
Efficient hybrid topology optimization using GPU
and homogenization based multigrid approach

A Preprint

Arya Prakash Padhi
CTRANS

Indian Institute of Technology Roorkee
Roorkee - 110016, U.K., India

Souvik Chakraborty
Department of Applied Mechanics
School of Artificial Intelligence

Indian Institute of Technology Delhi
Hauz Khas - 110016, New Delhi, India

souvik@am.iitd.ac.in

Anupam Chakrabarti
Department of Civil Engineering

Indian Institute of Technology Roorkee
Roorkee - 110016, U.K., India

Rajib Chowdhury
Department of Civil Engineering

Indian Institute of Technology Roorkee
Roorkee - 110016, U.K., India

rajib.chowdhury@ce.iitr.ac.in

February 1, 2022

Abstract

We propose a new hybrid topology optimization algorithm based on multigrid approach
that combines the parallelization strategy of CPU using OpenMP and heavily multithread-
ing capabilities of modern Graphics Processing Units (GPU). In addition to that significant
computational efficiency in memory requirement has been achieved using homogenization
strategy. The algorithm has been integrated with versitile computing platform of MATLAB
for ease of use and customization. The bottlenecking repetitive solution of the state equation
has been solved using an optimized geometric multigrid approach along with CUDA paral-
lelization enabling an order of magnitude faster in computational time than current state
of the art implementations. On-the-fly computation of auxiliary matrices in the multigrid
scheme and modification in interpolation schemes using homogenization strategy removes
memory limitation of GPUs. Memory hierarchy of GPU has also been exploited for fur-
ther optimized implementations. All these enable solution of structures involving hundred
millions of three dimensional brick elements to be accomplished in a standard desktop com-
puter or a workstation. Performance of the proposed algorithm is illustrated using several
examples including design dependent loads and multimaterial.Results obtained indicate the
excellent performance and scalability of the proposed approach.

Keywords topology optimization · multigrid PDE · homogenization · GPU acceleration · CUDA

1 Introduction

Structural topology optimization attempts to find the efficient distribution of materials within a design
domain under specific loading and boundary conditions. Unlike size and shape optimization, topology opti-
mization allows for the creation of a material distribution without the need for a pre-determined structural
arrangement. This gives engineers a strong tool for identifying creative and high-performance solutions ideas
throughout the conceptual design phase and that’s not even mentioning the huge impact that optimizing
geometry and topology has on structural form. Since Bendsoe and Kikuchi’s [1] early work on this problem,
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numerous research have been conducted in a wide range of physics issues, including stiffness maximization
in structures, compliant mechanism design, and temperature maximization [2, 3, 4, 5, 6].

Density-based methods, implicit boundary moving methods (level set and phase field methods), and topo-
logical derivate based methods are the three major categories of shape and topology optimization methods
[7]. In the first group, a fixed grid of finite elements is utilised to find the best void/solid material layout that
minimises a specified objective function. The homogenization technique and Solid Isotropic Material with
Penalization (SIMP) are two of the most common topology optimization methods existing in the literature.
The second group of techniques includes those that employ implicit representations of structural boundaries.
Such a boundary can be changed using the Level-Set Method (LSM) or phase field models by tracking the
motion of a level-set function or altering the interfacial dynamics of phase field equations. The third group
of methods is based on an explicit description of the structural form via a computational mesh or computer
assisted design. In this work, density-based topology optimization techniques has been used because of its
simplicity and wider use.

Topology optimization has made significant advances in theory and practise over the last decade, but
computing needs continue to be a key impediment. Some complex activities, such as solving huge equation
systems, estimating sensitivities, and choosing filtering strategies, are required in the topology optimization
pipeline. As a result, if the model is big, topology optimization might take hours or even days [8]. Topology
optimization necessitates high-performance computing (HPC), which addresses the challenge using task-level
parallel computing.

It is becoming increasingly common to use graphics processing units (GPUs) for non-graphics applications,
and this trend is only expected to increase in near future. As a result of its high computing capacity for
Massive Parallel Processing (MPP) at a reasonable price, these graphics cards are being used in conjunction
with a CPU to accelerate compute-intensive applications. Because of memory issues and lack of data-level
parallelism, this is not an easy goal to achieve. Although the GPU’s arithmetic processing engine is rapid,
the memory from which this data is supplied may be slower. In addition to the non-coalesced global storage,
shared memory access creating bank conflict, device (GPU) memory bandwidth is frequently insufficient.
Simultaneous Single Instruction Multiple Data (SIMD) parallel computation, for which GPU architectures
are designed, cannot be used due to the lack of data. Topology optimization methods must, therefore, be
properly formulated and selected so that they can take full advantage of massively parallel architectures
while avoiding memory problems, which severely limit GPU performance. Still researchers have tried to
overcome the challenges and GPU computing has been utilized successfully in a wide range of engineering
and scientific issues that need numerical analysis.

The goal is to use data locality to decrease the computational cost of the topology optimization process.
Wadbro and Berggren [9] advocated using GPU computation to evaluate high-resolution finite element models
in heat conduction topology optimization in their early work. To decrease device memory needs, they used
a Preconditioned Conjugate Gradient (PCG) technique with an assembly-free element-wise implementation.
Schmidt and Schulz [10] suggested a GPU-based nodal-wise assembly-free PCG solution for addressing
elasticity issues at iterations of the minimization of the structural compliance problem with the SIMP
technique. The iterative solver’s matrix-vector operations provided significant speed up by utilizing shared
memory in the proposal. Reducing the grain size in the assembly-free GPU implementation is another way
to boost GPU speed [11].

Multigrid techniques have benefited from the usage of GPU computing. These methods are among the
most effective and widely used for resolving large linear equation systems. In structural mechanics Krylov
subspace techniques frequently utilize these approaches as a preconditioner. The primary drawback of
employing GPU computing to create geometric multigrid techniques is the amount of memory required to
store the coefficient matrix and interpolation operators at various levels. Therefore, Dick et al [12] developed
an efficient nodal-wise matrix-free GPU implementation of the geometric multigrid technique with stencil
computing for elasticity problems solved by the finite element method for this purpose. In order to avoid
storing the coefficient matrix, they employ a Cartesian grid and parallel GPU computation to do “on-the-fly”
calculations instead. By utilizing a stencil algorithm, data locality may be used as well. This enables the
merging of memory access into a single memory transaction and provides fast stencil-based “on-the-fly” grid
transfer operators. Other notable work in this area includes [10, 11, 12, 13, 14, 15].

