
necrotic core

KTrans

ve

vp

True Values D-ETM ETM

Table 2  Comparison of error 
metrics between two different 
meshes

KTrans absolute error is measured in min−1 . Results were computed from ten simulations

0.15 mm element 0.075 mm element

Absolute error Fraction of nodes error 
< threshold

Absolute error Fraction of nodes 
error < threshold

Mean SD Mean (%) SD (%) Mean SD Mean (%) SD (%)

KTrans 8.14E-03 1.18E-03 71.54 6.03 7.65E-03 7.43E-04 72.5 4.12
ve 9.53E-02 4.42E-03 77.58 1.42 9.11E-02 3.96E-03 80.35 1.41
vp 3.79E-04 7.45E-05 94.13 3.02 3.24E-04 3.78E-05 97.03 1.85
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acceptable ve map, the ETM tends to homogenize the KTrans , 
failing to depict the highly perfused regions, as well as the 
necrotic ones. This effect is particularly visible in those 
zones where two of these regions are adjacent.

The error metric employed in this case was the abso-
lute relative difference (ARD), calculated between true and 
fitted parameters. Table 3 shows the metrics correspond-
ent to the average of ten different simulations of the real 
geometry case. In this case, where necrotic zones were 
not as large as in the previous case, the ETM accurately 
retrieves the ve map (mean ARD is 11% and 86% percent 
of nodes have an ARD below 20%), depicting the increase 
in ve correspondent to these necrotic regions (Fig. 5). The 
D-ETM, on the other hand, gives a good fit for the ve map 
(mean ARD is 16% and the ARD is below 20% in 77% of 
the nodes), although it is not as accurate as the ETM in 
fitting the ve values in necrotic nodes (Fig. 5). KTrans and 
vp distributions obtained from the D-ETM are almost an 
exact representation of the reference maps (Fig. 5), as evi-
denced by the metrics obtained (Table 3). The mean ARD 

is 16% and 9% for KTrans and vp , respectively. The ETM, 
nonetheless, show higher error for these two parameters 
(mean ARD of 148% and 195% for KTrans and vp , corre-
spondingly, and for both maps only 40% of nodes have an 
ARD below 20%).

In their work, Pellerin et al. [15] tested the performance 
of their model in a simulated case similar to the real geom-
etry case presented in here. The DP model obtained a 
mean ARD of 16% for KTrans and 17% for ve , with 73% of 
the KTrans values and 77% of the ve values within 20% of 
the true values. The D-ETM has obtained identical values 
for ve and a similar mean ARD for KTrans , improving the 
fraction of values whose ARD is below 20%.

3.2.1  Influence of noise

To test the robustness of the D-ETM to the addition of 
noise, several simulations were conducted. Starting from 
a set of reference values similar to those generated in the 
last case, experimental levels of noise were added to the 

Fig. 5  Real tumour geometry. 
Reference values and results of 
the D-ETM and the ETM for 
each of the parameters. Result 
show that the D-ETM accurate 
captures the heterogeneity of 
the distribution of parameters, 
while the ETM tends to aver-
age the values. The maps of v

p
 

are the least sensitive to this 
phenomenon. The ve distribu-
tion obtained from the D-ETM 
shows a more accurate fit than 
the one obtained in the bench-
mark case

KTrans

ve

vp

True Values D-ETM ETM

Table 3  Error metrics 
comparison between the 
D-ETM and the ETM for the 
second case

Results were computed from ten simulations

D-ETM ETM

ARD Fraction of nodes ARD 
< 20%

ARD Fraction of nodes 
ARD < 20%

Mean (%) SD (%) Mean (%) SD (%) Mean (%) SD (%) Mean (%) SD (%)

KTrans 16.37 3.67 87.21 2.67 148.42 47.37 39.85 1.6
ve 15.54 1.02 76.87 2.69 11.36 0.22 85.71 1.07
vp 8.59 4.45 95.56 3.02 194.85 101.26 40.13 1.53
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generated curves. These levels were defined using a gauss-
ian distribution with an standard deviation (SD) equal to 
a fraction (1%, 2.5% and 5%) of the highest concentration 
reached in the curve.

