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Abstract 

An efficient topology optimization based on the adaptive auxiliary reduced model 

reanalysis (AARMR) method is proposed to improve computational efficiency and 

scale. In this method, a projection auxiliary reduced model (PARM) is integrated into 

the combined approximation reduced model (CARM) to reduce the dimension of the 

model in different aspects. First, the CARM restricts the solution space to avoid large 

matrix factorization. Second, the PARM is proposed to construct the CARM 

dynamically to save computational cost. Furthermore, the multi-grid conjugate gradient 

method is suggested to update PARM adaptively. Finally, several classic numerical 

examples are tested to show that the proposed method not only significantly improves 

computational efficiency, but also can solve large-scale problems that are difficult to 

solve by direct solvers due to the memory limitations. 
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1. Introduction 

Topology optimization is widely applied in several engineering fields to provide 

conceptual designs without experience, ensuring the best trade-off between stiffness 

and weight by fully exploiting material properties. One of the primary challenges in 

engineering applications is the computational burden when encountering large-scale 

problems[1]. The computational cost of each evaluation of topology optimization is 

mainly governed by three aspects: modeling, analysis (repeated calculation), and 

updating design variables[2]. With the increase in degrees of freedom (DOFs), analysis 

has become the dominant computational burden, especially for 3D problems with more 

than millions of DOFs[3]. It is prohibitive to handle large-scale problems by direct 

solvers. Therefore, researchers are motivated to search for a way to alleviate the 

computational burden. 

Iterative methods and reduced-order models (ROMs) may be the most attractive 

issues, such as the preconditioned Krylov subspace method[4], multigrid preconditioned 

conjugate gradients (MGCG)[5], combinatorial approximate (CA) reanalysis[3], and on-

the-fly ROM[6]. However, the condition number of the stiffness matrix is relatively large 

during topology optimization, which will cause iterative solvers to converge slowly. 

The ROM is employed in this study because it only performs matrix multiplication 

when solving equilibrium equations. Approximate reanalysis[7] is an ROM suitable for 

structural topology modification, which is compatible with iterative redesign in 

topology optimization. Kirsch[8] pointed out that combined approximation can achieve 

excellent results with small computational effort for large changes in the cross-sections 

and structural topology. Huang[9] et al. proposed a multi-grid assisted reanalysis method 

(MGR) to perform structural response analysis when the grid is modified. In recent 

years, the CA method proposed by Kirsch[10] for linear static reanalysis has become one 

of the most concerning reanalysis methods. The CA[11] integrates the accuracy of the 

global approximation[12] and the efficiency of the local approximation[13]; more details 

can be found in literatures [8, 14]. Kirsch[15] et al. proved that the results obtained by 
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the CA are equivalent to the preconditioned conjugate gradient (PCG) method. To date, 

CA has been successfully applied in dynamic[16], nonlinear[17], and other fields[18-20]. 

Moreover, Amir[21] et al. utilized CA to improve the computational efficiency of 

robust topology optimization without affecting the optimization process results. 

Bogomolny[22] applied CA to save the computational cost of repeated eigenvalue 

analysis involved in free vibration topology optimization. The block combined 

approximation with shifting (BCAS) method was introduced by Zheng[23] et al. to 

handle topology optimization under multi-frequency harmonic force excitations. 

Long[24] et al. proposed a high-efficiency approximate reanalysis method based on the 

introduction of reciprocal-type variables to solve the topology optimization subject to 

multiple constraints. Mo[25] proposed an iterative reanalysis approximation for moving 

morphable components (MMCs) to reduce evaluations of topology optimization 

redesign. Although the CA has been successfully applied to the topology optimization 

field, there are still bottlenecks in solving large-scale problems to the best of our 

knowledge. The main issues are summarized below. 

1) The reanalysis approximation process cannot accommodate extremely large 

changes in stiffness matrix. However, the evolution of the density field during topology 

optimization means that the stiffness changes greatly, especially in the early iterations. 

In other words, the approximate solutions obtained by the combinatorial approximation 

usually does not meet the optimization requirements after several iterations, and the 

stiffness matrix needs to be re-decomposed and the combined approximation reduced 

model (hereinafter referred to as CARM) is reconstructed. 

2) The computational cost of large matrix factorization and other operations 

involved in constructing CARM is very expensive, and the hardware requirements for 

storing the inverse matrix are burdensome. 

Therefore, this study proposed an efficient topology optimization method with 

adaptive auxiliary reduced model reanalysis (AARMR), which overcomes the above 

issues simultaneously. The AARMR method employs two reduced models to achieve 
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the dimension reduction of structural models in different aspects. A projection auxiliary 

reduced model (hereinafter referred to as PARM) is used to avoid complex operations 

for matrix decomposition and others. In this way, the computational cost is significantly 

reduced, and the hardware burden is alleviated. The CARM is used to restrict the 

solution space to obtain approximate solutions and is constructed dynamically at each 

iteration. The cost of construction of CARM is relatively cheap due to the introduction 

of PARM. Moreover, the distortion caused by a large number of DOF changes can be 

naturally overcome. This paper is organized as follows. Standard topology optimization 

is briefly reviewed in Section 2 and the proposed adaptive auxiliary reduced model 

reanalysis method is described in detail. Section 3 integrates the proposed method into 

the topology optimization framework. Several classic examples are implemented to 

verify the efficiency and accuracy of the proposed method in Section 4. Finally, some 

conclusions are given in Section 5. 

2. Overview of theoretical formulation 

The primary purpose is of this study to improve the solution efficiency of topology 

optimization, especially for large-scale 3D problems. For this purpose, the adaptive 

auxiliary reduced model reanalysis (AARMR) method is proposed and integrated into 

the topology optimization framework. 

2.1 Topology optimization formulation 

The concept of topology optimization was originally introduced by Bendsøe and 

Kikuchi[26]. In recent decades, a variety of topology optimization approximations have 

been proposed. In this study, the modified solid isotropic material interpolation with 

penalization (SIMP) method[27] is employed. 

 min 0 min( ) p
e eE E E E     ,  (1) 

where E
0
 is the Young’s modulus of the solid elements. Weak elements with Young's 

modulus E
min

 are used to avoid ill-conditioned problems (E
0
 >> E

min
). p is the penalty 

factor. In addition, filter techniques are used to suppress checkerboard phenomena. The 

physical variables ρ   used in the optimization process are obtained by filtering the 
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design variables ρ . 