In spite of several research works efficient GPU implementation has still remained a challenging field due
to asynchronous computational nature of CPU and GPU, memory size and bandwidth limitation of GPUs
and non availability of software tools for easy integration and customization; the objective of this paper is
to address some of these limitations. To that end, we propose a hybrid scheme that exploits the optimal
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capacity of both GPU and CPU by appropriate distribution of the computations. For example while most
of the matrix-vector or matrix-matrix multiplications are performed in GPU, some of the additions that are
required are done in OpenMP parallization in CPU. This takes advantages of the computational efficiency of
the CPU and GPU architecture and make the end user program efficient. For further computational savings,
we propose the use of multigrid algorithm; this results is significant computational efficiency as the solution
to the fine level discretization is obtained by mapping the problem to a coarse grid resolution and solving
it there and back-interpolating to the fine grid level. We further optimize it modifying these mapping and
interpolation schemes based on a homogenization technique which requires even much less storage of the
data. This facilitates the most parts of the computation to be carried out “on-th-fly” rather than retrieving
the data from the computer memory and doing the operations. This essentially saves a significant portion
of the remaining memory requirement of the variable storage. Finally the developed tool in integrated with
TOP3D125 MATLAB code which gives easy understanding and seamless modifications several other aspects
of the topology optimization algorithm like use of a different filtering scheme, different optimization routine,
or even different physics equation altogether as long as it is in the form of Ku = f .

The rest of the paper is organized as follows. In section 2 the standard density based topology optimization
algorithm is described. In section 3 multigrid pre-conditioned conjugate gradient approach is explained. In
the next section its efficient hybrid implementation is detailed. Subsequently several numerical experiments
are carried out in section 5. Finally a homogenization based approach is described in section 6 and important
observations are summarized in section 7.

2 Density-based topology optimization

A binary programming problem, topology optimization aims to find the optimal material layout (solid and
void) that minimizes an objective function [16]. When designing a material layout, it’s important to adhere
to a set of design constraints. As a result of their conceptual simplicity, density-based methods are the most
widely used topology optimization methods in commercial or industrial software. Usually the design domain
is discretized for two-fold benefit. First one is to update the density of each discretized element independent
of others and the second one is to use the above discretization scheme to compute response of the system
using finite element methods. It is possible to formulate the topology optimization problem as follows [17]:

min
ρ

: c(ρ,u)

s.t : K(ρ)u = f

V (ρ) ≤ V0

0 ≤ ρ(x) ≤ 1, x ∈ R,

(1)

where c is the cost function, ρ denotes density design variables, u represents the response of the system, K
is the global stiffness matrix, f is the force vector, and x is array of discretized elements. The design domain
is demarcated by R and the target volume of optimized shape V (ρ) must be smaller than a prescribed value
V0. The unknown density parameters, ρ(x), are utilized to adjust the finite element’s stiffness in the regular
mesh. Although discrete densities are desirable, use of continuous form helps in easy gradient computation
and smooth transition at boundaries. In reality, this parameterization results in design with huge regions
of intermediate densities that, while numerically ideal, are impractical to produce [18]. Hence the density
is modified to an artificial density form for computational convenience and drive the solution to binary
0 (void) or 1(solid material). Typically, this problem is handled utilizing implicit relaxation/penalization
approaches, which force the topology design towards solid/void topology. The solid isotropic material with
pennalization (SIMP) approach employs implicit penalization techniques through a power-law interpolation
function between void and solid to calculate the stiffness matrix of each element Ke similar to [19] as follows:

Ke = Kmin + ρpe(K0 −Kmin), (2)
where K0 corresponds stiffness matrix when an element is fully solid and Kmin corresponds to minimum
stiffness for least allowable density of an element. The later is provided to avoid singularity issue. Even
though the use of material interpolation scheme allows for the creation of designs which are almost solid and
void, they destroy the optimization problem’s convexity thereby, increasing the risk of ending up in a local
minimum. As a result, continuation methods are commonly used when solving optimization problems in order
to avoid premature convergence to local minima. Continuation-based methods take “global” information into
account and are more likely to ensure “global” convergence, or at the very least, convergence to better designs
[20].
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To prevent numerical challenges and modelling issues such as mesh-dependency of solution and checker-
board patterns, the topology optimization problem should also be regularized utilizing extra density field
constraints. The sensitivity filter is employed in this study since it has been demonstrated in practice to
be successful in providing mesh-independent solutions [21]. Furthermore, gradient filtering is motivated by
continuum mechanics and may favour convergence of particular length scales over others, therefore hastening
convergence. The sensitivity filter provides computational advantages because it is not included in the
optimality criteria (OC) updating scheme loop.

The sensitivity filter, as shown below, adds some kind of smoothing on the derivatives of the objective
function as follows:

∂ĉ(ρ)
∂ρe

=
∑
i∈NBe

w(xi, xe)ρi ∂c(ρ)
∂ρi

max (γ, ρe)
∑
NBe

w(xi, xe)
(3)

where NBe is an element’s neighbourhood set, w(xi, xe) is a weighting function, and γ > 0 is a small number
to prevent division by zero. In present work, the weighting function is defined as:

w(xi, xe) =
{
r − ||xi − xe|| if ||xi − xe||≤ r
0 if ||xi − xe||≥ r

, (4)

while an element’s neighbourhood is defined as:

NBe := {i | dist(i, e) ≤ r}, (5)

where r is the filter radius and dist(i, e) emphasizes that it includes all elements i within the distance R
from the center of element e.

Although SIMP can be used for solving a wide array of problems including heat sinks and other multi-
physics problems [22, 23], we are interested in minimization of structural compliance,

c = fTu, (6)
where f is the applied force vector and u is the corresponding displacement vector.