The results of these simulations presented in Fig. 6 
show the effect of noise on both the D-ETM and the ETM. 
Despite showing higher error for noise-free simulations, 

the parameters returned by the ETM seem to be unaffected 
by noise, since the histograms show almost no difference 
in the distribution of ARD between the cases with different 
levels of noise. The added noise shows greater influence on 
the parameters obtained fitting the D-ETM. Noise seems 
to have the greater effect on vp and the slighter effect on 
ve . KTrans , for its part, shows a slight disturbance when the 

D-ETM ETM

Fig. 6  Influence of noise on the accuracy of the D-ETM (left) and 
the ETM (right). Results show that noise has greater influence on 
the D-ETM, particularly on v

p
 . Although the ETM seems to be unaf-

fected by noise, for noise values below or equal to 2.5% the D-ETM 
still performs better. Even for the maximum levels of noise (5%), the 
error in the D-ETM solution is similar to the one in the ETM
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noise level is low (1% and 2.5%), having more than 70% of 
its values within a 20% range from the true values. When 
the added noise reaches the maximum value, this percent-
age drops dramatically to 30%.

These results are consistent with those obtained by Pel-
lerin et al. [15]. In their work, the authors attributed this 
different effect of noise on parameters depending on the 
influence of each parameter on the different parts of the 
CA curve. Thus, ve regulates the last part of the curve, 
where the concentration is close to the maximum and, 
therefore, it is less sensitive to noise. KTrans , and even more 
vp , affect the initial part of the curve. Consequently, the 
influence of added noise is greater on these parameters.

The great number of variables to be fitted simultane-
ously makes this model, as well as the model developed 
by Pellerin et al. [15], more sensitive to noise. Therefore, 
when fitting the model to experimental data it must be 
ensured that the signal-to-noise ratio (SNR) of the data 
meets the model requirements.

4  Discussion

The use of DCE-MRI sequences to assess the efficacy of 
antiangiogenic therapies in tumours [1–3] increases the 
need for PK models that retrieve vascular properties as 
accurate as possible. Several authors have pointed out the 
limitations of the widely used standard and extended Tofts 
models when the CA reaches the region of interest (ROI) 
through passive delivery [12–18]. These models return an 
inaccurate estimation of KTrans as well as unphysical values 
for ve in those regions within the ROI where the active 
delivery of CA is low or non-existent (necrotic zones). Dif-
ferent models and methods have been developed to assess 
the effect of diffusion and to develop PK that accounted 
for this process [15–18]. These works exposed the men-
tioned limitations and proposed different approaches to 
include the effects of diffusion into the STM and the ETM. 
Pellerin et al. [15] were the first to include a diffusive 
term into the STM. The DP model proposed showed an 
improvement in parameter accuracy with respect to the 
original STM in those regions where passive delivery 
of CA was significant. One of its major limitations was 
the high computational cost associated to the simulated 
annealing algorithm, since the model had to fit all voxels 
simultaneously. Fluckiger et al [16] added some hypoth-
eses to the DP model (homogeneity in the diffusive coef-
ficient and ve between neighbouring voxels) that allowed 
them to compute the effects of diffusion while fitting each 
voxel separately and, therefore, reducing substantially the 
computational cost. However, this homogeneity hypothesis 
may not be suitable for some kind of tumours (such as 
neuroblastoma, which is a type of cancer characterized by 

its high heterogeneity [41]). Cantrell et al. [17] based their 
formulation of the diffusive term on the one proposed by 
Pellerin et al. [15] and proposed a diffusion-compensated 
Tofts model (DC-Tofts). Their work consisted on obtain-
ing the ETM parameters from CA curves, then computing 
the diffusion contribution from these fitted parameters to 
generate a new set of curves and, finally, fit again these last 
curves with the ETM. Although this model was suitable 
for intracranial aneurysms, the approach used may not be 
appropriate for other type of lesions where necrotic zones 
are present, since the initial fit of the ETM would retrieve 
unphysical values of ve that would condition the following 
diffusion computation. All these works follow the same 
formulation of the diffusive term (revised thoroughly in 
[15]). This formulation assumes that CA can diffuse freely 
through each of the voxel faces (this means that no obsta-
cles, such as cells, are present in that faces). Depending 
on the cellularity level and the voxel size, this assumption 
may not be valid. The latest contribution by Sinno et al. 
[18] proposes a modified formulation of the diffusive term 
that, as well as the formulation presented in this work, 
avoids this simplification. In their work, the diffusivity 
coefficient is considered unknown but constant through the 
domain. As stated previously, this hypothesis may not be 
valid for some tissues, especially in tumour tissues, which 
are characterized by their heterogeneity.