 ( ),   ,e i i ef      (2) 

where ( )f    represents a filter method[28-30] and e   is the filter area centered on 

element e. Based on the above conditions, the topology optimization formula for 

minimizing end-compliance can be expressed as: 

 

min : ( ) ,

. . : ( ) ,
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where K is the global stiffness matrix, u and f are the displacement and load vectors, 

respectively. ve is the element volume, and V is an allowed volume fraction determined 

by the users. The optimization problem is solved by sequential approximation 

approaches such as OC[31, 32] and MMA[33] to update the design variables. The derivative 

of the objective function with respect to design variables is the key to sequential 

approximation approaches. Calculating the derivative by using the chain rule can be 

written as: 

 
T

T T( )
(2 ) .

e e

i i

i N i Ne i e i i e

C  
      

    
 

      K K
K

 
  

u u u
u + u u   (4) 

It should be noted that f is assumed to be design-independent. The derivative of the 

displacement vector with respect to the physical variable can be obtained by deriving 

the equilibrium equation, 

 .
i i 

 
 

 
K

K 0
 

u
u   (5) 

Substituting Equation (5) into Equation (4), the derivative can be obtained as follows: 

 T( ) .
e

i

i Ne i e

C 
  

 
 

   K 


u u   (6) 

2.2 Reanalysis by adaptive auxiliary reduced model 

Equation (7) which characterizes the structure is called repeatedly as a function. 
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Materials within the design domain are redistributed in each iteration, resulting in the 

modified global stiffness matrix, 

 .Ku f   (7) 

From introducing the change in stiffness matrix 0  K K K , it follows that Equation 

(7) may be rewritten for the redesigned structure as: 

 0( ) ,  K K u f   (8) 

and hence 

 0 . K Ku f u   (9) 

From Equation (9), the recurrence relation ( ) ( 1)
0

k k K Ku f u  is defined, and the 

displacement vector can be written as: 

 ( ) 1 ( 1)
0 0 .k k   K Ku u u   (10) 

Here, K0 represents the reference stiffness matrix, and u0 is reference solution obtained 

by solving the equilibrium equation 0 0 K u f . Therefore, the displacement vector can 

be approximated based on the so-called binomial series expansion as: 

 
1 1 2 1 3

0 0 0 0 0 0 0

1 2 3
0 0 0 0

( ) ( ) ( ) ...

... ,

            

    

K K K K K K

B B B

u u u u u

u u u u
  (11) 

where 

 1
0 .  B K K   (12) 

It should be clear that the “reference stiffness matrix” refers to the stiffness matrix that 

has been decomposed before the new decomposition is performed. Therefore, the 

reference stiffness matrix is not fixed, but dynamically updated with some criterion. 

The main feature of CA is the utilization of the series sequence[8] as basis vectors of 

CARM (R), thus building an approximate solution of the system (7), expressed in the 

form of a linear combination of the series sequence. Usually, only the first m items are 

considered, and introducing the coefficient vector y as the weights of the linear 

combination, the solution can be approximately expressed as: 
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1 1
1 0 2 0 0

1 1 2 2
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,

m
m
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y y y

y y y

   

   


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R
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y

  (13) 

where 1 0 1,  i i  Br u r r  and 1 2[ , ,..., ]mR r r r . Therefore, Equation (7) is rewritten as 

 .KRy f   (14) 

However, the variation of design variables occurs in almost all elements at the 

early stage of topology optimization. This suggests that the modified stiffness matrix is 

relatively large. After several iterations, the accuracy of the solution may not be 

guaranteed, which means that the reference stiffness matrix should be replaced and the 

CARM should be reconstructed. Moreover, the cost of matrix decomposition and other 

operations of the reference stiffness matrix is prohibitive in terms of computational cost 

and memory requirements. It is necessary to update the reference stiffness matrix 

dynamically and utilize the approximate inverse instead of the exact inverse. Therefore, 

an auxiliary model PARM ( n sΦ   , n >> s) is employed to project the reference 

stiffness matrix into a low-dimensional matrix space,  

 T
0 . K Φ K Φ   (15) 

Taking the inverse of both sides of Equation (15) 

 1 1 1 T 1
0 ( ) .   

 K Φ K Φ   (16) 

The pseudoinverses of PARM and its transpose are given as 1 T T 1( ) Φ Φ ΦΦ  and 

T 1 T 1( ) ( ) Φ ΦΦ Φ  , respectively. With these definitions, Equation (17) can be 

modified as: 

 1 T T 1 1 T 1
0( ) ( ) .   

 K Φ ΦΦ K ΦΦ Φ   (17) 

Multiplying both sides of the equation by Φ   to the left and TΦ   to the right the 

approximate inverse of the reference matrix can be written as: 

 1 T T 1 1 T 1 T 1 T
0 0( ) ( ) .    

 K ΦΦ ΦΦ K ΦΦ ΦΦ ΦK Φ   (18) 

The dimension of matrix inversion is reduced from n nϒ   to s sϒ   after the 

reference stiffness matrix is projected by the PARM, and the computational cost and 

the memory of matrix factorization are almost negligible. Therefore, it is feasible to 
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construct CARM dynamically, which provides a premise for applying CA to solve 

large-scale problems. 

Substituting Equation (18) into Equation (11), the approximate solution can be 

expressed as: 

 
1 T 1 T 2 1 T 3

0 0 0 0

1 2 3
0

( ) ( ) ( ) ...

( ...) .

  
            

    

ΦK Φ K ΦK Φ K ΦK Φ K

I C C C

u u u u u

u
  (19) 

The CARM can be rewritten as: 

 

1 T 1 T 2 1 T 1
0 0 0 0

2 1
1 1 1 1

( ) ( ) ...   ( )

  ...  .

m

m

   
  



        
   

R ΦK Φ K ΦK Φ K ΦK Φ K

C C C

u u u u

r r r r
 (20) 

However, the CARM employed directly might produce singularity, resulting in a 

large solution error. Both the Gram–Schmidt procedure[6] and the principal component 

analysis (PCA) method[34] are good choices to make the basis vectors orthogonal to 

each other to eliminate singularities, and PCA also shows the advantage of enrichment 

characteristics[35]. The PCA method in this study uses singular value decomposition 

(SVD) to reconstruct the CARM, 

 T.R RΣV   (21) 

The desired CARM is replaced by R   in Equation (21). Summarizing the above 

formulas, the equilibrium equation can be modified as: 

 .KR y f   (22) 

Multiplying both sides by TR  to the left, Equation (22) becomes 

 T T .R KR R  y f   (23) 

To simplify the representation, Equation (23) can be written as: 

 
R R

,K  y f   (24) 

with  

 , Ru y   (25) 

where 
R

m mK    and 
R

m f . m is specified by the users, usually not more than 

ten, far less than the dimension of the equilibrium equation, which is usually on the 

order of millions. 
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3. Topology optimization using adaptive auxiliary reduced model 

reanalysis 

The AARMR method reduces the equilibrium equation from an n-dimensional 

linear system to m-dimensions, and the computational burden caused by matrix 

decomposition is effectively alleviated, thereby significantly improving the 

computational efficiency. This is the motivation for proposing the AARMR method and 

integrating it into the topology optimization framework. 

3.1 The process description of the proposed method 

Equation (3) should be modified as: 

 

T

T

1 0

1
0 0 0 1
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. .     : 0,
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  (26) 

where 1
0 0( )K ρ  is the approximate inverse of the reference stiffness matrix. The initial 

displacement vector 0
u  directly utilizes the last solution instead of solving the initial 

equilibrium equation. 
 