Considering the discretized linear state system Ku = f the sensitivities of Eq. (6) using adjoint state
method (solving for u∗ in Ku∗ = ∂c

∂u ) with respect to ρ, we obtain

cρ = ∂c

∂ρ
= −u∗T ∂K

∂ρ
u = −u∗T (pρp−1(K0 −Kmin))u. (7)

where p is a penalty factor (usually 3 but can be obtained more accurately by continuation methods) and
(.)T is the transpose of the vector. These sensitivities given by Eq. (7) permit to update the design variables
ρ using some sequential convex approximations, such as Sequential Quadratic Programming (SQP) [24] or
Method of Moving Asymptotes (MMA) [25]. The Optimality Criterion (OC) updating scheme proposed by
[26] is adopted in this work due to its numerical efficiency. The OC updating scheme is as follows:

ρek+1 =


max{(1−m), 0} if ρek

Bηek
≤ max{(1−m), 0},

min{(1 +m), 1} if min {(1 +m), 1} ≤ ρek
Bηek

,
(ρek

Bηek
)q otherwise,

(8)

where m is a positive move-limit, η is a numerical damping coefficient (usually η = 1/2), q is a penalty factor
to further achieve black-and-white typologies (typically q = 2 ) and

Bek
= −∂c(ρ)

∂ρe

(
λ
∂V (ρ)
∂ρe

)−1
(9)

is the Karush-Kuhn-Tucker (KKT) optimality condition. The Lagrange multiplier λ is found using bisection
method. The algorithm stops when maximum number of iterations is reached or when the change in the
variable ||ρek+1 − ρek

||∞ and change in objective function |ck+1 − ck| fall below a prescribed value.
The topology optimization pipeline’s main bottleneck is the solution of the first constraint in Eq. (1)

which is typically calculated using finite element analysis (FEA). This stage entails two computationally
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demanding tasks: assembling the local element equations into a global system of equations and solving that
resultant linear system. These computationally expensive tasks may result in an unsustainable situation in
terms of computing time and memory usage. This issue is more prominent when working with large-scale
models [27] or when the system response must be re-evaluated again and again, as in topology optimization.
Iterative solvers and assembly-free techniques have been widely utilized to reduce FEA memory requirement
at the expense of increasing the processing time of the solution step, which is usually eased by parallel
computing. This is explained in the next section.

3 Multigrid pre-conditioned approach

3.1 Pre-conditioned Conjugate Gradient (PCG) Method

The equation to be solved in the optimization loop discussed earlier is of the form of:

Ku = f (10)

Efficient direct solution method involves cholesky or LU decomposition, where matrix K is decomposed into
a lower triangular and an upper triangular matrix system and subsequently solved using forward and back
substitution staying away from matrix inversion all throughout. However, for large systems, this is still
prohibitive and inefficient especially when matrix K is very large and a sparse one [28]. The conjugate gradi-
ent technique is a mathematical methodology for numerically solving system of linear equations, specifically
those with positive-definite matrices. It essentially solves Eq. (10) but as a minimization problem of the
following alternate quadratic form:

f(x) = 1
2u

TKu− uTf . (11)

For positive definite system matrices (which is actually the case in many natural physical phenomena),
the traditional Conjugate Gradient technique is the preferred iterative method [29]. It is used to minimize
the functional F (u) = ‖Ku − f‖K−1 by multiplying the matrix vector just once in each iteration. As a
matter of fact, this approach can theoretically arrive at the answer in less than n iterations. In-fact the
convergence rate can be given by,

‖u− uk‖K−1≤ ‖u− u0‖K−1

(√
κ− 1√
κ+ 1

)k
(12)

where κ is the matrix K’s condition number, and k is the number of iterations. It takes a long time for
the system to reach convergence for κ >> 1. Hence the original equation is usually modified for improved
convergence by pre-multiplying both sides of Eq. (10) by M−1.

M−1Ku = M−1f , (13)

where M is a matrix or an operator such that κ(M−1K) << κ(K), and it is used to precondition the
linear system in order to assure and accelerate convergence. There is a minimal expense involved in building
an effective preconditioner (M−1) and the condition number should be as near to unity as feasible and
independent of the number n. Incomplete Cholesky factorization, diagonal scaling, and Factorized Sparse
Approximate Inverses (FSAI) are examples of classical preconditioners that do not offer mesh-independent
convergence rates. In this study, contemporary multilevel/multigrid approach which is numerically scalable
is used instead (e.g., [30]). The PCG algorithm is depicted in algorithm 1.

Multigrid Preconditioned Conjugate Gradient (MGCG) method has been successfully used in the dis-
cretized finite element solution part to solve the state space equation. This high-efficiency iterative technique
has been used for solving large-scale linear equation because of its highly efficient preconditioning technique,
faster convergence and minimal computational effort involment and scalability. The multigrid method upon
which the preconditioner is built is described below.
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Algorithm 1: Preconditioned Conjugate Gradient Method
1 Initialization: x0 = 0, r0 = b, z0 = M−1r0 = 0, k = 1, p0 = z0, α0 = rT0 r0/(pT0 Ap0)
2 while rTk rk > tol do
3 k = k + 1
4 xk+1 = xk + αkpk
5 rk+1 = rk − αkApk
6 zk+1 = M−1rk+1
7 βk+1 = rTk+1zk+1/(rkzk)
8 pk+1 = zk+1 + βk+1pk
9 αk+1 = rTk+1zk+1/(pk+1Apk+1)

10 end
11 return xk+1

3.2 Multigrid Method (MG)

Solution of the linear system of equation Ku = f by classical iterative scheme, is generally done by resolving
K into matrices M and N with non-singular M, such that K = M−N. Thus,

Mu = Nu+ f
or
u = M−1N︸ ︷︷ ︸

S

u+ M−1f
(14)

Given an initial iterate u(0), a fixed point iteration can be applied to this equation

u(m+1) = Su(m) + M−1f , m = 0, 1, 2, 3, . . . (15)

This basic iterative approach might also be damped with damping coefficient ω:

u∗ = Su(m) + M−1f, u(m+1) = ωu∗ + (1− ω)u(m) (16)
such that

u(m+1) = (ωS + (1− ω)I)u(m) + ωM−1f (17)
If u is the actual solution of the original equation and u(m) is the approximation computed using above, the
error is denoted by,

e(m) = u− u(m) (18)
and the residual is given by

r(m) = f −Au(m) =⇒ Ae(m) = r(m) (19)
When M = diag(A) = D in Eq. (14), a straightforward calculation can show that, the iterative solution is
of the form:

u(m+1) = u(m) +D−1r(m) (20)
This is known as the Jacobi method. With damping coefficient ω, the damped Jacobi method can be written
as:

u(m+1) = u(m) + ωD−1r(m), ω ∈ (0, 1]. (21)
In multigrid (MG) methods, the residual calculation step (Eq. (19)) is used for updating the current
iterate u(m). An approximation ẽ(m) of e(m) is computed from Eq. (20) and the new iterate is given by
u(m+1) = u(m) + ẽ(m).

