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Abstract
It was in early December 2019 that the terrible news of the outbreak of new coronavirus disease (Covid-19) was reported 
by the world media, which appeared in Wuhan, China, and is rapidly spreading to other parts of China and several overseas 
countries. In the field of infectious diseases, modeling, evaluating, and predicting the rate of disease transmission are very 
important for epidemic prevention and control. Several preliminary mathematical models for Covid-19 are formulated by 
various international study groups. In this article, the SEIHR(D) compartmental model is proposed to study this epidemic 
and the factors affecting it, including vaccination. The proposed model can be used to compute the trajectory of the spread 
of the disease in different countries. Most importantly, it can be used to predict the impact of different inhibition strategies 
on the development of Covid-19. A computational approach is applied to solve the offered model utilizing the Galerkin 
method based on the moving least squares approximation constructed on a set of scattered points as a locally weighted least 
square polynomial fitting. As the method does not need any background meshes, its algorithm can be easily implemented on 
computers. Finally, illustrative examples clearly show the reliability and efficiency of the new technique and the obtained 
results are in good agreement with the known facts about the Covid-19 pandemic.

Keywords SEIHR(D)-compartment model · Covid-19 pandemic · Moving least squares · Galerkin method · Meshless 
method · Integral equation
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1 Introduction

Coronaviruses are RNA single-stranded positive viruses 
about 26–32 kilobytes in size and covered with symmetrical 
polyhedral particles approximately 80–200 nm in diameter. 
These types of viruses have a wide range of hosts, including 
birds and wild animals, infect wild and domestic mammals, 

which can be infected humans through animal agents [15, 
54]. Most human coronaviruses usually cause relatively mild 
respiratory illness [25]. The coronavirus family is divided 
into four genera: �, �, � , �-Cov. The �, �-Cov can infect mam-
mals, while � , �-Cov tend to infect birds [28]. Six species of 
human viruses have been reported since the 1960s. Four of 
them (229E and NL63 of type � and HKU1 and OC43 of 
type � ) cause mild illnesses such as colds and gastrointes-
tinal infections [56]. However, two types of coronaviruses, 
SARS-Cov and MERS-Cov, may cause severe illness and 
eventually death [58].

The SARS virus, thought to be spread by bats in China, 
created a global SARS epidemic in 2002 that killed about 
800 people. Coronavirus SARS causes acute and severe 
respiratory syndrome in patients [46]. The outbreak of the 
coronavirus Mers in 2012, known as Middle East Respira-
tory Syndrome, killed 858 people in the Middle East. A new 
coronavirus has been identified to cause respiratory illness, 
such as atypical pneumonia, in humans. This disease, with 
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the interim name “2019-nCov acute respiratory disease 
(ARD)” (official name: Covid-19), is first detected in the 
winter month of December 2019 in Wuhan city with a popu-
lation of 11 million people in Hubei Province, China. The 
2019-nCov is believed to be zoonotic in origin, from bats to 
intermediate hosts to humans, and its initiation is geographi-
cally associated, but with uncertainty, with the Huanan Sea-
food Market in Wuhan.

Covid-19 features mild symptoms in most cases, and 
short serial intervals [40, 60] are similar to the pandemic in 
influenza, rather than other coronaviruses. Therefore, it may 
be reasonable to look for the 1918 modeling framework in 
the influenza epidemic history in London, United Kingdom 
[29]. To model the spread of a disease in a population, a 
very logical choice is to use compartmental models. In such 
models, the population is divided into compartments that 
show the progression of the disease. To better understand 
the dynamics of Covid-19, researchers have proposed sev-
eral models. A mathematical model incorporating the pres-
ence of undetected infectious cases, sanitizing conditions 
of hospitalized cases, and the fraction of detected cases was 
proposed in [31]. Yang and Wang [59] gave an SEIR model 
which incorporating environment-to-human and human-to-
human transmission routes. The effect of delay in diagno-
sis on disease transmission with a deterministic model is 
investigated in [42]. The authors reported that increasing 
the proportion of timely diagnosis is not sufficient for the 
eradication of Covid-19 but can effectively reduce the trans-
mission risk.

The compartment models based on partial differential 
equations (PDEs) are significantly less common than con-
ventional ordinary differential equation (ODE) models, 
especially due to the increased hardness and time involved 
in execution and numerical solution. However, such addi-
tional costs are offset by the fact that PDE models natu-
rally store spatial information, which makes it possible to 
continuously describe spatio-temporal dynamics with the 
potential for geographical features, population heterogene-
ity, and multidimensional dynamics. In fact, recent research 
shows that the release of Covid-19 offers multidisciplinary 
characteristics ranging from the scale of the virus and the 
individual immune system to the collective behavior of the 
entire population [6]. For the scale of virus transmission 
between individuals, there are studies such as the area of 
potential infection produced by cough [64] or the spread of 
the virus in a built environment [39]. On a smaller scale, 
the anti-viral effects can even be studied with ultraviolet 
light [63]. The space–time-dependent model of Covid-19 
has been solved [9, 24, 51].

In recent years, the main focus of the applications of 
meshless methods seems to have shifted from scattered 
data approximation to computational mathematics [12, 13]. 
The most usual basic meshfree methods are known in the 

literature as radial basis functions (RBFs) and the moving 
least squares (MLS) methods. The MLS scheme, as a general 
case of Shepard’s method, has been introduced by Lancaster 
and Salkauskas [32]. The MLS consists of a local weighted 
least squares fitting, valid on a small neighborhood of a point 
and only based on the information provided by its closest 
points. The MLS algorithm involves a single independent 
variable weight function regardless of the dimension of the 
problem, so applying them in higher dimensions is simple. 
A valuable advantage of using the MLS approximation is 
that it sets up and solves many small systems, instead of a 
single, but large system [17, 55].

We would like to review some applications of meshless 
methods in various problems of computational mathemat-
ics. The Galerkin boundary node method [37, 38] has been 
utilized for two-dimensional exterior Neumann problems. 
Element-free Galerkin methods [7] have been given to 
solve the elasticity and heat conduction problems. The local 
boundary integral equation method [45] has been applied to 
solve the problem of elasticity. The RBF method [10] has 
been developed for solving coupled Burgers’ equations [43], 
hyperbolic PDEs [44], the heat conduction equation [19, 
22], nonhomogeneous elastic problems [23], inverse wave 
propagation problems [53] fracture mechanics equations 
[52] and hyperbolic conservation laws [26, 27]. The mesh-
less discrete collocation schemes have been investigated for 
solving two-dimensional weakly singular integral equations 
[3, 4]. Authors of [20, 21] have investigated a domain-type 
RBF collocation method to solve special integro-differential 
models as fractional diffusion models. The reproducing ker-
nel method has been applied for solving integro-differential 
equations [1, 2], an MLS-based Galerkin meshless method 
[5, 36] has been utilized to solve logarithmic boundary inte-
gral equations.

In the current work, we present a time-dependent 
SEIHR(D) compartmental model for Covid-19 disease, 
including a system of ODEs. The effect of vaccination is also 
investigated in this model by adding a new compartment. 
This article gives a computational scheme based on the MLS 
method for solving the presented mathematical model for 
Covid-19. To start the method, we first reduce the system 
of ODEs derived from SEIHR(D) model to equivalent to 
a system of Volterra integral equations. Subsequently, the 
solution of the mentioned system of Volterra integral equa-
tions is estimated by the discrete Galerkin method together 
with the shape functions of the MLS constructed on a set of 
nodal points as a basis. The numerical scheme developed 
in the current paper utilizes the non-uniform Gauss–Leg-
endre quadrature rule to estimate all integrals in the method. 
We are also interested in studying the dynamics of viruses 
spread in specific areas by a system of PDEs. Therefore, 
we extend the proposed scheme to a space–time-dependent 
SEIHR(D) model for Covid-19 on two-dimensional space 
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domains. Traditional numerical methods to solve PDE prob-
lems of this type in space dimensions ≥ 2 , such as the finite 
element method, use an underlying mesh (e.g., a triangula-
tion) for the definition of basis functions or elements [18]. 
Developing and reconstructing a mesh often represent a 
significant hurdle to accomplish these methods. Since the 
offered scheme does not require any mesh generations on 
the domain, it is free from these difficulties.