Algorithm 1: CARM-PARM process 

1: 
Determine whether the current iteration index is greater than the activation parameter
if loop < N

on
: 

2: 
u ← MGCG(K, f), Save the displacement solution when loop is close to Non, and 

complete the construction of the PARM when loop is equal to N
on

 

3: else: 

4: Construct CARM: R ← AARMR(K, K0, u0, Φ) 

5: Approximate solution: (RTKR)y = Rf  and  u = Ry 

6: 
Determines whether the approximate solution satisfies the criterion 
if || KRy – f || / || f || < ɛ

tol
 : 

7: u is feasible 

8: else : 

9: unew ← MGCG(K, f) 

10: Φnew← PARM(Φold, unew) 
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The flowchart of the entire nested optimization process is shown in Figure 1. In 

order to make it easier to understand when and how CARM and PARM are performed 

and updated, the pseudo code of the calculation process in the dotted line wireframe is 

given in Algorithm 1. 
 

 
Figure 1 Flowchart of adaptive auxiliary reduced model reanalysis based-topology optimization,

the left side of the figure represents the construction or update of the PARM, in which the blue 

block represents the construction, the gray block represents the update, and i is used to determine 

the column where the basis vector is located, starting with 1. 

 

It is not suggested to perform the AARMR method at the early optimization stage 

when the structural topology has undergone huge changes. Therefore, the authors 

introduce an activation parameter Non to control the activation of CARM, the CARM 

method only works if the design cycles are more than Non. It should be emphasized that 
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the displacement solutions need to be saved when the design cycles close to Non and the 

construction of the PARM should be completed before using the CARM. Inspired by 

[6], the construction of the PARM in Equation (20) is based on the previous 

displacement solutions, 

 1 1 2 2[ ( ), ( ),..., ( )].s sΦ φ u φ u φ u   (27) 

According to the experiment, there is no singularity in applying normalized PARM even 

without orthogonalization. Therefore, the normalized displacement vectors are directly 

applied to save computational resources, 

 ( ) .i
i i

i


u

φ u
u

  (28) 

The displacements of the current stage are obtained by MGCG, and PARM is under 

construction but not applied by CARM, so it is indicated by the blue line. Also marked 

blue indicates that the updated PARM will be used in the next design cycle. 

The CARM is enabled after that the design cycle is greater than Non. If the force 

residual norm (by Equation (29)) does satisfy a given criterion ( tol   ), the 

approximate solution is considered feasible. In contrast, it is considered that the low-

dimensional space based on CARM no longer effectively represents the original 

solution space, that is, the CARM has been distorted and the solution is infeasible, 

 .



KRy f

f

%
  (29) 

 

Algorithm 2: two-grid multigrid method with V-cycle.  

Input: global stiffness matrix K, load vector f, initial displacement vector u0, restriction matrix PT, 

coarsening level of grid k; 

1: v1 pre-smooth:     1
0( )   D Ku u f u   

2: coarse grid:       T ( ) P Ke f u   

3: coarse grid solve:  T( ) c P KP u e   

4: interpolate:       c  Pu u u   

5: v2 post-smooth:    1( )   D Ku u f u   

6: Return u   
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This is because the PARM does not match the current structural topology, resulting 

in an inaccurate approximate inverse. This is the essence of the “adaptive” concept, 

updating PARM to improve the accuracy of the approximate inverse and thus prolong 

the fidelity period of CARM. Updating PARM is similar to on-the-fly ROM[6], the 

earliest basis vector should be removed and the latest normalized displacement vector 

should be added. However, both the construction and updating of PARMs require 

highly accurate solutions, the solution of equilibrium equations by direct solvers is still 

a considerable burden. Sequentially, the multi-grid conjugate gradient (MGCG) 

method[5] is used to obtain highly accurate solutions to improve the efficiency of the 

PARM. The essence of MGCG is to employ the multigrid method as the preconditioner 

of the PCG method, which is described in detail in Algorithm 2. 

The CARM is allowed to be constructed dynamically based on the PARM to 

reduce the construction cost. In each iteration, the last stiffness matrix is used to 

reconstruct the CARM to reduce the modification amount as much as possible. In 

addition, the selection of the initial displacement is also related to the solution efficiency 

and accuracy of CARM. The approximate solution of the previous design cycle ( lastu ) 

is directly used as the initial solution in the current iteration, instead of multiplying the 

load vector by the approximate inverse of the reference stiffness matrix ( 1 T
ΦK Φ f ). 

The study shows that this method reduces a large number of matrix multiplications and 

has little effect on the results. The results based on the example in Section 4.1.1 are 

shown in Figure 2. Both the relative differences in the force residual norm and 

compliance are sufficiently small to be neglected. 
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Figure 2 Relative differences of force residual norm (red line) and compliance (black line) with 

different initial displacement choices. 

 

It should be noted that the curve is not calculated from the beginning of the 

iteration because of the introduction of the activation parameter. The activation 

parameter Non is usually no more than a dozen but must be greater than the number of 

basis vectors of PARM. 

However, in some topology optimization cases, sudden changes can also occur in 

the middle stages of the optimization, an extreme case is designed to find out the 

resistance of AARMR to this situation. The volume fraction changes from 0.48 at the 

50th iteration and decreases by 0.005 per iteration, until it decreases to 0.45 (at the 56th 

iteration) and then remains constant. The optimization process is shown in Figure 3, an 

indicator is created to evaluate the changes in the density field, 
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where k denotes the iteration index and N denotes the total number of elements. The 

change in volume fraction causes a large change in the density field, yet the increase of 

w is not large enough to destabilize the optimization process, and this perturbation can 

also lead to the creation of new members of the structure. Furthermore, as shown by 

the variation of the force residual curve, the fidelity of AARMR returns to normal in 

just a dozen iterations. Therefore, AARMR can also maintain its efficiency and may 
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perform better for general topology optimization with more moderate changes in the 

middle stages. 
 

 

(a) The geometric model (640×320 grid) and boundary conditions. 

 
(b) Curves of force residuals and changes of the iterative process. 

Figure 3 Iterative process considering the change of volume fraction. The activation parameter Non

is 20, Ns = 2, Nm = 2, the maximum CG iterations for MGCG are 200, the convergence tolerance 

is set to 10-6, and the grid level is 3. 