Another important component of MG method is the grid transfer mechanism. A simple way for the same
is depicted below in Fig 2 in which a uniform refinement step consists of dividing in halves all intervals
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of domain Ω2h in order to obtain the domain of Ωh. Consequently, we solve Khuh = fh, with u ∈ Ωh.
Projection of error from Ωh to Ω2h is called restriction (denoted by I2h

h ) and that from Ω2h to Ωh is called
prolongation or interpolation (denoted by Ih2h)

Figure 1: Coarse and fine grid

Figure 2: A simple restriction Operation

Figure 3: Linear interpolation operation

The iterative single level methods (e.g Jacobi solution) can quickly reduce the high frequency components
of the mistake, but it performs poorly for low frequency errors. The MG technique is well known for being
one of the most efficient strategies to enhance the convergence rate. The goal of MG is to build multiple grids
at different scale (resolution) of discretization. Then, at each level, repeated relaxations are performed to
reduce high-frequency errors on tiny grids and low-frequency errors on coarse grids. A linear system can be
solved with the help of MG at a cost of O(n). Smoothing and coarse-grid correction are two complimentary
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procedures that work together to produce optimal performance. Gauss-Seidel or Jacobi stationary iterative
methods are commonly used to smoothing out the solution and decreasing oscillation errors. The combination
of smoothing, restriction, and prolongation works very well and results in converged solution. A simple two
grid algorithm is depicted in algorithm 2. This algorithm basically transfers the equation from fine grid of
Ωh domain to the two times coarser grid of Ω2h, solves it there and interpolates back to the finer grid.

The important question now, is the solution in coarser grid which is step 4 of algorithm 2. Looking
carefully it is again essentially a linear system and can be solved in a manner we started solving in algorithm
2. This necessitates the repeated application of two-grid algorithm and gives rise to recursive hierarchical
MultiGrid solution. This typical flow of processes is shown in Fig. 5, which is commonly known as V-cycle.
The corresponding algorithm is written in algorithm 3. This approach splits the grids into multiple sizes
and computes the precise answer only at the coarsest grid corresponding to the largest discretization size.
In this multilayer mesh method, the finest mesh level is denoted by l (level) = 1, whereas l (level) = L
represents a coarser level as we can see in Fig. 4. This popular V-cycle method is utilized in this study. The
combination of multigrid with conjugate gradient method simplifies the computational complexity of the
problem significantly and its comparison with direct solver with number of degrees of freedom N is shown
in Table 1. Storage requirement as well as computational time is proportional to N in mgcg but in direct
solver it is N

√
N .

Figure 4: Multigrid levels from coarse to fine

Figure 5: Schematic diagram of V-cycle with various operations

8
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(a) (b)

Figure 6: (a) Single level (b) Multigrid Convergence

Table 1: MGCG vs Direct Solver
Criteria MGCG Direct Solver
Memory N N

√
N

Computational Time N N
√
N

Precision Approximate Precise

Algorithm 2: Two-grid algorithm u = MG(u, f, K, h, S)
1 Pre-smooth: uh = uh + S−1(fh −Khuh) on Ωh
2 Residual: Compute Residual rh = fh −Khuh

3 Restriction: Projection of rh to r2h to Ω2h. r2h = I2h
h r

h

4 Solution on coarse Grid: solve on Ω2h. K2he2h = r2h

5 Interpolation: Projection of e2h to Ωh. eh = Ih2he
2h

6 Update: uh = uh + eh
7 Post-smooth: uh = uh + S−1(fh −Khuh) on Ωh
8 return: u

Algorithm 3: Multigrid Method with V-cycle uh ←MGv(uh, fh, S, h) of equation Khuh = fh

1 Pre-smoothing: uh = uh + S−1(fh −Khuh) on Ωh
2 if Ωh is the coarsest grid then
3 Solve the problem directly
4 else
5 Restrict to next coarser grid: r2h = I2h

h (fh −Khuh)
6 Set initial iterate on next coarser grid: u2h = 0
7 Call the V-cycle scheme one time for next coarser grid: u2h ←MGv(u2h,f2h)
8 end
9 Prolongation correction: uh = uh + Ih2hu2h

10 Post smoothing: uh = uh + S−1(fh −Khuh) on Ωh
11 Return: u

9
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Algorithm 4: Topology Optimization (Eq. (1)),
Given data: design domain geometry and discretization ( nelx, nely, nelz), loading (f )and boundary
condition (fixeddofs), target volume fraction

1 Initialize: Initialization of empirical parameters ρ, p, r,m, η, ch = 1, k = 0
2 Stiffness Matrix: Compute K0
3 Prepare filter: Compute w ; . Eq. 4, 5
4 while ch > 0.01 do
5 Compute modified stiffness Ke ; . Eq. 2
6 Direct solve for u in Keu = f

7 Sensitivity computation ∂c
∂ρ ; . Eq. 7

8 Filtering of sensitivities ; . Eq. 3
9 Update ρk+1 from ρk ; . Eq. 8, 9

10 k = k + 1 ; . loop count
11 end
12 Return: The final ρ and visualization

4 GPU implementation of SIMP method

MG techniques, although relatively efficient, also suffers from the curse-of-dimensionality; this is particularly
true when dealing with real-life systems having millions of degree-of-freedom. In this section, we propose
a hybrid implementation of the SIMP method that exploits both GPU and MPI programming. We first
discuss the CUDA architecture for GPU implementation followed by the proposed framework.