In the following, we consider the outline of the article. 
In Sect. 2, we propose a compartmental model for Covid-
19 disease. In Sect. 3 reviews some of the basic formula-
tions and properties of the MLS approximation. In Sect. 4, 
we present a numerical method for solving the time and 
space–time-dependent SEIHR(D)-compartment model 
based on the MLS approximation and the Gauss–Legendre 
formula in the Galerkin method. We consider illustrated 
examples in Sect. 5. Finally, the conclusion of the paper is 
given in Sect. 6.

2  Covid‑19 mathematical model

When we use a mathematical model to discuss the dynam-
ics of the progression and transmission of a particular dis-
ease in a community, it can be used to consider different 
ways to control this disease. Although social, political and 
economic factors have a special role in planning the health 
principles of a society, the use of mathematical models has 
a very important role in decision making. As one of the 
first academic works in the field of mathematical models 
of diseases, Daniel Bernoulli and Jean Le Rond d’Alembert 
argued for a smallpox vaccination model in the late 1700s [8, 
14]. In 1927, Kermack and McKendrick proposed a simple 
mathematical model to study the dynamics of the spread 
of infectious diseases [47]. In this model, the people who 
live in a community are divided into three groups which are 
known as the SIR model.

To model the Covid-19 pandemic, we consider six com-
partments for people in a community as follows. Susceptible, 
indicated by S, includes those who are healthy and can get 
a disease. Exposed, indicated by E, includes those who are 
infected and can transmit the disease, but they have not been 
identified as patients yet by a standard test for Covid-19. 
Infective, indicated by I, includes those who are infected 
whose test results are positive for the disease and can also 
transmit the disease. Hospitalized, indicated by H, includes 
those who are hospitalized. Recovered, indicated by R, 
includes people who have recovered from the disease and are 
immune to it. Deaths, indicated by D, include those who are 
dead. The progression of the disease is shown schematically 
in Fig. 1. Based on the clinical progression of the disease, 
epidemiological status of the individuals and intervention 
measures (including government measures, segregation, 

protection, etc.), we propose a deterministic Covid-19 trans-
mission model.

Let N(t) denote the sum of the total population, i.e.,

The population of susceptible individuals in group S is 
decreased by the exposed individuals in group E (at the rate 
�(t) ), infective individuals in group I (at a rate �(t) ) and 
hospitalized individuals in group H (at the rate � ), so that

the initial population of these people is S(0) = s0.
It should be noted that the parameters �(t) , �(t) and � are 

the average number of contacts per person per time, multi-
plied by the probability of disease transmission in contact 
between a susceptible with an exposed, an infectious and a 
hospitalized, respectively. �(t) usually has a downward trend 
over time, the amount of which depends generally on pub-
lic awareness, government measures, quarantine, medical 
facilities and health principles. �(t) also depends on similar 
factors in some way, especially how to quarantine of infec-
tious people. So, it can be considered as a descending func-
tion in terms of time. Since infectious people after diagnosis 
generally have to be in home quarantine and, therefore, their 
number of contacts with other people is limited, �(t) is cho-
sen smaller with less changes over time compared to �(t) . As 
people who are admitted to the hospital are only in contact 
with the treatment staff, � is selected a small fixed number.

The population of exposed individuals in group E is gen-
erated by susceptible individuals in group S and decreases 
as the disease progresses, recovery and death in group E (at 
the rates �(t) , � and � ). Hence,

where the initial population of this group is E(0) = e0.
The rate �(t) as a diagnostic parameter can be considered 

as ascending function respect to time, because the diagnostic 
parameter increases during the course of the disease due to 

N(t) = S(t) + E(t) + I(t) + H(t) + R(t).

(1)
dS(t)

dt
= −(�(t)E(t) + �(t)I(t) + �H(t))

S(t)

N(t)
,

(2)

dE(t)

dt
= (�(t)E(t) + �(t)I(t) + �H(t))

S(t)

N(t)
− �(t)E(t) − (� + �)E(t),

Fig. 1  The proposed compartmental epidemic model
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the advancement of facilities, such as laboratory kits. So 
that by increasing �(t) and quarantining known patients, this 
parameter has a significant impact on the prevalence and 
control of Covid-19.

The population of infective individuals in group I is gen-
erated by the disease progresses in group E (at a rate � ). It 
is decreased by recovery, death in group I (at the rates � and 
� ) and with the progression of the disease in this group and 
its transfer to the group H (at a rate �1 ), so

the initial population of this group is I(0) = i0.
The population of hospitalized individuals in group H is 

generated by the disease progresses in group I (at a rate �1 ) 
and decreased by recovery and death in this group (at the 
rates �2 and � ). Thus,

and has an initial population of H(0) = h0.
Based on the above assumptions, the device of differen-

tial equations governing the proposed model is obtained as 
follows:

with initial conditions

(3)
dI(t)

dt
= �(t)E(t) − (� + �)I(t) − �1I(t),

(4)
dH(t)

dt
= �1I(t) −

(
�2 + �

)
H(t),

(5)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dS(t)

dt
= −(�(t)E(t) + �(t)I(t) + �H(t))

S(t)

N(t)
,

dE(t)

dt
= (�(t)E(t) + �(t)I(t) + �H(t))

S(t)

N(t)
− �(t)E(t) − (� + �)E(t),

dI(t)

dt
= �(t)E(t) − (� + �)I(t) − �1I(t),

dH(t)

dt
= �1I(t) −

�
�2 + �

�
H(t),

S(0) = s0, E(0) = e0, I(0) = i0 and H(0) = h0.

Since births and natural deaths are not considered during 
this disease period, N(t) is equal to the initial population, 
i.e., N0 , regardless of time.

The population of recovered individuals in group R is 
generated by the recovery in group E (at a rate � ), recovery 
in group I (at a rate � ) and recovered individuals in group H 
(at a rate �2 ), so that

The initial population recovered from the disease is 
R(0) = r0.

The population of deceased individuals in group D is 
generated by death in group E (at a rate � ), death in group I 
(at a rate � ) and deceased individuals in group H (at a rate 
� ). Thus,

where D(0) = d0 is the number of people who died at the 
initial time.

Therefore, the number of people who have recovered 
and died of the disease can be obtained from the following 
device:

with the conditions

The parameters of the model are listed in Table 1 and the 
unit of all the parameters is day−1.

Remark 1 Here the question arises, can an infectious disease 
attack a population that is in a static population situation 

(6)
dR(t)

dt
= �E(t) + �I(t) + �2H(t).

(7)
dD(t)

dt
= �E(t) + �I(t) + �H(t),

(8)

⎧⎪⎨⎪⎩

dR(t)

dt
= �E(t) + �I(t) + �2H(t),

dD(t)

dt
= �E(t) + �I(t) + �H(t),

R(0) = r0 and D(0) = d0.

Table 1  The parameters of the 
SEIHR(D) model

Symbol Interpretation

�(t) The transmission rate of disease from exposed individuals at the time t
�(t) The transmission rate of disease from infective individuals at the time t
� The transmission rate of disease from hospitalized individuals
�(t) Rate of disease progression of exposed individuals at the time t
� The death rate of exposed individuals
� The recovery rate of exposed individuals
� The recovery rate of infective individuals
� The death rate of infective individuals
�
1

Rate of disease progression of infective individuals
�
2

The recovery rate of hospitalized individuals
� The death rate of hospitalized individuals
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with all susceptible individuals? To answer this question, 
the reproduction number is mathematically defined as the 
expected secondary number produced by a typical infected 
individual during its entire infectious period in a susceptible 
population. Explaining of the time course of an epidemic can 
be partly achieved by estimating the effective reproduction 
number Rt defined as the actual average number of second-
ary cases per primary case at calendar time t > 0 , which is 
given for a certain susceptible population fraction S/N by 
[16]

Note that Rt shows time-dependent variation due to the 
decline in susceptible individuals (intrinsic factors) and the 
implementation of control measures (extrinsic factors). If 
Rt ≤ 1 , it suggests that the epidemic is in decline and may 
be regarded as being under control at time t and conversely 
this situation occurs when Rt > 1 . The basic reproduction 
number R0 is considered by evaluating at the trivial disease-
free equilibrium ( S = 1 and E, I,H,R,D = 0 ), i.e.,

Indeed, the quantity R0 must be bigger than 1 to occur an 
epidemic in a susceptible population.

The basic reproductive number is affected by several fac-
tors, such as [34]:

✓ The rate of contact in the host population.
✓ The probability of infection being transmitted during 
contact.
✓ The duration of infectiousness.