 

3.2 Filter strategy and sensitivity analysis 

Density filter technology[29] is selected to suppress the checkerboard phenomenon. 
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,
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  (31) 

where the weighting function ( )j x  is a linearly decaying (cone-shape) function with 

the distance between elements as a variable,  

 ( ) max(0, ).j i jr   x x x   (32) 

Unless otherwise specified, the filter radius r is 2.5 times the element length, both 

for 2D and 3D scenarios. When the filter strategy is determined, the sensitivity can be 

f

L

0.5 L
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determined by the chain rule,  

 
( )( ) ( ) ( )

,
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i N i Ne i e j i
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x
  (33) 

where the ( ) / iC   ρ  employ approximate sensitivity and is given as: 

 T T( )
.

i i

C

 
 

 
 

K
R R

  
 
ρ

y y   (34) 

4. Numerical examples 

In this section, several classic structural topology optimization examples are 

employed to verify the method proposed in this study. Using MGCG[5] as a benchmark 

method, the computational efficiency improvement in minimizing end-compliance is 

compared. To compare the efficiency, the speedup can be defined as: 

 Ref

Goal

,
T

speedup
T

   (35) 

where TRef, TGoal denote the cumulative time for solving the equilibrium equation 

employing MGCG and AARMR, respectively. The elastic parameters: Young’s moduli 

E = 1 and Emin = 10-9, Poisson’s ratio ν = 0.3, and penalty factor p = 3 were applied in 

both cases. All experiments run on a PC with an Intel Core i7-8750H @2.6 GHz with 

32 GB of RAM. 

4.1 Influences of model parameters on the efficiency 

The operations required to construct reduced models are related to the terms of 

basis vectors, and the grid level of MGCG also contributes to the computational cost. 

Therefore, the influence of model parameters on the efficiency is discussed, which 

provides guidance for the subsequent comparison of computational efficiency of 

methods. The MGCG outputs approximate displacements when the force residual norm 

does not meet the tolerance or the maximum CG iterations is reached. It should be 

emphasized that although both AARMR and MGCG use the force residual norm as a 

certain standard, their application scenarios are different. The former is the criterion for 

updating the PARM, while the latter is the criterion for controlling the accuracy of the 
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output results. To make it easier to distinguish between the two, the convergence 

tolerance specifically refers to the force residual norm used at MGCG. 

4.1.1 Terms of basis vectors 

The optimization object is a 2D cantilever beam sketched in Figure 4. The design 

domain is discretized into a 300×180 finite element (FE) grid with linear quadrilateral 

plane-stress elements of size 1×1, the whole left side is fully restrained, and a static 

force is loaded at the midpoint of the right end. It is assumed that the available material 

can only cover 50% of the volume of the design domain and tol   is 0.1. The 

optimization process involves MGCG, whose convergence conditions are set with 

reference to the literature [5], the convergence tolerance is set to 10-6, the maximum 

CG iterations is 200, and the grid level is 3.  
 

 
Figure 4 Geometrical settings to minimize the end-compliance of the 2D cantilever beam. 

 

In addition to the cost of constructing reduced models, the accuracy of 

optimization results might also be related to the number of linearly independent basis 

vectors. Therefore, the relationship between the number of basis vectors (both PARM 

(Ns) and CARM (Nm)) and efficiency improvement and accuracy of optimization 

results should be determined. Ns and Nm are set to [1, 2, 3, 4, 6, 8, 10] respectively, for 

a total of 49 test cases. As shown in Figure 5, the results illustrate that the minimum 

cumulative computational cost is 20.90 with Ns of 2 and Nm of 2, but the maximum is 

as high as 28.34 with Ns of 1 and Nm of 10. 
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(a) Cumulative computational cost for Ns (b) Cumulative computational cost for Nm 

Figure 5 Influences of Ns and Nm on cumulative computational cost. 

 

The curves of cumulative computational cost have similar patterns of variation 

with respect to Ns or Nm. Cumulative computational costs decrease first (from 1 to 2) 

and then increase (from 2 to 10), and it has a significant positive linear correlation with 

the terms of basis vectors in the increasing process. However, the changes of the lines 

in Figure 5(a) are slower and intervals between the lines are larger, whereas the changes 

of the lines in Figure 5(b) are more obvious and the lines are relatively concentrated. 

Therefore, the terms of basis vectors have a great influence on computational efficiency, 

especially for Nm. It can be seen from the test results that the minimum value always 

occurs when Ns is in the range of [2, 4] and Nm = 2. 
 

 

Figure 6 Influences of Ns and Nm on cumulative times of MGCG evaluations. 

 

Lines Ns-Nm “1-1”, “1-10” and “10-1” in Figure 5 are completely overlap, and 

there are slight differences between the remaining lines. Figure 6 illustrates that the 
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selection of Ns and Nm slightly affects the MGCG evaluations unless one of them is 1. 

Note that there is almost consistency between lines Ns-Nm “2-2” and “2-10” and 

between lines Ns-Nm “10-2” and “10-10”. It indicates that Ns might be a more 

important effect on the evaluations of MGCG, although the difference is small. 
 

 
Figure 7 Optimization results with different combinations of Ns and Nm. 

 

Above discussion reveals that the optimization process is not sensitive to the 

selection of Nm and Ns, and the difference in computational cost should be attributed 

to the construction of the reduced model. The CARM is reconstructed at each iteration, 

but the PARM only needs to be updated when the force residual criterion is violated. In 

other words, the frequency of reconstructing CARM is higher during the entire 

optimization process. Therefore, it is recommended to take a small Nm. It should be 

noted that feasible solutions can be obtained when Ns or Nm is 1, which reflects the 

excellent performance in capturing boundary conditions. The optimization results of all 

cases are shown in Figure 7, the structural characteristics of the optimization results 

tend to be the same. The discrepancy between different parameter settings is also 

reflected in terms of end-compliance, it is distinguished by different colors according 

to the level of end-compliance. Although the end-compliance varies from case to case, 

the magnitude of variation is extremely small, the relative difference of end-compliance 

is calculated by Equation (36), their maximum difference of end-compliance is only 
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0.049%. 

 Goal Ref

Ref

100%,
C C

diff
C


    (36) 

where CGoal, CRef denote the end-compliance employing AARMR and MGCG, 

respectively. To display the optimization results more clearly, the structures of the 

enlarged display size is given in Figure 8, the Ns vary from left to right in ascending 

order and from top to bottom Nm in descending order. 
 

   

   

   

   

   

   

   

Figure 8 Structural topologies with different combinations of Ns and Nm. 

 

The end-compliance with Ns of 3 and Nm of 8 is the smallest, the end-compliance 

with Ns of 4 and Nm of 10 is the largest. Comparison of the differences between the 

two density fields reveals only some local differences (as shown in Figure 9). These 

differences occur in a very small area of the entire structure, and most of them are 

relatively small. Therefore, it can be inferred that the solution may be insensitive to Ns 
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or Nm.  
 

 
Figure 9 Absolute difference of two density fields 

 

4.1.2 Grid level of V-cycle 

As mentioned in [5], the grid level has an influence on computational efficiency. 

Increasing the coarsening level means that the dimensionality of the linear system at 

the coarsest grid is reduced, but the more matrix-vector product operations are required. 

The design domain and boundary conditions of the optimization objective are 

consistent with Sec 4.1.1. Considering that the grid levels are 2, 3 and 4, Ns and Nm are 

both set to 2, and the rest of the parameter settings are also consistent with Sec 4.1.1.  