4.1 CUDA Architecture

GPUs were created to meet the market’s need of fast and realistic 3D rendering in real time. Their tremendous
computational capability at a reasonable cost is making them increasingly attractive in non-graphics HPC
applications. The schematic diagram of a modern turing architecture GPU in depicted in figure 7(a) and
7(b) below. Compute Unified Device Architecture (CUDA), a programming paradigm developed by Nvidia,
is currently the most widely used GPU programming model. So-called data-parallel computing (data/SIMD
parallelism) can be performed on the GPU by leveraging several processor cores. “Kernel”, a C Language
Extension function, is used to run the parallel code (one instruction, multiple data). According to, the kernel
call should indicate the number of CUDA threads structured as a grid of thread blocks, as seen in figure 7(a)
[31]. The software level hierarchy is depicted in Fig. 7(c) [31].

The CUDA Architecture consists of numerous components (Fig. 7), including (i) NVIDIA GPU’s Parallel
computation Engines (computation blocks), (ii) OS hardware initialization support, (iii) Kernel-level support,
(iv) User mode driver providing developers with a device level API, (v) Set of parallel computing functions
and functions via PTX instruction architecture (ISA). We exploit first four feature in the implementation
strategy described below.

4.2 Hybrid Topology Optimization Framework

We revisit the standard topology optimization algorithm using SIMP method (Algorithm 4). We note that
step 6 corresponds to majority of the computational cost. One obvious solution is to leverage the powerful
CUDA platform. However, CUDA has limited memory and hence, shifting the computation to CUDA will
compromise the scalability of the algorithm. To address this issue, we propose a computing framework that
leverage the strength of both GPU and Open Multi-Processing using CPU cores.

The proposed topology optimization framework has multiple components. First and foremost, we replace
the direct solver in step 6 of Algorithm 4 with Multigrid preconditioned conjugate gradient (MGCG) [32]. To
further optimize the process, the MGCG solver’s computation has been offloaded to GPU’s highly efficient
computational architecture. A 3-Dimensional MATLAB code for MGCG-based minimal compliance topol-
ogy optimization has been developed here using the density based SIMP formulation. The computational
intensive linear equation solver part in redesign loop of topology optimization is written in CUDA C language
and compiled using NVIDIA nvcc compiler and called from MATLAB backbone using it’s mex function ca-
pability. It is worthwhile to mention that the program developed utilizes both GPU and CPU cores. To

10
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(a) (b)

(c)

Figure 7: CUDA GPU Architecture
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be specific, the computationally expensive operations like matrix multiplication and matrix inversions are
carried out using GPU. For clarity of the readers, the broad framework fo the proposed approach is shown
in Fig. 8. The beauty of the developed framework is that the mex function call can be used as a black box
to solve any linear system of equations of the form Ku = f in cartesian discretization with 8-noded brick
elements. Subsequently, it can be trivially incorporated within other topology optimization algorithms as
well.

Figure 8: Topology Optimization Framework

Next, we shift our focus to the MGCG algorithm within the proposed algorithm. Although MGCG
is significantly efficient as compared to a direct solver, it still accounts for majority of the computational
cost. To accelerate this step, we divide it into two parts as shown in figure 9; the first one corresponds
to the conjugate gradient loop and the second one corresponds to the multigrid preconditioning inside the
conjugate gradient loop. Preconditioning enhances the convergence rat and multigrid based preconditioning
improves overall stability of the algorithm. The MATLAB code calls the compiled MGCG CUDA code
using the mex function capability. Also, the main loop of MGCG algorithm is controlled on CPU memory.
But the important variables are synchronized to GPU memory as well because the matrix multiplications
and additions in steps 2 to 9 of MGCG algorithm in Fig. 9 are to be carried out in GPU in an heavily
multithreaded environment. The addition and subtraction operation of step 3 and 4 can be carried out in
CPU only as these don’t require huge multithreading. But flow of data from GPU device memory to host
CPU memory adds time to overall process making it little less efficient. Hence these are also carried out
in GPU. Similarly the main loop of multigrid V-cycle (which is basically step 6 of MGCG main loop) is
controlled in CPU which then subsequently calls GPU kernel functions for the operations in steps 1 to 7 etc.

Although GPU multithreading is highly recommended, sometimes unavailability of NVIDIA GPU or
incompatibility issue prevent from execution of task. Hence two separate functions are developed, one is
TopOptMGCGOMP which is a purely CPU multi-threaded version (with no GPU related hardware and
software requirement), and it utilizes open-source Open Multi-Processing(OpenMP) package to implement
efficient CPU multi-threading. Another one is the hybrid TopOptCUDA version, which uses NVIDIA GPU
using CUDA development package and CPU. Efficiency of both versions depend upon the relative strength
of the CPU and GPU pair and numerical comparison between both the parts are given in section 5. The
challenge in the CUDA version is that although GPU’s have tremendous multithreading potential it’s native
memory storage is quite limited and if it has to access data from host CPU memory, a significant time is
spent on data transfer from CPU to GPU readable memory. Hence effective strategy has been developed to
store as little data as possible in GPU memory without hindering the computation itself. This is described
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in Section 4.2.1. Also a simple homogenization technique is shown to facilitate further significant reduction
in storage requirement in Section 4.2.2.

Figure 9: CUDA (MGCG) Framework

4.2.1 Use of local stiffness Matrix for various computation

Instead of using assembled stiffness matrix for each and every computation, majority of the computation has
been done with local stiffness matrices. This essentially saves precious GPU memory used for extremely fast
computation. Each node inside of design domain is common to 8 elements, so sum of density times local
stiffness matrices of these 8 elements gives the value equal to global stiffness value of that node. This strategy
helps to perform nodal computations of all matrix and vector product and addition without explicit storage
of global assembled matrices. In previous two subsections while calculating residue for each iteration in
MGCG similar strategy can be seen to be in use. Although this increases number of floating point operation
by roughly two times this technique decreases memory consumption significantly.