The formulation of the diffusion process here proposed 
avoids this assumption by embracing the concept of effec-
tive diffusivity [22]. This concept implies that the diffusion 
of agents within biological tissues is similar to the diffusion 
of an agent in a porous medium [26–28]. Apart from pro-
viding a more accurate description of the diffusive process, 
this hypothesis links the effective diffusivity to the volume 
fraction of the extravascular-extracellular space (ve ), avoid-
ing the generation of a new parameter (D) that needs to be 
fitted or extracted from data or literature, as it is the case in 
previous works [14–18].

The performance of the D-ETM was tested using two 
different in silico cases. The first one, a benchmark problem 
derived from literature [15, 16], exposed the limitations of 
the ETM in those regions were passive delivery of CA is the 
main transport mechanism. Results showed the improved 
accuracy of the model parameters returned by the D-ETM, 
which were very close to the reference values (mean abso-
lute error for KTrans , ve and vp were 0.008 min−1 , 0.095 and 
0.0004, respectively). A second case inspired in real tumour 
geometries and parameters was analysed. Again, the ETM 
performed poorly, returning an incorrect estimation of KTrans . 
In both simulations, the KTrans distribution obtained by the 
ETM appeared averaged with respect to the reference maps, 
adding significant error to the parameters. D-ETM param-
eters were almost identical to the true values, accurately 
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depicting the heterogeneous distribution of values. Besides, 
Fig. 6 shows that the error obtained by the D-ETM follows 
a Pareto-like distribution for noise levels below 2.5%, what 
means that the smallest errors are obtained for most of 
nodes, while the ETM does not follow this pattern (except 
for ve ), even for noise-free simulations.

The results obtained from the D-ETM in both cases show 
lower accuracy in ve maps with respect to the other vari-
ables, especially on necrotic regions, where KTrans values are 
very close to zero. This is due to the modest influence of ve 
on the global solution in these regions. To solve this issue, 
future works could develop an alternative expression for the 
effective diffusivity where ve would have more influence. 
Nevertheless, the accuracy of the ve maps obtained from 
the D-ETM is acceptable, keeping all of their values within 
the physiological range. Moreover, the ve maps retrieved by 
the D-ETM on the real tumour geometry show an accuracy 
similar to the DP model [15].

Due to the additional variable included in the ETM with 
respect to the STM (the volume fraction of blood plasma, 
vp ), the convergence of the optimization algorithm can be 
affected by the presence of local minima within the solution 
space. This means that the solution is dependent on the ini-
tial seed. Although our model seems to overcome this issue 
on the simulated cases, the values obtained from the ETM 
could be used as an initial seed in those cases where the 
minimization convergence is severely affected by this issue.

This new formulation is limited by the computational 
cost associated to the optimization algorithm. Although the 
method benefits from the computational efficiency of the 
FEM, the optimization time for the two simulated cases was 
1.5  h and 10 h on average (fitting 360 time points on 339 
nodes and 955 nodes, respectively). Despite being faster than 
the DP model (average of 72h to fit 484 voxels), the execu-
tion time cannot be compared to the ETM, which took an 
average of 5s and 12s, respectively. Future works can be 
applied to migrate the code from Python to more efficient 
languages, such as C. One of the bottlenecks of this method 
is the Jacobian matrix computation, which executes opera-
tions on large sparse matrix. This computation could be par-
allelized to reduce the execution time.

The described D-ETM is the first diffusion-corrected 
PK model to be implemented using the FE method. It pro-
poses a new formulation for the diffusive term, based on 
the concept of effective diffusivity, that simplifies the com-
putation of this term and avoids the inclusion of additional 
variables to the model. The semi-analytical method formu-
lated to compute the Jacobian matrix opens the door for 
further gradient-based optimization methods for FE-based 
PK models. Although previous works [10] have developed 
a FE implementation of the extended Tofts model, their 
objective was to expose the effect of intra-voxel CA dif-
fusion on PK analyses. To the best of our knowledge, this 
is the first FE-based optimization algorithm for the ETM. 
The results obtained with this model are promising, since 
it accurate retrieves the reference values, outperforming the 
ETM. Future works should test this model on real clinical 
or experimental data.