The number of CG iterations that required for each MGCG are counted, in which 

the AARMR method calls MGCG intermittently, so it is represented by dots. As shown 

in Figure 10, whether calling MGCG in AARMR, or using MGCG continuously 

(Subsequently, AARMR and MGCG represent these two modes respectively), the more 

grid levels, the more CG iterations are required. However, there is no direct relationship 

between the two solving modes and the average CG iterations. When the grid level is 2 

or 3, the average CG iteration of AARMR (9.07 for level 2 and 9.61 for level 3) is 

greater than that of MGCG (7.63 for level 2 and 9.04 for level 3), otherwise it is vice 

versa (11.30 for AARMR with level 4 and 13.61 for MGCG with level 4).  
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Figure 10 The influence of grid level on CG iterations. AARMR-level indicates the count value 

when AARMR calls MGCG, and MGCG-level indicates that MGCG is always used. 

 

The difference in CG iterations is also reflected in the computational cost. The 88-

line code[31] based on direct solver is supplemented as a reference, and the acceleration 

effect is shown in Figure 11. There is no linear correlation between grid level and 

computational cost, which is a trade-off between the complexity of solving linear 

system and matrix-vector product. When the grid level is 2, the performance is the worst, 

while the selection of 3-layer or 4-layer grid has almost no influence on computational 

cost of AARMR, but a greater influence on MGCG. The speedup of AARMR and 

MGCG relative to 88-line code are the best when the grid layer is 3. However, the 

speedup of AARMR relative to MGCG is the worst at this time. In addition, although 

AARMR needs to call MGCG, the frequency of using MGCG is much less than that of 

the mode of using MGCG continuously, so the selection of grid layers has relatively 

little influence on computational cost of AARMR. 
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Figure 11 Comparison of computational cost and speedup. The bars represent computational cost, 

and the line represents speedup. 

 

The topology of the optimization results is given in Figure 12, AARMR is closer 

to the 88-line code both in terms of graph results and optimization objectives. MGCG 

outperforms in terms of the stability of optimization results, although the maximum 

difference in the optimization objectives of AARMR at different grid levels is 0.0087%. 

In addition, the largest relative difference between AARMR and MGCG is only -0.34%. 

The test results show that the grid level significantly affects the computational cost 

and has little effect on the accuracy of the optimization results. Comparing AARMR 

with MGCG is more representative when the grid level is 3, because the speedups of 

both relative to the 88-line code are excellent in this scenario, and the speedups of 

AARMR and MGCG are closest. Therefore, it makes more sense to set the grid level 

to 3 in the subsequent comparison of speedup. 

 
(a) Top-88 

C = 1491.189423 

(b) level 2 for AARMR

C = 1491.0672 

(c) level 3 for AARMR

C = 1491.1976 

(d) level 4 for AARMR

C = 1491.1811 

(e) level 2 for MGCG

C = 1496.1982 

(f) level 3 for MGCG

C = 1496.1981 

(g) level 4 for MGCG

C = 1496.1981 

Figure 12 The optimized structure topology with different grid levels. 

level 2 level 3 level 4
0

20

40

60

80

C
os

t (
se

c.
)

grid level

 AARMR
 MGCG

0.5

1.0

1.5

2.0

2.5

3.0
 AARMR
 MGCG

sp
ee

du
p



23 

 

4.1.3 Memory requirement 

To better reflect the requirements of the proposed method on the device memory, 

the memory usage records of the iterative process are intercepted for analysis. MGCG 

is a well-performing method that requires less memory than the direct method, 

especially for 3D problems. Therefore, it is reasonable to employ MGCG as a reference 

to evaluate the memory dependence of the proposed method. Without loss of generality, 

the direct solver is also employed for comparison and tested for both 2D and 3D 

problems (The design domain and boundary conditions are from Sec4.1.1 and 4.2.2, 

respectively). The grid level is set to 3, Ns and Nm are both set to 2. The segment of the 

memory usage records of their iterative process is shown in Figure 13. 
 

  

(a) 2D FE model with 640×384 grid (b) 3D FE model with 108×36×72 grid 

Figure 13 Comparison of memory requirements in 2D and 3D problems. 

 

The memory usage when the program is not running is used as the starting 

evaluation point (0GB) due to the presence of other software. Compared to 3D problem, 

2D problem require much less memory, resulting in a less obvious period of fluctuation. 

In a complete iteration, there is a peak and a trough, where the peak is caused by solving 

the equilibrium equations and the trough is the memory occupation of the variables 

during the iteration. The troughs of the direct solver and MGCG are similar and smaller 

than that of AARMR, which is due to the fact that AARMR employed MGCG 

intermittently and generates more variables. In general, the direct solver has the highest 
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memory usage, which is more significant in the 3D problem. The memory usage 

increase caused by more variables did not further widen the gap between AARMR and 

MGCG. In addition, the memory fluctuations of the 3D problem reflect an iterative 

period, and it is clear that the period of AARMR is shorter and thus more efficient. The 

detailed efficiency comparison will be discussed next. 

4.2 Scaling of speedup in different scenarios 

In this section, the acceleration effect of minimizing end-compliance in different 

scenarios is considered, while observing the influence of the given force residual 

criterion  on the optimization results and iterative processes. The optimization objects 

are replaced with a 2D half-wheel sketched in Figure 14 and a 3D simply supported 

beam sketched in Figure 21. In the following, MGCG is used as the benchmark method.  

4.2.1 2D scenario: half-wheel 

The design domain is a rectangle with an aspect ratio of 2 and is discretized into 

FE models of different scales with linear quadrilateral plane-stress elements of size 1×1. 

Four FE models with increasing order of resolution are considered: Model 1(320×160), 

Model 2(640×320), Model 3(840×420), Model 4(960×480). The boundary conditions 

of all FE models are consistent, whose lower-left corner is fully constrained, and the 

DOFs of the load direction in the lower-right corner are constrained. A static force is 

loaded at the midpoint of the bottom. The volume fraction is set to 0.5, activation 

parameter Non is 20, Ns = 2, and Nm = 2. The maximum CG iterations for MGCG are 

200, the convergence tolerance is set to 10-6, and the grid level is 3. 

tol  

 

Figure 14 Geometrical settings to minimize the end-compliance of the 2D half-wheel. 
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The speedup with different force residual criteria tol  is shown in Figure 15, the 

maximum speedup can reach 2.32 when tol  is equal to 5%. In general, the speedup 

tends to increase as the problem scale increases. This indicates the potential of the 

AARMR method in saving computational costs, especially for large-scale problems. It 

can be seen intuitively that the acceleration effect becomes worse as the setting of tol  

becomes stricter, that is, the increase in speedup becomes smaller as the residual 

criterion is stricter. However, the minimum speedup can also reach 1.26 when tol  is 

equal to 0.5%. 
 

  

Figure 15 Speedup of the 2D half-wheel case at 

different scales. 

Figure 16 Difference of end-compliance for the 

2D half-wheel case. 

 

Figure 18 illustrates that the results for different problem scales with different 

force residual criteria are almost consistent with the structural topology obtained by 

MGCG. There are only slight differences in details, and the strict force residual criteria 

make structural details more consistent. Furthermore, the differences in end-compliance 

under different tol  are controlled within an acceptable range (as shown in Figure 16). 

The absolute values of the differences between the examples here are of the same order 

of magnitude as the 2D cantilever test results above, and remain within 0.35%. 
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(a) Average CG iterations for MGCG. (b) Residual criterion 0.5%. 