Derivation and discussion of the basic reproduction number 
make evaluating the effectiveness of different containment 
measures more clear, as the dependence of transmission in 
terms of the model parameters becomes explicit (for more 
details, see [11, 16])

2.1  Vaccination effect on the model

Vaccines to prevent Covid-19 infection are considered the 
most promising approach for curbing the Covid-19 pan-
demic. All vaccine platforms are designed to train our 
immune system. Currently, there are several Covid-19 
vaccines available around the world, which are generally 

(9)Rt =

(
�

� + � + �
+

��

(� + � + �)(� + � + �1)
+

���1

(� + � + �)(� + � + �1)(� + �2)

)
S

N
.

(10)R0 =

(
�

� + � + �
+

��

(� + � + �)(� + � + �1)
+

���1

(� + � + �)(� + � + �1)(� + �2)

)
.

divided into four categories including inactivated virus vac-
cine, viral vector vaccine, encapsulated mRNA vaccine and 
recombinant protein vaccine. The World Health Organiza-
tion (WHO) maintains an updated list of vaccine candidates 
under evaluation [62]. All vaccines approved by WHO are 
highly effective, substantially reduce the risk of Covid-19, 
especially severe diseases, and have been associated with 
substantial reductions in Covid-19-associated hospitaliza-
tions and deaths [48–50]. In addition to direct reductions 
in Covid-19-associated morbidity and mortality, vaccina-
tion has been associated with lower non-Covid-19 mortality 

rates, supporting evidence that Covid-19 vaccination does 
not increase the risk of death [57].

To observe the effect of the vaccination on the Covid-19 
pandemic, especially the infected people, we add the vac-
cination compartment to the previous model and apply the 
necessary changes to the dynamic system. The schematic 
of the model is drawn in Fig. 2. Let susceptible people be 
vaccinated at the rate v1 , so its effect on the equation (1) can 
be considered as follows:

On the other hand, we assume that the used vaccine has 
an inefficacy rate v2 and an efficacy rate v3 . Therefore, vac-
cinated people with the rates v2�(t) , v2�(t) and v2� may be 
re-infected in contact with exposed individuals, infected 
individuals and hospitalized individuals and enter the com-
partment of exposed people, and also the vaccinated people 

(11)
dS(t)

dt
= −(�(t)E(t) + �(t)I(t) + �H(t))

S(t)

N(t)
− v1S(t).

Fig. 2  The proposed compartmental epidemic model with vaccina-
tion effect
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with the rate v3 recover and become immune. Susceptible 
people who receive the vaccine enter the compartment of 
the vaccinated. The differential equation describing the com-
partment of vaccinated people is given as

with the initial condition V(0) = v0 . For the differential equa-
tions describing recovered and exposed people, we have the 
following changes

and

2.2  Space–time model for Covid‑19

We investigate the SEIHR(D) model when the effect of the 
space is also considered on the spread of the disease. This 
model enables the continuous description of spatio-temporal 
dynamics with the potential of geographic features, popula-
tion heterogeneity and multidimensional dynamics. In fact, 
this model states that the movement of people in each com-
partment affects the progression of the disease. Let Ω ⊂ ℝ

2 
be a two-dimensional simply connected domain with the 
boundary �Ω and [0, tf ] denote a generic time interval. There-
fore, by making the functions dependent on space as well as 
time, the following system of coupled PDEs over Ω × [0, tf ] 
is given to simulate a space–time model for Covid-19:

where �(t, �) is the compact vector notation to represent the 
compartments as follows:

where the unknown functions depend on both the time t and 
the space � . The given function � is specified values on the 
Neumann condition on the boundary �Ω and n is the unit 

(12)

dV(t)

dt
= v1S(t) − v2(�(t)E(t) + �(t)I(t) + �H(t))

V(t)

N(t)
− v3V(t),

(13)

dE(t)

dt
= (�(t)E(t) + �(t)I(t) + �H(t))

S(t)

N(t)
− �(t)E(t)

− (� + �)E(t) + v2(�(t)E(t) + �(t)I(t) + �H(t))
V(t)

N(t)
,

(14)
dR(t)

dt
= �E(t) + �I(t) + �2H(t) + v3V(t).

(15)

⎧⎪⎪⎨⎪⎪⎩

��(t,�)

�t
= (� + �(�(t, �)))�(t, �) + ∇ ⋅ (�∇�(t, �)), (t, �) ∈ [0, tf ] × Ω,

�∇�(t, �) ⋅ n = �(t, �), (t, �) ∈ [0, tf ] × �Ω,

�(0, �) = �0(�), � ∈ Ω,

�(t, �) = [S(t, �),E(t, �), I(t, �),H(t, �),R(t, �),D(t, �)]T ,

outward vector to �Ω . The tensors � , � and � are defined 
according to the particular dynamics of the system, i.e.,

and

where

In most applications, � = �(t, �) , i.e., diffusion is time 
dependent, heterogeneous, and anisotropic. In addition, we 
consider the following homogeneous Neumann boundary 
conditions:

3  The MLS approximation

Given data values of the function u(�) at certain data sites 
X = {�1,… , �N} in the closed domain Ω ⊂ ℝ

d . The idea 
of the MLS method is to approximate u(�) for every point 
� ∈ Ω in a weighted least squares sense. For � ∈ Ω ⊂ ℝ

d , 
the value su,X(�) of the MLS approximation is given by the 
solution of

(16)

� =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 − �(t, �) − � − � 0 0 0 0

0 �(t, �) − � − � − �1 0 0 0

0 0 �1 − �2 − � 0 0

0 � � �2 0 0

0 � � � 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

,

(17)� =

⎡⎢⎢⎢⎢⎢⎢⎣

0 − �(t, �)S − �(t, �)S − �S 0 0

0 �(t, �)S �(t, �)S �S 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

,

(18)� =

⎡⎢⎢⎢⎢⎢⎢⎣

�S 0 0 0 0 0

0 �E 0 0 0 0

0 0 �I 0 0 0

0 0 0 �H 0 0

0 0 0 0 �R 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

,

(19)�j =

[
v
j
xx v

j
xy

vi
yx

vi
yy

]
, j = S,E, I,H,R.

(20)(�∇�) ⋅ n = 0.
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where w ∶ Ω × Ω → [0,∞] is a continuous weight func-
tion and Πq(ℝ

d) is the linear space of polynomials of total 
degree less than or equal to q in d-variables with the basis 
{p1,… , pJ} [55]. We are mainly interested in the local con-
tinuous weight function w, which gets smaller as its argu-
ments move away from each other. Ideally, w vanishes for 
arguments �, � ∈ Ω with ‖� − �‖2 greater than a certain 
threshold. Therefore, we can assume that

where Φ is  a  radial  function,  meaning that 
Φ(�) = �(‖�‖2), � ∈ ℝ

d , in which � is a univariate and 
non-negative function, � ∶ [0,∞) → ℝ , with the property 
�(r) = 0 when r ≥ 1 [55].

In the following theorem, we will find a direct approach 
to obtain the solution of the problem (21), but prior to that 
we present the following definition.

Definition 3.1  [55]  We cal l  a  set  of  points 
X = {�1,… , �N} ⊂ ℝ

d q-unisolvent if the only polynomial 
of total degree at most q, interpolating zero data on X is the 
zero polynomial.

Theorem 3.1 [55] Suppose that for every � ∈ Ω the set 
{�1,… , �N} is q-unisolvent. In this situation, problem (21) 
is uniquely solvable and the solution su,X(�) can be repre-
sented as

where the basis functions �i(�) are determined by

in which the coefficients z1,… , zJ are a unique solution of

Remark 2 We call the basis functions �i(�) as the shape 
functions of the MLS method, corresponding to data 

(21)min

{
N∑
i=1

[u(�i) − p(�i)]
2w(�, �i) ∶ p ∈ Πq(ℝ

d)

}
,

(22)w(�, �) = Φ𝛿(� − �) = 𝜙

�‖� − �‖2
𝛿

�
, 𝛿 > 0,

(23)su,X(�) =

N∑
i=1

�i(�)u(�i),

(24)�i(�) = w(�, �i)

J∑
k=1

zkpk(�i),

(25)
J∑

k=1

zk

N∑
i=1

w(�, �i)pk(�i)pl(�i) = pl(�), 1 ≤ l ≤ J.

sites X = {�1,… , �N} and the weight function w. If 
w(�, �i) ∈ Cr(Ω) and pk ∈ Cs(Ω) then �i(�) ∈ Cmin{r,s}(Ω) 
and so su,X(�) ∈ Cmin{r,s}(Ω) [55].