4.2.2 Homogenization Strategy

To optimize the memory requirement, we utilize the well-known homogenization strategy. This is a simple
yet effective technique to further optimize memory requirements. Traditionally while moving from a fine
grid for the equation to coarse grid in V-cycle, restriction operation is used on f and K for transformation
f2h = I2h

h f
h as shown in Fig. 3. The restriction operation is generally a Galerkin approximation given by

equation:

I2h
h = 1

4


1 2 1

1 2 1
1 2 1

...
...

1 2 1

 , (22)

and,
K2h = I2h

h KhIh2h. (23)
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This type of restriction leads to storage of local element stiffness matrices at coarser level. One one hand
this eliminates the need for on-the-fly computation; however, the memory requirement increases. To reduce
the memory requirement, we employ a homogenization scheme where we density of the coarse element is
computed as mean of density values of eight neighboring elements at the finer level; this enables on-the-fly
computation of the local stiffness matrix and reduces the need for storage.

4.2.3 Memory

Suppose a structural design domain has n degrees of freedom. Referring to MGCG algorithm in Fig. 9, the
memory cost of the GPU can be divided into two parts; one corresponding to storage requirement in the
preconditioned conjugate gradient (PCG) loop and the other part is in the V-cycle. There are four unique
variables (P,Q(= AP ), R and Z) in the PCG iterations and five others in the V-cycle iterations. Each of
these variables are of dimension n × 1. So the total storage comes out to be 4n + 5n = 9n. But in the
V-cycle loop, the variables are also required to be stored in in each successive coarser levels each having 1/8
times the size of previous finer level. Thus, the storage requirement due to the V-cycle part can be increased
by 20% and hence, the total storage requirement is 4n + 1.2 × 5n = 10n. For clarity of readers, the above
calculation is summarized in Table 2.

Table 2: Storage requirement in GPU memory
Loop Vectors Dimension of

each vector
Sub Total

PCG P,Q,R,Z n× 1 4n
V-cycle U,F,R,CX,AD n× 1 5n
Total 4n+ 1.2× 5n = 10n

To further illustrate the memory requirement, we consider a structural system having 100 millions degrees
of freedom. We further assume that each variable has double precision. With this setup, the storage
requirement will be approximately equal to 100× 106 × 10× 8 bytes = 8GB. Decreasing the precision will
even increase the capability of solving bigger size problems. Even with double precision it is quite modest
considering 100 million elements can be fit into a standard desktop GPU having 8GB of memory these days.

5 Numerical Experiments

In this section, we present four numerical examples to illustrate the efficacy and robustness of the proposed
approach. The examples are arranged in the increasing order of complexity and involves real-life scenarios
such as bridges, buildings, and design dependent loading. We compare the results obtained with those
obtained using the state-of-the-art topology optimization algorithms currently available (TOP3D125 and
GPU based topology optimization code [33]). Computational time, no. of iterations, and average memory
required have been considered as comparison metrics. Finally, to illustrate the versatility of the proposed
approach, the developed topology optimization framework is tested on three computational environment:
(a) standard GPU workstation with 8GB VRAM (System 1), (b) old GPU workstation with 2GB VRAM
(System 2), and (c) regular GPU laptop with 4GB VRAM (System 3). The detailed specifications of the
computational environmental is described in the appendix.

5.1 Example 1: 3D cantilever beam

As the first example, we consider a 3D cantilever beam subjected to line load q. The loading, boundary
condition and design domain are shown in Fig. 10. As already stated, the objective here is to minimize
the structural compliance. We consider two separate cases, one where the design domain is discretized into
64 × 32 × 32 elements and another where the design domain is discretized into 128 × 64 × 64 elements.
Subsequently, the two cases have 65, 536 and 524, 288 design variables.

Fig. 10 (b) and (c) show the optimal topology obtained using the method proposed in [34] and the
proposed approach for grid size of 64× 32× 32. We observe that the results obtained using the proposed ap-
proach matches exactly with that obtained using [34]; this essentially validates the accuracy of the proposed
approach. For illustrating the efficiency of the proposed approach, we compare the computationally efficiency
and memory requirements. Table 3 depicts the comparison of the proposed approach with the state-of-the-art
topology optimization framework proposed in [34]. Additionally we show the computational gain achieved by
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including only multigrid preconditioned iterative solver (TOP3D125MGCG), multigrid preconditioned iter-
ative solver parallelized using OMP (TOP3D125MGCGOMP), and multigrid preconditioned iterative solver
parallelized using GPU and CUDA (TOP3D125MGCGCUDA). We observe that TOP3D125MGCGCUDA
on the standard workstation is approximately 45 times faster as compared to the optimized code presented
in [34]. As compared the OMP version of the code, the CUDA version proposed is about 3 times faster. The
gain in computational memory is even more significant with the proposed approach. While the TOP3D125
[34] requires 15.08 GB memory, the proposed TOP3DMGCGOMP and TOP3DMGCGCUDA require only
3.27, 2.60, and 2.03 GB memory only. It is noteworthy to mention that the memory for TOP3DMGCGCUDA
represents GPU memory. The advantage of the proposed framework becomes more prominent for grid size
of 128 × 64 × 64. The state-of-art Top125 fails in this case due to huge memory requirement. The MGCG
based frameworks, one the other hand, yields satisfactory results with minimal increase in the memory re-
quirements. The CUDA based framework is approximately 2 times and 1.5 times faster as compared to
TOP3D125MGCG and TOP3D125MGCGOMP, respectively. Similar observations can be found when run
on systems 2 and 3 respectively (Fig. 11).

Finally, to illustrate the scalability of the proposed GPU based framework, we conduct a case study by
varying the number of degrees of freedom of the system (achieved by varying the discretization). We compare
TOP3D125MGCG and TOP125MGCGCUDA. It is observed that both memory and time per iteration
required for the proposed CUDA based topology optimization framework increases at a much slower rate as
compared to the MGCG version. This indicates the superior scalability of the proposed approach.