  

(c) Residual criterion 1%. (d) Residual criterion 5%. 

Figure 17 Cumulative MGCG evaluations for the 2D half-wheel case.  

 

The reason for the difference in speedup can be clarified according to the 

cumulative MGCG evaluations, as shown in Figure 17. Decreasing the force residual 

criterion will result in more MGCG evaluations, while the change of the scale has 

almost no effect on the MGCG evaluations, especially for large-scale problems. Note 

that the average CG iterations of AARMR are higher than that of MGCG, so it is 

inferred that the contribution of speedup of AARMR does not come from calling 

MGCG, and even part of the computational cost of AARMR calling MGCG is more 

expensive than that of using MGCG continuously. However, reducing the force residual 

criterion is conducive to improving the accuracy that the AARMR method can achieve, 

and the structural topology (given in Figure 18) is closer to the MGCG method.  
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CModel 1 = 16.6225 CModel 2 = 17.6479 CModel 3 = 18.1167 CModel 4 = 18.3468 

CModel 1 = 16.6333 CModel 2 = 17.6771 CModel 3 = 18.1393 CModel 4 = 18.3716 

CModel 1 = 16.6340 CModel 2 = 17.6787 CModel 3 = 18.1401 CModel 4 = 18.3729 

CModel 1 = 16.5809 CModel 2 = 17.6401 CModel 3 = 18.1016 CModel 4 = 18.3350 

Figure 18 Comparison of structural topologies at different scales. The first three rows are 

AARMR, from top to bottom, with criteria of 5%, 1%, and 0.5%, and the bottom is MGCG. 

 

This paper aims to overcome the application bottleneck of CA in topology 

optimization, so AARMR and MGCG are not in a competitive relationship. However, 

to further discuss the difference between AARMR and MGCG, the convergence 

tolerance of MGCG is set to be consistent with the updated criteria of PARM ( tol  is 

constant at 1%). As shown in Figure 19, the strict convergence tolerance significantly 

improves the accuracy of the approximate solution of MGCG, while it is slightly less 

efficient for AARMR. When convergence tolerance is 10-6, AARMR is able to achieve 

computational accuracy that is significantly better than the relaxed one.  
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(a) AARMR (b) MGCG 

Figure 19 Force residual iteration curve with different convergence tolerances, cgtol is the 

convergence tolerance in MGCG, the dots represent the accuracy of the calculation results of 

calling MGCG when AARMR is not applicable or violates the force residual criteria. 

 

Although the relaxed convergence tolerance results in only one CG iteration for 

MGCG in the middle and late optimization iterations, AARMR still has a slight 

advantage over MGCG, computational efficiency increased by 6.4 percentage points. 

The efficiency of AARMR has been verified from various aspects. However, the 

purpose of this paper is not to improve MGCG, but to overcome the difficulty of CA in 

solving large-scale problems. To guarantee the generalization ability of AARMR, the 

convergence tolerance of MGCG will use a strict one. 
 

 
Figure 20 CG iterations with different convergence tolerances. 

 

4.2.2 3D scenario: simply supported beam 

To further prove the competence of proposed method, 3D problems should be 
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investigated. The design domain is a cuboid and is discretized into FE models of 

different scales with hexahedral elements of size 1×1×1. Four FE models with 

increasing order of resolution are considered: Model 1 (grid 72×24×48), Model 2 (grid 

84×28×56), Model 3 (grid 96×32×64), and Model 4 (grid 120×40×80). The boundary 

conditions of all FE models remain consistent, and the four corners at the bottom are 

completely constrained. A static force is loaded at the midpoint of the bottom. The 

volume fraction is 0.2, activation parameter Non is 20, Ns = 2, and Nm = 2. The 

maximum CG iterations for MGCG are 50, the convergence tolerance is set to 10-6, and 

the grid level is 3. 
 

 
Figure 21 Geometrical settings to minimize the end-compliance of 3D simply supported beam.

 

Figure 22 illustrates the cumulative computational cost of AARMR versus MGCG 

at different problem scales. The computational cost of the two methods maintains linear 

growth in both 2D and 3D scenarios, but the difference in slopes is more prominent in 

3D scenarios. The AARMR can alleviate the computational burden for dealing with 3D 

problems, which is also reflected in the speedup (as shown in Figure 23). As the 

problem scale increases, the speedup stabilizes within a certain range, almost double 

that of 2D scenarios. The maximum speedup reached 4.85, and the computational cost 

might be decreased significantly. 
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(a) 2D half-wheel.  (b) 3D simply supported beam. 

Figure 22 Comparison of cumulative computational cost in different scenarios. 

 

Figure 24 illustrates that the maximum difference is only approximately 0.19%, 

and strict criteria seem to be more conducive to improving the stability of objectives. It 

should be stated that the exact solutions are used to compute objectives for 2D problems, 

while the 3D problems are difficult to be solved accurately due to memory constraints, 

so the MGCG are used to compute objectives. There is only a slight visually visible 

difference between MGCG and AARMR in terms of optimized results given in Figure 

26. Note that the optimization results are symmetric due to the symmetry of the 

constraints and loading schemes. To clearly represent the internal structure, Figure 26 

also shows a cross-sectional view of MGCG. Whether for 2D problems or 3D problems, 

the optimized structural topologies of different problem scales are consistent with that 

of MGCG, indicating that the AARMR method has great computational accuracy. 
 

  

Figure 23 Speedup of the 3D simply supported 

beam at different scales. 

Figure 24 Difference of end-compliance for the 

3D simply supported beam. 
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Similarly, the force residual criterion tol   affects speedup because its value is 

related to the evaluations of the MGCG (as shown in Figure 25). Strict criteria will lead 

to more MGCG evaluations, and the number of MGCG evaluations may be more 

sensitive to criteria but less sensitive to the problem scale. Furthermore, 3D scenarios 

require fewer MGCG evaluations than 2D scenarios under the same force residual 

criterion. It should be emphasized that the average CG iterations of both AARMR 

calling MGCG and continuous MGCG reached the limit of 50. 
 

 
(a) Residual criterion 0.5%. (c) Residual criterion 1%. (d) Residual criterion 5%. 

Figure 25 Cumulative MGCG evaluations for 3D simply supported beam. 
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CModel 2 = 3.9353 (1%) CModel 2 = 3.9348 (5%)  

 

CModel 3 = 3.8214 (MGCG) CModel 3 = 3.8211 (0.5%) 

 

 

CModel 3 = 3.8206 (1%) CModel 3 = 3.8219 (5%)  

 

CModel 4 = 3.6786 (MGCG) CModel 4 = 3.6782 (0.5%) 

 

 

CModel 4 = 3.6777 (1%) CModel 4 = 3.6781 (5%)  

Figure 26 Optimization results of the simply supported beam at different scales. 