The Gaussian and spline weight functions are applied in 
the present work as

where dj =∥ � − �j ∥2 (the Euclidean distance between � 
and �j ), � is a constant controlling the shape of the weight 
function w(�, �j) and � is the size of the support domain. To 
obtain a general algorithm of the MLS approximation, we 
formulate the expansion (23) with the matrix form

where

Now, to determine Ψ(�) , we define the matrices � and �(�) 
as

where

As a conclusion from Theorem 3.1, we have

or

where the matrices A(�) and B(�) are defined by

Remark 3 It should be noted that the moving least squares 
approximation based on a vector of the d-variable com-
plete monomial basis polynomials has inherent instability. 
The shifted and scaled polynomial basis function can be 
used to improve the stability of the MLS approximation 

(26)w(�, �j) =

{
exp[−(dj∕𝛼)

2]−exp[−(𝛿∕𝛼)2]

1−exp[−(𝛿∕𝛼)2]
, 0 ≤ dj ≤ 𝛿,

0, dj > 𝛿,

(27)su,X(�) = UtΨ(�),

Ψ(�) = [�1(�),… ,�N(�)]
t,U = [u(�1),… , u(�N)]

t.

�t = [�t(�1), �
t(�2),… , �t(�N)]J×N , �(�) =

⎡⎢⎢⎣

w(�, �1) ⋯ 0

⋯ ⋱ ⋯

0 ⋯ w(�, �N)

⎤⎥⎥⎦N×N
,

�(�) = [p1(�), p2(�),… , pJ(�)]
t.

(28)Ψt(�) = �t(�)A−1(�)B(�),

(29)�j(�) =

J∑
k=1

�k(�)[A
−1(�)B(�)]kj,

(30)A(�) =�t�� = B(�)� =

N∑
j=1

w(�, �j)�(�j)�
t(�j),

(31)B(�) =�t� = [�(�, �1)�(�1),w(�, �2)�(�2),… ,w(�, �
N
)�(�

n
)].
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[33]. In practical computations, the argument � in �(�) is 
usually replaced by �−�

e

�
 to shift the origin to a fixed point 

�e = [xe
1
,… , xe

d
]t on ℜ(�) with scale factor 𝜎 > 0 , where 

ℜ(�) denotes the influence domain of � [37]. The readers can 
obtain more useful details about the stabilized MLS methods 
in the nice research works [35].

4  The solution of the Covid‑19 model

In this section, we investigate a method to obtain the numeri-
cal solution of SEIHR(D) compartment models (5) and (15).

4.1  Solving time‑dependent SEIHR(D) model

The differential equations can be converted to weaker forms 
such as the integral equations, because this allows the 
boundary conditions of the problem to enter the correspond-
ing integral equations and no longer requires an approach to 
work with boundary conditions. Thus, we first reduce the 
system of differential equations (5) to the system of Volterra 
integral equations. By integrating from the differential equa-
tion (1) from 0 to t, we have

Replacing (32) in (2) yields the following integro-differential 
equations:

We integrate again from the both sides of (33), thus

Similarly, we obtain the following integral equation by inte-
grating from (3):

Using (4), we get I(t) by

(32)S(t) = s0 exp

(
−

1

N0 ∫
t

0

((�(�)E(�) + �(�)I(�) + �H(�)))d�

)
.

(33)

dE

dt
=

s0

N0

(�(t)E(t) + �(t)I(t) + �H(t))

× exp

(
−

1

N0
∫

t

0

(�(�)E(�) + �(�)I(�) + �H(�))d�

)
− �(t)E(t) − (� + �)E(t).

(34)

E(t) = − s0 exp

(
−

1

N0 ∫
t

0

(
�(�)E(�) +

(
� + �(�)

(�2 + �)

�1
H(�)

)
d�

−
�(t)

N0�1
H(t)

))
− ∫

t

0

(�(�) + � + �)E(�)d� + e0.

(35)I(t) = i0 + ∫
t

0

(
�(�)E(�) −

(
� + � + �1

)
I(�)

)
d�.

(36)I(t) =
1

�1

dH

dt
+

�2 + �

�1
H(t).

Now, combining (35) and (36) concludes

Therefore, we have

Finally, the following integral equations are obtained based 
on the use of (34) and (38):

and

where

To apply the presented method, we need N nodal points 
{t1,… , tN} selected in the interval [0, tf ] and estimate the 
unknown functions E(t) and H(t) by the MLS approxima-
tion as follows:

 Let V be the framework of some complete function space 
on [0, tf ] with the inner product

(37)

1

�1

dH

dt
+

�2 + �

�1
H(t) = ∫

t

0

(
�(�)E(�)

−
(� + � + �1)(�2 + �)

�1
H(�)

)
d�

−
(� + � + �1)

�1

(
H(t) − h0

)
+ i0.

(38)

H(t) =�1 ∫
t

0

(
∫

�

0

(
�(y)E(y) − (� + � + �1)(�2 + �)H(y)

)
dy

−
(
(�2 + �) + �1(� + � + �1)

)
H(�)

)
d�

+
(
�1i0 + (� + � + �1)h0

)
t.

(39)
E(t) = − s0 exp

(
−
a(t)

N0

H(t) −
1

N0 ∫
t

0

(�(�)E(�) + bH(�))d�

)

− ∫
t

0

(�(�) + c)E(�)d� + f1(t),

(40)H(t) = �1 ∫
t

0

(
∫

�

0

(�(y)E(y) − dH(y))dy − eH(�)

)
d� + f2(t),

a(t) =
�(t)
�1

, b = � + �
(�2 + �)

�1
, c = � + �,

d = (� + � + �1)(�2 + �), e = (�2 + �) + �1(� + � + �1),

f1(t) = e0, f2(t) =
(

�1i0 + (� + � + �1)h0
)

t.

(41)E(t) ≈

N∑
i=1

c̄1i𝜓i(t), H(t) ≈

N∑
i=1

c̄2i𝜓i(t), t ∈ [0, tf ].
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By replacing the expansions (4.1) in the integral equations 
(39) and (40) instead of E(t) and H(t) and taking inner prod-
uct < .,𝜓i > upon both sides, we obtain

and

where j = 1,… ,N  . The discrete Galerkin method is 
obtained from the numerical integration of all integrals in 
equations (43) and (44) related to the Galerkin method.

To approximate integrals, we use the composite mN-point 
Gauss–Legendre rule with M uniform subdivisions relative 
to the coefficients {vk} and weights {wk} in interval [−1, 1] . 
Suppose h ∈ CmN [0, tf ] , then

where Δt = tf

M
 and �q

k
=

Δt

2
vk +

(
q −

1

2

)
Δt.

It should be noted that the shape functions �j are several 
times continuously differentiable by selecting an appropriate 
weight function w. Therefore, we can apply the quadrature 
formula (45) with mN-point and M uniform subdivisions to 
calculate the integral products as follows:

(42)< f , g >= ∫
tf

0

f (t)g(t)dt, f , g ∈ V .

(43)

N∑
i=1

c̄1i ∫
tf

0

𝜓i(t)𝜓j(t)dt = −s0 ∫
tf

0

exp

(
−

(
a(t)

N0

N∑
i=1

c̄2i𝜓i(t)

+
1

N0
∫

t

0

(
𝛼(𝜏)

N∑
i=1

c̄1i𝜓i(𝜏) + b

N∑
i=1

c̄2i𝜓i(𝜏)

))
d𝜏

)
𝜓j(t)dt

−

N∑
i=1

c̄1i ∫
tf

0 ∫
t

0

(𝜌(𝜏) + c)𝜓i(𝜏)𝜓j(t)d𝜏dt + ∫
tf

0

f1(t)𝜓j(t)dt,

(44)

N
∑

i=1
c̄2i ∫

tf

0
�i(t)�j(t)dt

= �1 ∫

tf

0 ∫

t

0

(

∫

�

0

(

�(y)
N
∑

i=1
c̄1i�i(y) − d

N
∑

i=1
c̄2i�i(y)

)

dy

− e
N
∑

i=1
c̄2i�i(�)

)

d��j(t)dt + ∫

tf

0
f2(t)�j(t)dt,

(45)∫
tf

0

h(t)dt =
Δt

2

mN∑
k=1

wk

M∑
q=1

h(�
q

k
) +O

(
1

M2mN

)
,

and

By applying the scheme (45) for internal integrals in the 
right hand side of (43), we have

 and

where �pr =
Δ�

2
vr + (p − 1)Δ� and Δ� =

t

M
.