(a) (b) (c)

Figure 10: (a) Cantilever Beam Problem Description (b) Result obtained from [34] (c) Result obtained from
our code for 64x32x32 discretization

Table 3: Comparison of performance of various codes in system 1
Code Discretization Time per

iteration
Memory require-
ment (GB)

No of iterations
to converge

TOP3D125 64x32x32 44.7s 15.08 64
TOP3D125MGCG 64x32x32 6.4s 3.27 64
TOP3D125MGCGOMP 64x32x32 2.6s 2.60 64
TOP3D125MGCGCUDA 64x32x32 1.0s 0.04 (2.03) 64
TOP3D125 128x64x64 Out of memory
TOP3D125MGCG 128x64x64 44.9 3.98 49
TOP3D125MGCGOMP 128x64x64 33.8s 2.35 49
TOP3D125MGCGCUDA 128x64x64 21.3s 0.414 (2.79) 49

5.2 Example 2: Arch Bridge

As the second example, we illustrate the performance of the developed framework on passive void and passive
solid region within design domain to obtain bridge like shapes similar to [35]. Similar to previous example,
we study two different cases. In the first case, we consider a 140m × 10m × 20m design domain. The
top layer having 1.5m thickness is considered as passive solid region (non-design domain) as shown in Fig.
13(a). Similarly, at the midway of 140m length a small void region of thickness 1m is treated as passive
void. Boundary conditions and loading include simple support at four bottom corners and an uniformly
distributed load (UDL) of 100N/m2 on the top surface.
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(a) (b)

(c) (d)

Figure 11: (a) Cantilever Beam (64 x 32 x 32) Convergence of objective function (b) Time of iterations in
system 1 (c) Time of iterations in system 2 (d) Comparison of CUDA codes in 3 systems

(a) (b)

Figure 12: Memory and time of computation comparison
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A discretization of 448× 32× 64 is considered with a target volume fraction of 0.14. The resultant shape
of compliance minimization problem is shown in Fig. 13(c). The output is an arch bridge whereas an easy
guess could be that of a bench kind of shape. Compared to the output from [35], our result looks mostly
similar; this validates the accuracy of the proposed approach for this problem.

(a)

(b) (c)

Figure 13: Arch Bridge Example (a) Problem Definition (b) Initial Guess and solution from BESO (c)
Solution from our code

A second similar case is shown in Fig. 14 where the span of the design domain is 40m. Carriageway
width and height are respectively 10m and 20.6m. At the mid-height, a non-designable (passive solid) layer
of 0.6m thick is considered corresponding to the deck of the bridge. Also just above it, a void region of
40m × 8.8m × 10m is considered corresponding to space required for vehicular passage. The uniformly
distributed loading on the deck and the boundary conditions are shown in Fig. 14(a). The optimization is
carried out with using a discretization of 256× 64× 128 which accumulates to around 2 millions 8-noded 3D
elements. The final shape after 49 iterations comes out to be an arch bridge as shown in Fig. 14(c).

The summary of computing time and memory requirement of two type of arch bridges described above
is summarized in Table 4. We observe that the proposed hybrid topology optimization framework is highly
efficient both in terms of computational efficiency (26.27 and 224.18 s per iteration) and computational
memory (0.486 GB and 1.14 GB) and can run even on a old system with 2 GB GPU memory.

Table 4: Arch Bridge analysis details
Design domain dimen-
sion

Discretization Total no. of iter-
ations

Time per itera-
tion

Avg. memory

140m × 10m × 20m 448 × 32 × 64 57 26.27 s 0.486 GB
40m × 10m × 20m 256 × 64 × 128 49 224.18 s 1.14 GB

5.3 Example 3: High Rise Building

In this example, a high rise tall building has been analyzed. The building is acted upon by the wind loading
and the lateral load resisting frame system is to be obtained from minimization of compliance. The plan
dimension of the building is 64m× 64m. The height to plan dimension ration H/B = 4. For simplicity, the
base of the building is kept fixed and a constant magnitude of lateral loading is applied at all floor levels
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(a)

(b)

Figure 14: Arch Bridge Example (configuration 2) (a) Problem Description (b) Minimum Compliance design
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across the elevation of the building on one side of the building. A similar work is recently reported in [36]
in which the authors have obtained a diagrid pattern (Fig. 15 (c)) of eccentric bracing system by aligning
material along principal stress directions.

In our experiment, a discretization of 64× 64 ×256 is considered. Subsequently, we have over 1 million
design variables. The core of the building is kept hollow1. A bracing system similar to [36] has been obtained
corresponding to a volume fraction of 0.12 in the active perimeter region. As for computational time, the
proposed approach takes around 33s per iteration and 64 iteration to yield converged solutions. As for
computational memory, the proposed approach require only 0.71 GB of GPU memory. The final optimized
configuration is shown in Fig 15.

5.4 Example 4: Foot Bridge

As the fourth example, we optimize a foot bridge for gravity loading. Since gravity load is dependent on the
amount of material present, the load varies with each iteration and complicates the optimization process.
Subsequently, higher number of iterations is necessary to achieve converged solution. The design domain for
the problem is shown in Fig. 16(a) wherein gray parallelepiped whose surface is the passive void region and
internal light green tube is passive solid region. Dark blue layer represents the active region. Gravity loading
proportional to volume of active and passive solid is applied in each optimization iteration and support
structure for the tubular passage is obtained. A discretization of 1152 × 64 × 256 (which is around 58
millions of elements) is considered and optimization is carried out for a target volume fraction of 0.125 in the
support structure region. The optimized configuration obtained using the proposed approach is shown in
Fig. 16(b). We observe that the pattern is almost similar to an actual solution from literature [35]. Overall
the proposed approach converges in 49 iterations and requires 3.924 GB GPU memory as detailed in Table
5.

Table 5: Foot Bridge analysis details
Design domain dimen-
sion

Discretization Total no. of iter-
ations

Time per itera-
tion

Avg. memory

180m × 10m × 40m 1152 × 64 × 256 49 2850 s 3.924 GB

6 Homogenization enhanced hybrid topology optimization approach

In the previous section, we illustrated the performance of the proposed approach in solving four topology
optimization problems. While we illustrated the efficacy of the proposed approach, it was observed that the
proposed framework has memory cost in Gigabytes (GB) to the GPU which may restrict the applicability
of the method to realistic scenarios. One way to address this issue is to introduce a homogenization step
in the interpolation phase (from coarser to finer grid) of the V-cycle [38, 39]. The basic idea here is to
represent the density of an element by computing the average value of eight finer elements; this reduces
the storage requirement of stiffness matrices of each element in the coarser grids in the V-cycle part of the
algorithm. Thus, this method is seen to perform significant better in memory cost to GPU and has improved
convergence. The comparison of memory requirements in a benchmark cantilever beam is summarized in
Table 6. We observe that the use of homogenization reduces the memory requirement by 40-50% depending
on the problem size and other factors.