Appendix A: Model parameters

See Table 4.
Note that although KTrans is measured in s−1 in the model, 

results are shown in min−1 to facilitate its comparison with 
the literature [8, 15–18].

Appendix B: Numerical study of the diffusive 
term

A small model (36 nodes and 120 timepoints) was created to 
compute its Jacobian matrix using the numerical approach 
based on the finite differences method, obtaining matrix JN , 
and the analytical method proposed in Sect. 2.3 (Eqs. 18, 
19, 20), obtaining matrix JA . The numerical matrix JN was 
considered as ground truth.

Given that most of values in the Jacobian matrix are zero 
or close to zero, we define a new error metric, ARDmax . This 
variable is defined as the quotient of the absolute difference 
between the Jacobian retrieved by each method and the 
maximum value of the numerical Jacobian. To improve the 

Table 4  List of model 
parameters and their units

Parameter Definition Units

Ct Total CA concentration in the RVE mM/mm3

Ce CA concentration in the EES volume within the RVE mM/mm3

Cp CA concentration in blood plasma mM/mm3

KTrans Extravasation rate of CA from blood plasma to the EES 1/s
ve Volume fraction of EES within the RVE 1
vp Volume fraction of plasma within the RVE 1
Deff Effective diffusion coefficient mm2∕s

D Diffusion coefficient in free medium mm2∕s
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accuracy of the metric, we evaluate it for every nodal con-
centration for each nodal variable and each timepoint 
(Eq. 22). E.g., for KTrans , we compute this metric for every 
nodal concentration for a certain timepoint ( ti ) for a certain 
nodal variable ( KTrans

j
):

Figure 7 shows the error distribution of the analytical 
method with respect to the numerical one. The KTrans 
and vp Jacobian matrices show below 0.5% of error 
and 97% of the elements in the ve matrix show an error 
below 2%, what proves the accuracy of the analytical 
method.

(22)ARDmax

ti
j
=

‖JAtij − JN
ti
j
‖

Max(JN
ti
j
)

Appendix C: Benchmark problem: testing 
the influence of the axisymmetric geometry 
on convergence

An additional simulation was generated to test the influence 
of the axisymmetric geometry on the convergence issues 
reported in Sect. 3.1. The geometry was modified to sup-
press this symmetry, while the distributions of parameters 
were kept constant: KTrans = 0.2  min-1 in the rim and 0.05 
min−1 in the core; a constant value of ve equal to 0.5 in the 
whole model; and vp = 0.05 in the rim and 0.005 in the core. 
The initial seed was a random distribution of values similar 
to the one set in Sect. 3.1: between 0.4 min−1 and 0, for 
KTrans ; between 0.2 and 0.8 for ve ; and between 0 and 0.1 
for vp . Ten different simulations were computed to evalu-
ate the influence of the initial seed on the results. All of 
them converged to very similar values, validating the results 
obtained (Table 5).

Despite that the D-ETM error the metrics in Table 5 
show higher values than those obtained in Table 1, it still 
outperforms the ETM, especially on the KTrans map. The 
ETM, on the other hand, shows lower error in this case. 
This can be explained by the homogeneity in the parameters 
maps (Fig. 8). The reference maps in the benchmark prob-
lem (Fig. 4) were heterogeneous, generating concentration 
gradients between adjacent elements within the vascular-
ized region that produced diffusion fluxes. This diffusive 
process impacted on the parameters returned by the ETM, as 
explained in Sect. 3.1. In this case, the homogeneity on the 
parameters distributions avoids the influence of diffusion in 
the vascularized rim, what benefits the ETM.

Fig. 7  Histogram of the metric ARD
max

 measured in the small model 
proposed. For KTrans and v

p
 , the error is below 0.5%, while around 

97% of the values for v
e
 are below 2%

Table 5  Comparison of error 
metrics between the D-ETM 
and the ETM for the non 
symmetric geometry of the 
benchmark problem

The absolute error corresponds to the mean value of the model. KTrans absolute error is measured in min−1

D-ETM ETM

Absolute error Fraction of nodes error < 
threshold (%)

Absolute error Fraction of nodes 
error < threshold 
(%)

KTrans 1.14E-02 64.58 2.69E-02 45.03
ve 1.02E-01 56.14 1.73E+06 71.07
vp 8.45E-04 78.79 5.56E-03 77.71
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