To estimate the remaining integrals in (43), we have

where

and

where

Similarly, we use the integration formula (45) for the inte-
grals in the right hand side of (44) as follows:

(46)

⟨�i,�j⟩ = ∫
tf

0

�i(t)�j(t)dt ≈
Δt

2

M�
q=1

mN�
k=1

wk�i(�
q

k
)�j(�

q

k
),

(47)
∫

tf

0

f
�
(t)�j(t)dt ≈

Δt

2

M∑
q=1

mN∑
k=1

wkf�(�
q

k
)�j(�

q

k
), � = 1, 2.

(48)

∫
t

0

(
𝛼(𝜏)

N∑
i=1

c̄1i𝜓i(𝜏) + b

N∑
i=1

c̄2i𝜓i(𝜏)

)
d𝜏

≈
Δ𝜏

2

M∑
p=1

mN∑
r=1

wr

(
𝛼(𝜂p

r
)

N∑
i=1

c̄1i𝜓i(𝜂
p
r
) + b

N∑
i=1

c̄2i𝜓i(𝜂
p
r
)

)
,

(49)
∫

t

0

(�(�) + c)�i(�)d� ≈
Δ�

2

M∑
p=1

mN∑
r=1

wr

(
�(�p

r
) + c

)
�i(�

p
r
),

(50)
∫

tf

0

exp

(
−

(
a(t)

N0

N∑
i=1

c̄2i𝜓i(t) +
1

N0
∫

t

0

(
𝛼(𝜏)

N∑
i=1

c̄1i𝜓i(𝜏) + b

N∑
i=1

c̄2i𝜓i(𝜏)

))
d𝜏

)
𝜓j(t)dt

≈
Δt

2

M∑
q=1

mN∑
k=1

wk exp
(
−I2[𝜂

p
r
, 𝜃

q

k
]
)
𝜓j(𝜃

q

k
),

I2[𝜂
p
r
, 𝜃

q

k
] =

a(𝜃
q

k
)

N0

N∑
i=1

ĉ2i𝜓i(𝜃
q

k
)

+
Δ𝜏(𝜃

q

k
)

2N0

M∑
p=1

mN∑
r=1

wr

(
𝛼(𝜂p

r
)

N∑
i=1

c̄1i𝜓i(𝜂
p
r
) + b

N∑
i=1

c̄2i𝜓i(𝜂
p
r
)

)
,

(51)
∫

tf

0 ∫
t

0

(�(�) + c)�i(�)�j(t)d�dt ≈
Δt

2

M∑
q=1

mN∑
k=1

wkI3[�
p
r
, �

q

k
],

I3[�
p
r
, �

q

k
] =

Δ�(�
q

k
)

2

M∑
p=1

mN∑
r=1

wr

(
�(�p

r
) + c

)
�i(�

p
r
)�j(�

q

k
).
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where

Utilizing these numerical integration schemes in (43) and 
(44) yields the nonlinear system of algebraic equations

and

By solving this nonlinear system of algebraic equations for 
the unknowns {ĉ1i} and {ĉ2i} , the values of E(t) and H(t) at 
any point t ∈ [0, tf ] can be approximated by

Therefore, using the equation (36), the approximation of I(t) 
at the point t ∈ [0, tf ] can be obtained. After that, according 
to the equation (32), we get the approximation of S(t). Now, 
by integrating the sides of the equations (6) and (7), we have

(52)
∫

tf

0
∫

t

0

(
∫

𝜏

0

(
𝜌(y)

N∑
i=1

c̄
1i
𝜓i(y) − d

N∑
i=1

c̄
2i
𝜓i(y)

)
dy − e

N∑
i=1

c̄
2i
𝜓i(𝜏)

)
d𝜏𝜓j(t)dt

≈
Δt

2

M∑
q=1

mN∑
k=1

wk

Δ𝜏(𝜃
q

k
)

2

M∑
p=1

mN∑
r=1

wrI1[𝜂
p
r
, 𝜃

q
1

k
1

(𝜂p
r
)]𝜓j(𝜃

q

k
),

I1[𝜂
p
r
, 𝜃

q1
k1
(𝜂p

r
)] =

Δy(𝜂
p
r )

2

M∑
q1=1

mN∑
k1=1

wk1

(
𝜌(𝜃

q1
k1
(𝜂p

r
))

N∑
i=1

c̄1i𝜓i(𝜃
q1
k1
(𝜂p

r
))

−d

N∑
i=1

c̄2i𝜓i(𝜃
q1
k1
(𝜂p

r
))

)
− e

N∑
i=1

c̄2i𝜓i(𝜂
p
r
).

(53)

Δt

2

N∑
i=1

ĉ
1i

M∑
q=1

mN∑
k=1

wk𝜓i(𝜃
q

k
)𝜓j(𝜃

q

k
)

= −s
0

Δt

2

M∑
q=1

mN∑
k=1

wk exp
(
−I

2
[𝜂p

r
, 𝜃

q

k
]
)
𝜓j(𝜃

q

k
)

−

N∑
i=1

ĉ
1i

Δt

2

M∑
q=1

mN∑
k=1

wkI3[𝜂
p
r
, 𝜃

q

k
]

+
Δt

2

M∑
q=1

mN∑
k=1

wkf1(𝜃
q

k
)𝜓j(𝜃

q

k
),

(54)

Δt

2

N∑
i=1

ĉ2i

M∑
q=1

mN∑
k=1

wk𝜓i(𝜃
q

k
)𝜓j(𝜃

q

k
) = 𝜎1

Δt

2

M∑
q=1

mN∑
k=1

wk

Δ𝜏(𝜃
q

k
)

2

M∑
p=1

mN∑
r=1

wr

× I1[𝜂
p
r
, 𝜃

q1
k1
(𝜂p

r
)]𝜓j(𝜃

q

k
) +

Δt

2

M∑
q=1

mN∑
k=1

wkf2(𝜃
q

k
)𝜓j(𝜃

q

k
).

(55)Ê(t) =

N∑
i=1

ĉ1i𝜓i(t), Ĥ(t) =

N∑
i=1

ĉ2i𝜓i(t) t ∈ [0, tf ].

(56)R(t) = ∫
t

0

(
�E(�) + �I(�) + �2H(�)

)
d� + r0,

and

As a result of the above explanations, the approximations 
of R(t) and D(t) at any point t ∈ [0, tf ] can also be obtained.

Remark 4 For the numerical solution of the mathematical 
model of Covid-19 with the effect of vaccination presented 
in Sect. 4.1, the computations are straightforward similarly 
by approximating V(t) via the MLS method as follows:

4.2  Solving space–time‑dependent SEIHR(D) model

Now, a numerical scheme is presented to solve space–time-
dependent SEIHR(D)-compartment model over a two-
dimensional domain by the meshless local Galerkin method. 
Since the proposed scheme is only independent of the pair-
wise distances between points, it could be easily extended to 
higher dimension problems. We first discrete the time vari-
able by the MLS method and then approximate the resulting 
equation based on the space variable by the MLS method. 
To use the MLS approximation in time domain, according 
to the system (15), it is clear that

with Neumann boundary conditions

Consider Q distinct points T = {t1,… , tQ} in the time 
domain [0, tf ] such that t1 = 0 and tQ = tf  . Utilizing the uni-
variate MLS approximation in respect to the time variable t 
and picking distinct node points {t1,… , tQ} result

(57)D(t) = ∫
t

0

(�E(�) + �I(�) + �H(�))d� + d0.

V(t) ≈

N∑
i=1

ĉ7i𝜓i(t).