Finally, we consider a high-rise building problem having plan area of 54m × 54m. The height of the
building is 162m. The objective here is to illustrate the capability of the proposed algorithm in solving a
highly heterogeneous system. We have considered the system to be subjected to parabolic loading profile
[36]. We consider the floors to be of concrete with Elastic modulus of 25000 MPa. The objective here is
to minimize the structural compliance; however, unlike the previous examples, we keep a track on on the
maximum top story drift following the Eurocode for building [40, 41]. The analysis of this structure is carried
to calculate displacement subjected to the lateral loading. Table 7 summarizes the performance of standard
Galerkin scheme and homogenization based scheme on this system. We observe that the homogenization
approach has around 43% less cost to GPU memory and its iterations takes less time due to faster convergence
of the MGCG iterations per each optimization redesign loop. The optimized topology obtained is shown in
Fig. 17. We observe that the top floor drift for the optimized configuration is 0.026m which is significantly
lower than the allowed threshold.

1for numerical stability, we consider a very small stiffness of 1/106
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(a) (b) (c) (d)

(e)

Figure 15: High Rise Building: (a) Problem Description [36] (b) Concept Design of real world transit bay
tower [37] (c) Various Principal stress inspired Design from [36] (d) Our 2D designs (e) 3D design
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(a) (b)

(c)

Figure 16: (a) Design Domain highlight(b) Optimized support system for the foot bridge obtained (c)Solution
from literature [35]

Figure 17: Optimized configuration for the high-rise building problem

21



A preprint - February 1, 2022

Table 6: Comparison of performance of homogenized multigrid approach
Algorithm Discretization Time per

iteration
Memory (avg. in
iteration)

No of iterations
to converge

2015 and 2017 GPU TO
approach [33]

64x32x32 1s 40 MB 64

Our Homogenized MG
Code

64x32x32 3s 19 MB 64

2015 and 2017 GPU TO
approach [33]

128x64x64 21.6s 414 MB 49

Our Homogenized MG
Code

128x64x64 22.4s 243 MB 49

Table 7: Homogenization approach on high rise building
Approach Discretization Total no. of iter-

ations
Time per itera-
tion

Avg. memory

Standard (Galerkin) 64 × 64 × 320 84 102.58 s 1.08 GB
Homogenization 64 × 64 × 320 81 86.37 s 0.62 GB

7 Conclusion

In this work, we have proposed a new GPU enhanced hybrid topology optimization framework for structural
compliance minimization. The proposed approach replaces the primary bottleneck associated with direct
solution of state space system with an efficient mutltigrid conjugate gradient method. The proposed approach
utilizes both CPU and GPU; in specific, all tedious arithmetic computations have been shifted to the highly
multithreaded cores of modern GPU based on CUDA architecture. Additionally, we have utilized a simple
homogenization scheme within the proposed approach that drastically reduces the memory requirement and
improves the computational efficiency. Overall, the proposed approach is highly efficient and easily scales to
systems having millions of degree of freedoms.

Two version of our framework has been developed and implemented - one for CUDA GPU based system
(TOP3D125CUDA) and another for purely CPU system (TOP3D125OMP). Several examples are solved to
illustrate the performance of the proposed approach. In a standard cantilever beam benchmark problem,
our CUDA based algorithm is about two times faster and consumes 7-8 times lower memory compared
to contemporary efficient implementation. Similarly the OMP version is also 1.5 times faster, although
it consumes similar memory compared to the state-of-the-art implementations. It is worthwhile to note
that the increased efficiency is achieved without any compromise in the accuracy. One of the primary
feature of the proposed approach is its scalability. It easily scales to millions of degrees of freedom. The
proposed framework consumes only 1.1 GB of GPU memory and computational time of around 4 minutes for
solving the arch-bridge problem having over 2 million degrees of freedom. Additionally a further extension
of our algorithm to incorporate a homogenization scheme is shown to reduce the memory requirement by
around 40-50% in the cantilever benchmark problem. Also with homogenization approach in place a rough
calculation shows that a system with 100 millions of 3D elements can fit into the memory of a standard 8GB
GPU for analysis. Faster convergence of the homogenization approach in the high rise building having high
heterogeneity has also been demonstrated. Overall our framework produced excellent results across various
examples with significant efficiency in computation and memory requirement.

Despite the excellent performance, the proposed framework has certain limitations. Firstly, in its current
form, the proposed framework is applicable to structured mesh. For unstructured mesh, an additional step
involving dividing the problem domain into sub-regions having similar discretization is necessary. Secondly,
the developed CUDA based framework will only work with NVIDIA GPUs. This is not a significant limitation
when one considers the fact that NVIDIA currently has over 77% [42] market share. Also, the developed
OMP version of the framework is universal and will work on any windows based system. In future, some of
these limitations will be addressed.

Acknowledgements

We acknowledge the financial support received from IIT Rookee in form of MHRD, Govt. Of India, fellowship.

22



A preprint - February 1, 2022

Conflict of interests

The authors declare that they have no conflict of interest.

Replication of results

Matlab codes as well as the dependent CUDA C routines for the examples shown in this work will be available
freely in GitHub once the paper is accepted.

A Three different System Configurations Used for Testing

Table 8: Specification of systems used for testing
Component System - 1 System - 2 System - 3
CPU 2 x Intel Xeon Gold 5218 2 x Intel Xeon X5660 Intel i7 9750H
GPU NVIDIA QUADRO

RTX4000 with 8GB
GDDR6X VRAM

NVIDIA QUADRO K620
with 2GB GDDR3 VRAM

NVIDIA GeForce GTX 1650
with 4GB GDDR5 VRAM

RAM 192 GB DDR4 48 GB DDR3 16 GB DDR4
OS Windows 10 x64 20H2 Windows 10 x64 20H2 Windows 10 x64 20H2
MATLAB R2020b R2020b R2020b
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