 

4.2.3 3D scenarios with different loading schemes 

In this subsection, different loading schemes (as shown in Figure 27) are loaded 

on the cantilever beam which is fully constrained at the left end. All concentrated forces 

are axial forces or the resultant force of axial forces. The distributed force is discrete as 

concentrated forces loading on the nodes. Design domains are all discretized into FE 

models with hexahedral elements of size 1×1×1. The activation parameter Non is 20, 

tol  is 1%, Ns = 2, and Nm = 2. The maximum CG iterations for MGCG are 50, the 
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convergence tolerance is set to 10-6, and the grid level is 3. 
 

 
(a) case 1: 96×72×72 FE grid (b) case 2: 96×72×72 FE grid 

 
(c) case 3: 128×64×64 FE grid (d) case 4: 120×72×72 FE grid 

Figure 27 Geometrical settings for 3D scenarios with different loading schemes. 

 

Figure 28 illustrates the cumulative computational costs and speedup of the two 

methods. Compared with other cases, the cumulative computational cost of Case 4 is 

significantly larger due to the excessively large problem scale. Considered in terms of 

problem scales, the FE grids of cases 1 and 2 are the same, but the difference in speedup 

also occurs, and the examples tested above indicate that MGCG evaluations are not 

sensitive to problem scales, so excluding problem scale is not the main reason for the 

difference in the speedup of the current test. Figure 29 shows that the different load 

schemes resulted in significant differences in the MGCG evaluations, although the 

problem size was at the same level. This suggests that the complexity of the loading 

scheme may affect the fidelity period of AARMR to a certain extent, which in turn 

affects speedup. Cumulative MGCG evaluations increase as the loading nodes increase, 

that is, the shorter fidelity period of AARMR. Calling MGCG at high frequency and 

speedup weakens the speedup. It should be emphasized that the average CG iterations 

of both AARMR calling MGCG and continuous MGCG reached the limit of 50. 
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Figure 28 Speedup of different loading schemes.
Figure 29 Cumulative MGCG evaluations for 

different loading schemes. 

Although the loading schemes significantly influence the speedup, the AARMR 

still achieved a speedup of 2.02 when handling the worst-performing distributed 

loading scheme (case 4). This indicates that AARMR can significantly improve the 

efficiency of common load schemes. The accuracy of the optimization results is also 

acceptable, the maximum difference is only -0.049%. The overall and sectional views 

of structural topologies shown in Figure 30 have almost no visible difference between 

the two methods. Furthermore, the consistent symmetry between the loading schemes 

and the structural topologies indirectly proves the ability of AARMR to capture 

boundary conditions. 
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MGCG 

(case 4) 

  

Figure 30 Overall and sectional views of optimized structural topologies, the relative differences 

in end-compliance obtained by AARMR and MGCG, -0.049% for case 1, -0.007% for case 2, 

-0.036% for case 3 and 0.010% for case 4. 

 

4.3 An attempt at nonself-adjoint problems 

The main purpose of this paper is to solve the problem of minimizing end-

compliance. To expand the application field of AARMR, the nonself-adjoint problem 

is attempted to be solved. Consider now a typical compliant mechanism design problem 

(shown in Figure 31). The input end (point A) is subjected to a horizontal static force 

load fin. The objective is to maximize the displacement of the output end (point B). 

Points A and B are located on the axis of symmetry. Only half of the structure is 

considered because of symmetry, and the model is discretized into FE models of 

different scales with linear quadrilateral plane-stress elements of size 1×1. Linear 

springs simulate the structural stiffness of the input and output ends (kin = 1, kout = 0.1). 

The maximum number of design cycles is set to 200, the volume fraction is set to 0.3, 

the activation parameter Non is 20, Ns = 2, and Nm = 2. The maximum CG iterations for 

MGCG are 200, the convergence tolerance is set to 10-6, and the grid level is 3. 
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Figure 31 Geometrical settings for 2D displacement–inverter. 

For more information about compliant mechanism design, please refer to literature 

[27]. Approximate sensitivity is employed in this paper, and the optimization results are 

shown in Table 1 and Figure 32. In this example, the residual criterion is set to 0.01% 

and 0.1%, and AARMR can still show good acceleration performance, the maximum 

speedup can reach 1.472. First, the average CG iterations of both methods are at the 

same level, and even less is required for AARMR. This feature is beneficial to the 

extended application of AARMR in nonself-adjoint problems. Second, even if the 

residual standard is strictly required to 0.01%, AARMR can still maintain its advantage 

over MGCG. Finally, similar to the 2D compliance minimization problems, the speedup 

appears to be proportional to the problem scales. No matter in terms of the objectives 

or the topology of optimized structures, AARMR not only shows excellent acceleration 

performance in the maximizing output displacement, but also the optimization results 

are close to MGCG and even get a better local optimum. Furthermore, the topology of 

optimized structure maintains a high consistency regardless of changes in residual 

criterions or changes in problem scales. This not only shows the grid independence of 

AARMR, but also implies the stability of the AARMR method. 
 

Table 1 Performance comparison of MGCG and AARMR (L-grid represents low-resolution 

320×160 FE grid and H-grid represents high-resolution 640×320 FE grid). 

 
criterion 

average CG iterations speedup diff. (%) 

 L-grid H-grid L-grid H-grid L-grid H-grid 

MGCG —— 16.187 15.373 —— —— —— —— 

AARMR 
0.01% 15.523 14.554 1.195 1.283 0.0005 -0.0030 

0.1% 13.875 13.316 1.446 1.472 -0.0116 -0.0544 

fin

uout

A B
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 MGCG AARMR 

  tol  = 0.1% tol = 0.01% 

L-grid 

H-grid 

Figure 32 Comparison of results of displacement-inverter problem. 

 

5. Conclusion 

This study proposed an efficient method called the adaptive auxiliary reduced 

model reanalysis (AARMR) method, which avoids complex matrix factorization 

operations and alleviates huge memory requirements. The proposed method not only 

improves the efficiency of evaluation but can also handle large-scale problems that are 

difficult to solve by direct solvers on PC-level devices. Simulation results show that the 

proposed method is more efficient than MGCG.  

Several classic numerical examples are tested for comparison with MGCG, and 

the results prove the high efficiency of AARMR, which is particularly prominent in 3D 

scenarios. First, AARMR is not sensitive to the basis vector terms of the projection 

auxiliary reduced model and combined approximation reduced model. Second, the 

speedup of the test in the 3D scenarios is almost double that of the 2D scenarios, and 

the maximum speedup can reach 4.85. Surprisingly, the problem scales positively affect 

on speedup in the 2D scenarios, while they have almost no effect on speedup in the 3D 

scenarios. This reflects the potential of the AARMR method to significantly save 
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computational costs when solving large-scale problems. Finally, AARMR still shows a 

great acceleration effect on compliant mechanism design problems (maximizing the 

displacement of the output end), which shows the extensibility of the method. It is 

important to emphasize that the AARMR method is not completely against other 

algorithms, and MGCG is used to update the projection auxiliary reduced model in this 

paper. 
 

Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or 

personal relationships that could have appeared to influence the work reported in this 

paper. 
 