(58)

�(t, �) + ∫
t

0

(� + �(�(𝜏, �)))�(𝜏, �)d𝜏

− ∫
t

0

∇.(�∇�(𝜏, �))d𝜏 = �0(�), t ∈ [0, tf ], � = (x, y) ∈ Ω ⊂ ℝ
2,

�∇�(t, �) ⋅ n = 0, (t, �) ∈ [0, tf ] × �Ω.
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Now, the integration rule (45) can be used to compute the 
integral in (59) as

where k = 1,… ,Q . Also, the Neumann boundary conditions 
convert to

Again, the MLS approximation must be applied for the space 
variable � . But before that, we first obtain the weak form of 
the equation (60) as follows:

 where w(�) is a weight function. Using Divergence theorem 
and Neumann boundary conditions (61) yields

(59)

Q∑
�=1

�
�
(tk)�(t� , �) +

Q∑
�=1

∫
tk

0

�
�
(�)

[(
� + �

(
Q∑

�=1

�
�
(�)�(t

�
, �)

))
�(t

�
, �)

− ∇.
(
�∇�(t

�
, �)

)]
d� = �0(�), k = 1,… ,Q.

(60)

Q∑
�=1

�
�
(tk)�(t� , �) +

Δ�

2

Q∑
�=1

M∑
q�=1

mN∑
k�=1

wk���
(�

q�

k�
)

×

[(
� + �

(
Q∑

�=1

�
�
(�

q�

k�
)�(t

�
, �)

))
�(t

�
, �) − ∇.

(
�∇�(t

�
, �)

)]
= �

0
(�),

(61)�

Q∑
𝓁=1

�
𝓁
(tk)∇�(t𝓁 , �) ⋅ n = 0, � ∈ �Ω, k = 1,… ,Q.

(62)

Q∑
�=1

�
�
(tk)∫Ω

�(t
�
, �)w(�)d� +

Δ�

2

Q∑
�=1

M∑
q�=1

mN∑
k�=1

wk���
(�

q�

k�
)

× ∫Ω

[(
� + �

(
Q∑

�=1

�
�
(�

q�

k�
)�(t

�
, �)

))
�(t

�
, �) − ∇.

(
�∇�(t

�
, �)

)]
w(�)d� = ∫Ω
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 To solve the integral equation (63), let X = {�1,… , �N} 
be N nodal points randomly selected on the domain Ω . We 
estimate the unknown function �(t

�
, �) by the MLS approxi-

mation as follows:

where {�1(�),… ,�N(�)} are the shape functions of the 
MLS method corresponding to the set X, and the coefficients 
{�̄(t

�
, �i)} are found by solving the next system.

Replacing the expansion (64) in the integral equation 
(63) instead of �(t

�
, �) and selecting the base of MLS as the 

weight function, we have

For approximating the integrals in the nonlinear system (65), 
we expand the Gauss–Legendre rule to two-dimensional 

(64)�(t
�
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�̄(t
�
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some normal domains. If f (�) ∈ C2mN (Ω) , then the quadra-
ture formula for the double integrals gives

The integral ∫ b

a
F(x)dx can be approximated by a composite 

mN-point Gauss–Legendre rule using M subintervals rela-
tive to the coefficients {vk} and weights {wk} in the interval 
[−1, 1] . Thus, in the x direction, we can write

where Δx = b−a

M
 and �q

k
=

Δx

2
vk + (q −

1

2
)Δx . For each node 

�
q

k
 , the approximate evaluation of the integral F(�q

k
) is car-

ried out by a similar composite Gauss–Legendre quadrature 
rule as

where Δy(�q
k
) =

�2(�
q

k
)−�1(�

q

k
)

M
 and �pr =

Δy

2
vp + (r −

1

2
)Δy.

Utilizing the numerical integration scheme (67) in the 
system (65), we obtain the nonlinear system of algebraic 
equations

where

The solution of the system (69) for the unknowns 
{�̂(t

�
, xi, yi)} eventually leads to the following numerical 

solution, which can be approximated �(t, x, y) at any point 
(t, x, y) ∈ [0, tf ] × Ω as follows:

It should be noted that a traveling wave front for the system 
(15) is defined as a special solution [30, 61]
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�(t, x, y) ≈ �̂N (t, x, y)

=

Q∑
�=1

N∑
i=1

�̂(t� , xi, yi)𝜓i(x, y)𝜓�(t), (t, x, y) ∈ [0, tf ] × Ω.

where parameter c is called the wave speed. Substituting 
(72) into (15) results in the following system for a traveling 
wave front:

It can be shown that if the basic reproduction number R0 > 1 , 
then there exists a critical wave speed c ≥ c∗ [30], where

such that for each c > c∗ , the system (15) admits a non-trivial 
and non-negative traveling wave solution �(�) which satisfies 
the asymptotic boundary conditions

where

Also, if R0 ≤ 1 or c < c∗ , then the system (15) has no non-
trivial and non-negative traveling wave solutions [30]. As 
can be seen, many parameters influence the minimal wave 
speed c∗ , including diffusion coefficients. Changes in these 
parameters can have adverse effects on the performance of 
the presented method, both in terms of stability and accu-
racy, which applying it in such conditions may require spe-
cial strategies.

5  Numerical results

In this section, we present some numerical experiments to 
confirm the accuracy and efficiency of the meshless local 

Galerkin method for solving the system of differential 
equations arisen from the proposed mathematical models 
for the Covid-19 pandemic. The Gaussian weight function 
( � = 3h, � = h∕2 ) through the quadratic basis functions 
and N = 129 scattered data are used. Furthermore, 7-points 
Gauss–Legendre quadrature rule with M = 10 is applied to 
compute the integrals in the scheme.

In the time-dependent SEIHR(D)-compartment model, 
a virus transmission model based on the simulation of 
crowd flow has been presented, to simulate the transmission 
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E(−∞) = I(−∞) = H(−∞) = R(−∞) = D(−∞) = 0.
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process of Covid-19 in a society and to judge how many 
infections will be in the 1000218 people. Here, we assume 
that 1000000 of these people are susceptible to disease, 200 
are infected, including those in the early stages and the rest 
are infected with the disease that has been diagnosed and 
quarantined. In this paper, to solve the proposed model, we 
have considered the period time of 100 days.

As mentioned in Sect. 2, the diagnosis parameter �(t) 
and the transfer parameter �(t) have a significant impact 
on the disease control process. Changes in transmission 
and diagnosis parameters affect the prevalence of the 
disease, disease peaks, as well as the number of infected 
people, deaths and recovered people. In fact, in the time-
dependent SEIHR(D)-compartment model, we consider 

a baseline case in which other cases, made of the differ-
ent values of parameters, are compared to this case. In all 
cases, we give � = 0.009, � = 0.0029,� = 0.001, � = 0.095,

� = 0.262, �
1
= 0.016, �

2
= 0.009, � = 0.470.

Based on the discussion in Sect. 2 about how to choose 
model parameters and factors affecting it, the parameters 
�(t) , �(t) and �(t) are chosen.

For the baseline case, the parameters �(t) , �(t) and �(t) 
are allotted as follows:

Since the basic reproduction number R0 is estimated to be 
approximately 3.5 for the baseline case, Remark 1 satisfies 

�(t) = 0.336e
−

t

30 , �(t) = 0.009e
−

t

40 , �(t) = 0.641854(1 − e
−

t

300 ).

Table 2  Number of people 
exposed and hospitalized 
between 0 and 100 days for the 
baseline case

t 0 10 20 30 40 50 60 70 80 90 100

E(t) 200 1214 2683 2765 1594 588 154 31 5 1 1
H(t) 3 4 22 48 51 31 13 4 1 1 1

Table 3  Prescribed parameters 
for Case 1 in comparison with 
the baseline case

t Baseline case Case 1

�(t) �(t) �(t) �(t) �(t) �(t)

0 0.33647 0.00995 0.00000 0.33647 0.03826 0.00000
10 0.24109 0.00774 0.02104 0.27548 0.03329 0.02104
20 0.17275 0.00603 0.04139 0.22554 0.02897 0.04139
30 0.12378 0.00470 0.06108 0.18466 0.02522 0.06108
40 0.08869 0.00366 0.08012 0.15119 0.02195 0.08012
50 0.06355 0.00285 0.09854 0.12378 0.01910 0.09854
60 0.04553 0.00222 0.11635 0.10134 0.01662 0.11635
70 0.03262 0.00173 0.13358 0.08297 0.01447 0.13358
80 0.02337 0.00134 0.15024 0.06793 0.01259 0.15024
90 0.01675 0.00105 0.16636 0.05561 0.01096 0.16636
100 0.01200 0.00081 0.18194 0.04553 0.00953 0.18194

Fig. 3  Graphs of E(t), I(t) and H(t) for Case 1 in comparison with the baseline case
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that the disease spreads in the susceptible population of the 
baseline case.

As seen in Table 2, exposed individuals have the highest 
incidence of the disease on approximately the 30th day and 
hospitalized individuals have the highest incidence on the 
37th day. Also, the number of infected people peaks on the 
33rd day. Therefore, the health system in the government 
can plan for disease control according to the results obtained 
by these models. In the following, we compare the results 
obtained by the baseline case with five test cases.

Case 1 In this case, the diagnostician parameter �(t) and 
transmission parameters �(t) and �(t) are as follows:

According to Table 3, compared to baseline, we model a 
scenario in which no serious restrictions are imposed on 
the population, this case has a higher transmission rate 
compared to the baseline case. Thus, as shown in Fig. 3, 
the number of infected people in Case 1 is higher than in 
the baseline case. The peak day of the disease is shifted in 

�(t) = 0.336e
−

t

50 , �(t) = 0.038e
−t

72 , �(t) = 0.641854(1 − e
−

t

300 ).

Fig. 4  Number of people deaths and recovery for Case 1 in comparison with the baseline case

Table 4  Number of people 
exposed and hospitalized 
between 0 and 100 days for 
Case 1

t 0 10 20 30 40 50 60 70 80 90 100

E(t) 200 1465 5031 8996 9178 5842 2512 778 183 35 6
H(t) 3 4 34 123 219 223 144 65 22 6 2

Fig. 5  Graphs of E(t), I(t) and H(t) for Case 2 in comparison with the baseline case
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Case 1 compared to the baseline case and people are more 
affected by the disease. As can be seen, the disease disap-
pears in about 70th days in the baseline case, but in Case 
1 the disease lasts until the 90th day. Table 4 shows that 
the peak of the disease in Case 1 is approximately on the 
40th day. Therefore, compared to the baseline case, not only 
the number of infected people has increased, but also the 
duration of the disease, in this case, has increased and this 
prolongs the control of the disease. Figure 4 (left) shows 
the number of people who died due to this disease, and as 
can be seen the number of deaths in Case 1 is more than the 
baseline case. Also, Fig. 4 (right) shows the comparison of 
the number of recovered people in the baseline case with 

Case 1, according to the number of infected people in the 
baseline case, the percentage of recovered people, in this 
case, is better than Case 1.

Case 2 Consider the diagnostician parameter �(t) and trans-
mission parameters �(t) and �(t) as follows:

Table 5 shows that Case 2 has a very low transmission rate 
compared to the baseline case almost from the middle of the 

�(t) = 0.437e
−

t

15 , �(t) = 0.039e
−

t

50 , �(t) = 0.641854(1 − e
−

t

300 ).

Fig. 6  Number of people deaths and recovery for Case 2 in comparison with the baseline case

Table 5  Prescribed parameters 
for Case 2 in comparison with 
the baseline case

t Baseline case Case 2

�(t) �(t) �(t) �(t) �(t) �(t)

0 0.33647 0.00995 0.00000 0.43741 0.03922 0.00000
10 0.24109 0.00774 0.02104 0.22457 0.03211 0.02104
20 0.17275 0.00603 0.04139 0.11530 0.02629 0.04139
30 0.12378 0.00470 0.06108 0.05919 0.02152 0.06108
40 0.08869 0.00366 0.08012 0.03039 0.01762 0.08012
50 0.06355 0.00285 0.09854 0.01560 0.01442 0.09854
60 0.04553 0.00222 0.11635 0.00801 0.01181 0.11635
70 0.03262 0.00173 0.13358 0.00411 0.00967 0.13358
80 0.02338 0.00134 0.15024 0.00211 0.00791 0.15024
90 0.01675 0.00105 0.16636 0.00108 0.00648 0.16636
100 0.01200 0.00081 0.18194 0.00557 0.00530 0.18194

Table 6  Number of people 
exposed and hospitalized 
between 0 and 100 days for 
Case 2

t 0 10 20 30 40 50 60 70 80 90 100

E(t) 200 1688 2475 1375 436 98 18 3 1 1 1
H(t) 3 5 24 33 20 8 2 1 1 1 1
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Fig. 7  Graphs of E(t), I(t) and H(t) for Case 3 in comparison with the baseline case

Fig. 8  Number of people deaths and recovery for Case 3 in comparison with the baseline case

Table 7  Prescribed parameters 
for Case 3 in comparison with 
the baseline case

t Baseline case Case 3

�(t) �(t) �(t) �(t) �(t) �(t)

0 0.33647 0.00995 0.00000 0.33647 0.05827 0.00000
10 0.24109 0.00774 0.02104 0.24109 0.04932 0.02104
20 0.17275 0.00603 0.04139 0.17275 0.04175 0.04139
30 0.12378 0.00470 0.06108 0.12378 0.03534 0.06108
40 0.08869 0.00366 0.08012 0.15000 0.02991 0.08012
50 0.06355 0.00285 0.09854 0.25000 0.02532 0.09853
60 0.04554 0.00222 0.11635 0.15000 0.02143 0.11635
70 0.03262 0.00173 0.13358 0.09000 0.01814 0.13358
80 0.02338 0.00134 0.15024 0.07000 0.01535 0.15024
90 0.01675 0.00105 0.16636 0.05000 0.01300 0.16636
100 0.01200 0.00081 0.18194 0.03000 0.01100 0.18194
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disease days. It can be seen in Fig. 5 and Table 6 that the 
number of infected people in Case 2 is less than the baseline 
case and the peak of the disease, in this case, has reached the 
previous days compared to the baseline case. When the peak 
of the disease reaches the previous days, the control of that 
disease improves. According to Fig. 6 (left), the number of 

people who died of this disease in Case 2 is lower than in the 
baseline case. Since the number of infected people in Case 2 
is less than the baseline case, according to Fig. 6 (right), the 
percentage of improved people, in this case, is better than 
the baseline case.

Table 8  Number of people 
exposed and hospitalized 
between 0 and 100 days for 
Case 3

t 0 10 20 30 40 50 60 70 80 90 100

E(t) 200 1226 2713 2756 1952 2608 2965 1139 284 54 8
H(t) 3 4 22 49 54 63 109 82 32 9 2

Table 9  Prescribed parameters 
for Case 4 in comparison with 
the baseline case

t Baseline case Case 4

�(t) �(t) �(t) �(t) �(t) �(t)

0 0.33647 0.00995 0.00000 0.33647 0.03826 0.00000
10 0.24109 0.00774 0.02104 0.24109 0.03132 0.03170
20 0.17275 0.00603 0.04139 0.17275 0.02564 0.06236
30 0.12378 0.00470 0.06108 0.12378 0.02099 0.09202
40 0.08869 0.00366 0.08012 0.08869 0.01719 0.12070
50 0.06355 0.00285 0.09854 0.06355 0.01407 0.14845
60 0.04554 0.00222 0.11635 0.04554 0.01152 0.17528
70 0.03263 0.00173 0.13358 0.03263 0.00943 0.20124
80 0.02338 0.00134 0.15024 0.02338 0.00772 0.22634
90 0.01675 0.00105 0.16636 0.01675 0.00632 0.25062
100 0.01200 0.00081 0.18194 0.01200 0.00517 0.27411

Table 10  Number of people 
exposed and hospitalized 
between 0 and 100 days for 
Case 4

t 0 10 20 30 40 50 60 70 80 90 100

E(t) 200 1154 2200 1795 760 194 34 5 1 1 1
H(t) 3 6 34 64 52 24 7 2 1 1 1

Fig. 9  Graphs of E(t), I(t) and H(t) for Case 4 in comparison with the baseline case
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Case 3 From the transmission parameter in Table 7, it is 
clear that the people in Case 3 were aware of the disease in 
the early days of the disease and followed health protocols; 
therefore, the transmission rate was low in the early days. 
According to this table, the transfer rate increased in the 
middle of the sick days due to the non-observance of the 
people in this case and the transfer rate decreased at the end 
of the sick days by observing and informing the people in 
this case. In fact, the rate of disease transmission has fluctu-
ated. Figure 7 and Table 8 show that the transmission rate 
has fluctuated in Case 3, so the disease has multi-peak and 
on the other hand, compared to the baseline case, the disease 

control period in Case 3 has increased. The number of deaths 
and recovery from the disease are shown in Fig. 8 (left) 
and (right), respectively. The death toll from the disease has 
almost doubled compared to the baseline case. Since the 
number of people infected with this disease is more than 
the baseline case, the number of recoveries has increased.

Case 4 Consider the diagnostician parameter �(t) and trans-
mission parameters �(t) and �(t) as follows:

Fig. 10  Number of people deaths and recovery for Case 4 in comparison with the baseline case

Table 11  Prescribed parameters 
for Case 5 in comparison with 
the baseline case

t Baseline case Case 5

�(t) �(t) �(t) �(t) �(t) �(t)

0 0.33647 0.00995 0.00000 0.33647 0.03922 0.00000
10 0.24109 0.00774 0.02104 0.24109 0.03319 0.02104
20 0.17275 0.00603 0.04139 0.17275 0.02810 0.04139
30 0.12378 0.00470 0.06108 0.12378 0.02378 0.06500
40 0.08869 0.00366 0.08012 0.08869 0.02013 0.20000
50 0.06355 0.00285 0.09854 0.06355 0.01704 0.25999
60 0.04554 0.00222 0.11635 0.04554 0.011442 0.30000
70 0.03263 0.00173 0.13358 0.03263 0.01221 0.34000
80 0.02338 0.00134 0.15023 0.02338 0.01033 0.40000
90 0.01675 0.00105 0.16636 0.01675 0.00875 0.50000
100 0.01200 0.00081 0.18194 0.01200 0.00740 0.60000

Table 12  Number of people 
exposed and hospitalized 
between 0 and 100 days for 
Case 5

t 0 10 20 30 40 50 60 70 80 90 100

E(t) 200 797 1767 1821 617 70 6 1 1 1 1
H(t) 3 4 26 58 89 37 6 1 1 1 1
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Fig. 11  Graphs of E(t), I(t) and H(t) for Case 5 in comparison with the baseline case

Fig. 12  Number of people deaths and recovery for Case 5 in comparison with the baseline case

Fig. 13  Graphs of E(t), I(t) and H(t) for Case 6 in comparison with the baseline case
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In this case, according to the diagnosis rate, we compare 
Case 4 with the baseline case. From Table 9, it can be seen 
that the diagnosis rate of Case 4 is higher compared to the 
baseline case, so according to Fig. 9 and Table 10, the num-
ber of infected people, in this case, is lower than the baseline 
case. Also, the peak of the disease in this case has reached 
the previous days, so the duration of the disease can be 

�(t) = 0.336e
−

t

30 , �(t) = 0.038e
−

t

50 , �(t) = 0.966984(1 − e
−

t

300 ).
controlled. It should be noted that the diagnosis rate should 
be controlled so as not to hit the medical staff. According 
to Fig. 10 (left), the total number of deaths in the present 
case has decreased compared to the baseline case. Also, in 
Fig. 10 (right), the number of improved people, in this case, 
has a better percentage compared to the baseline case, due 
to less infected people.

Fig. 14  Number of people deaths and recovery for Case 6 in comparison with the baseline case

Table 13  Number of people 
exposed and hospitalized 
between 0 and 100 days for 
Case 6

t 0 10 20 30 40 50 60 70 80 90 100

E(t) 200 708 555 200 46 8 1 0 0 0 0
H(t) 3 7 19 15 6 2 0 0 0 0 0

Fig. 15  Simulation of the total population in the target domain
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Fig. 16  Simulating the target 
domain for the exposed popula-
tion



3348 Engineering with Computers (2023) 39:3327–3351

1 3

Case 5 Based on Table 11, the diagnosis rate of Case 5 is 
almost the same as the baseline case until the 30th day of 
the disease. But from the 30th day onwards, it has been 
increased the diagnosis rate due to the development of diag-
nostic facilities, including the diagnostic kits for Covid-19, 
and course, increasing the accuracy of the tests. Figure 11 
and Table 12 show that the number of exposed individu-
als, in this case, is less than the baseline case, but due to 
the increase in detection rate from the 30th day onwards, 
the number of infected people, in this case, has increased 
compared to the baseline case. Figure 12 (left) and (right) 
show the number of people who died and recovered from the 
disease, respectively. As mentioned, increasing the diagnosis 
rate has a significant effect on controlling the virus.

Case 6 In this case, the effect of vaccination on the baseline 
case is investigated. All the parameters are the same as the 
baseline case parameters. We hypothesized that the vaccine 
effect and immunity started in the vaccinated individuals. The 
vaccination rate is 0.049, and we considered the AstraZeneca 
vaccine, which its efficacy is 0.72 [41]. Table 13, shows the 
number of people exposed and hospitalized people at times 

from 0 to 100. It can be seen from Fig. 13 and Table 13 that 
the number of exposed, infected and hospitalized people with 
the effect of the vaccination has decreased in comparison with 
the baseline case. Also, the peak of the disease occurred in the 
early times in this case. Figure 14 (left) and (right) show the 
number of people who died and recovered from the disease, 
respectively. These figures show that by vaccinating people 
in a community, the number of dead people decreases and the 
number of recovered people increases (significantly).

Case 7 In this case, we solve a two-dimensional space–
time-dependent SEIHR(D)-compartment model using the 
proposed method for 80 days. The domain of this model 
is a square 2 km × 2 km in which the population is placed 
in such a way that the largest number of persons are in its 
center, shown in Fig. 15. The initial conditions for S(t), E(t) 
and I(t) in the model are considered as follows:

S(0, x, y) =10000 − 5000((x − 1)2 + (y − 1)2)

E(0, x, y) =20 − 10(0.25(x − 1)2 + 0.25(y − 1)2),

I(0, x, y) =2 − ((x − 1)2 + (y − 1)2).

Fig. 17  Simulation of deaths in the target domain up to time t = 80 (total)

Table 14  Number of people 
exposed and deaths between 0 
and 80 days for Case 7

t 0 10 20 30 40 50 60 70 80

E(t) 433 1845 7102 6803 3527 1624 795 424 236
D(t) 0 8 62 230 471 698 879 1013 1108
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In addition, the initial conditions for other functions are zero. 
We have also given up birth and natural death. The simula-
tion parameters for this model are presented as follows:

and the diffusion parameter for each compartment is

In computations, we put 129 scattered points in the space 
domain and discretize the time interval with 81 nodal points. 
Figure 16 shows the exposed population at different times. 
As we can see from Fig. 16, with the passage of time, the 
number of exposed population increases such that its maxi-
mum number occurs at time t = 20 . Then in the following 
times, besides the exposed population decline, they are mov-
ing towards boundary regions. We show the total number 
of deaths up to time t = 80 on the domain in Fig. 17. The 
total number of exposed population and deaths at the differ-
ent times are estimated over 129 scattered data in Table 14. 
According to Table 14, the peak of this disease is between 
20 and 30 days, and therefore it is expected that the number 
of deaths will increase in later times, which can be seen in 
Table 14.

6  Conclusion

The current work has presented a computational method to 
solve some systems of differential equations arising from 
SEIHR(D)-compartment models for the Covid-19 pandemic. 
The technique has utilized the MLS scheme constructed on 
scattered points by combining the discrete Galerkin method 
to estimate the solution of these systems. The MLS meth-
odology is an effective technique for the approximation of 
an unknown function that involves a locally weighted least 
squares polynomial fitting. In order to compute the inte-
grals appeared in the method, we have used the composite 
Gauss–Legendre integration rule. The proposed scheme has 
been constructed on a set of scattered data and does not 
require any background cells, so it is meshless. The numeri-
cal results for different cases in confronting Covid-19 have 
been reported to show the validity and the efficiency of the 
method. Finally, as a future research, a question is raised 
that would it be possible to define a problem based on the 
raw numeric geographic data (for instance, using latitude/

� =0.04167, � = 0, � = 0.8827, � = 0.002, � = �1 = �2 = 0,

�(t, x, y) = ln(1.07)
(
20.042 − 10.021((x − 1)2 + (y − 1)2)

)
e−t∕8,

�(t, x, y) = ln(1.0003)
(
10022 − 5011((x − 1)2 + (y − 1)2)

)
, �(t, x, y) = 0.1250,

�S = �E = �R = 10−3, �I = 10−5, �H = 0.

longitude coordinates together with case counts) and solve 
it using the presented method? Investigating such questions 
can open the way for favorable research works in this area.
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