Acknowledgements 

This work has been supported by the Program of National Natural Science 

Foundation of China under the Grant Numbers 11572120 and 51621004. 
 

Data Availability Statements 

The raw/processed data required to reproduce these findings cannot be shared at 

this time as the data also forms part of an ongoing study. 

  



40 

 

Reference 
[1] Aage N, Andreassen E, Lazarov B S, et al. Giga-voxel computational 

morphogenesis for structural design [J]. Nature, 2017, 550(7674): 84-86. 
[2] Venkataraman S, Haftka R T. Structural optimization complexity: what has 

Moore’s law done for us? [J]. Structural and Multidisciplinary Optimization, 
2004, 28(6): 375-387. 

[3] Amir O, Bendsøe M P, Sigmund O. Approximate reanalysis in topology 
optimization [J]. International Journal for Numerical Methods in Engineering, 
2009, 78(12): 1474-1491. 

[4] Wang S, Sturler E D, Paulino G H. Large‐scale topology optimization using 
preconditioned Krylov subspace methods with recycling [J]. International 
journal for numerical methods in engineering, 2007, 69(12): 2441-2468. 

[5] Amir O, Aage N, Lazarov B S. On multigrid-CG for efficient topology 
optimization [J]. Structural and Multidisciplinary Optimization, 2014, 49(5): 
815-829. 

[6] Gogu C. Improving the efficiency of large scale topology optimization through 
on‐the‐fly reduced order model construction [J]. International Journal for 
Numerical Methods in Engineering, 2015, 101(4): 281-304. 

[7] Huang G, Wang H, Li G. An exact reanalysis method for structures with local 
modifications [J]. Structural and Multidisciplinary Optimization, 2016, 54(3): 
499-509. 

[8] Kirsch U. Reanalysis of structures [M]. Springer, 2008. 
[9] Huang G, Wang H, Li G. A novel Multi-Grid assisted reanalysis for re-meshed 

finite element models [J]. Computer Methods in Applied Mechanics and 
Engineering, 2017, 313: 817-833. 

[10] Kirsch U. Reduced basis approximations of structural displacements for 
optimaldesign [J]. AIAA journal, 1991, 29(10): 1751-1758. 

[11] Kirsch U. Approximate structural reanalysis based on series expansion [J]. 
Computer Methods in Applied Mechanics and Engineering, 1981, 26(2): 205-
223. 

[12] Fox R, Mlura H. An approximate analysis technique for design calculations [J]. 
AIAA Journal, 1971, 9(1): 177-179. 

[13] Thomée V. High order local approximations to derivatives in the finite element 
method [J]. Mathematics of Computation, 1977, 31(139): 652-660. 

[14] Kirsch U. Design-oriented analysis of structures: a unified approach [M]. 
Springer Science & Business Media, 2002. 

[15] Kirsch U, Kocvara M, Zowe J. Accurate reanalysis of structures by a 
preconditioned conjugate gradient method [J]. International Journal for 
Numerical Methods in Engineering, 2002, 55(2): 233-251. 

[16] Chang S, Cho M. Dynamic-Condensation-Based Reanalysis by Using the 
Sherman–Morrison–Woodbury Formula [J]. AIAA Journal, 2021, 59(3): 905-
911. 



41 

 

[17] Amir O, Kirsch U, Sheinman I. Efficient non‐linear reanalysis of skeletal 
structures using combined approximations [J]. International journal for 
numerical methods in engineering, 2008, 73(9): 1328-1346. 

[18] Kirsch U, Bogomolni M. Procedures for approximate eigenproblem reanalysis 
of structures [J]. International Journal for Numerical Methods in Engineering, 
2004, 60(12): 1969-1986. 

[19] Zhang S, Cai Y, Wang H, et al. A fast reanalysis solver for 3D transient thermo-
mechanical problems with temperature-dependent materials [J]. Computers & 
Structures, 2020, 238: 106298. 

[20] Rezaiee-Pajand M, Momenipour M, Hozhabrossadati S M. Reanalysis of 2D 
and 3D truss structures considering simultaneous variations in topology, 
geometry and size [J]. Engineering with Computers, 2020: 1-19. 

[21] Amir O, Sigmund O, Lazarov B S, et al. Efficient reanalysis techniques for 
robust topology optimization [J]. Computer Methods in Applied Mechanics and 
Engineering, 2012, 245: 217-231. 

[22] Bogomolny M. Topology optimization for free vibrations using combined 
approximations [J]. International Journal for Numerical Methods in 
Engineering, 2010, 82(5): 617-636. 

[23] Zheng S, Zhao X, Yu Y, et al. The approximate reanalysis method for topology 
optimization under harmonic force excitations with multiple frequencies [J]. 
Structural and Multidisciplinary Optimization, 2017, 56(5): 1185-1196. 

[24] Long K, Gu C, Wang X, et al. A novel minimum weight formulation of topology 
optimization implemented with reanalysis approach [J]. International Journal 
for Numerical Methods in Engineering, 2019, 120(5): 567-579. 

[25] Mo K, Guo D, Wang H. Iterative reanalysis approximation‐assisted moving 
morphable component‐based topology optimization method [J]. International 
Journal for Numerical Methods in Engineering, 2020, 121(22): 5101-5122. 

[26] Bendsøe M P, Kikuchi N. Generating optimal topologies in structural design 
using a homogenization method [J]. Computer methods in applied mechanics 
and engineering, 1988, 71(2): 197-224. 

[27] Bendsoe M P, Sigmund O. Topology optimization: theory, methods, and 
applications [M]. Springer Science & Business Media, 2013. 

[28] Sigmund O, Maute K. Sensitivity filtering from a continuum mechanics 
perspective [J]. Structural and Multidisciplinary Optimization, 2012, 46(4): 
471-475. 

[29] Bourdin B. Filters in topology optimization [J]. International journal for 
numerical methods in engineering, 2001, 50(9): 2143-2158. 

[30] Wallin M, Ivarsson N, Amir O, et al. Consistent boundary conditions for PDE 
filter regularization in topology optimization [J]. Structural and 
Multidisciplinary Optimization, 2020, 62(3): 1299-1311. 

[31] Andreassen E, Clausen A, Schevenels M, et al. Efficient topology optimization 
in MATLAB using 88 lines of code [J]. Structural and Multidisciplinary 
Optimization, 2011, 43(1): 1-16. 



42 

 

[32] Liu K, Tovar A. An efficient 3D topology optimization code written in Matlab 
[J]. Structural and Multidisciplinary Optimization, 2014, 50(6): 1175-1196. 

[33] Svanberg K. The method of moving asymptotes—a new method for structural 
optimization [J]. International journal for numerical methods in engineering, 
1987, 24(2): 359-373. 

[34] Xiao M, Lu D, Breitkopf P, et al. On-the-fly model reduction for large-scale 
structural topology optimization using principal components analysis [J]. 
Structural and Multidisciplinary Optimization, 2020: 1-22. 

[35] Mcvean G. A genealogical interpretation of principal components analysis [J]. 
PLoS genetics, 2009, 5(10): e1000686. 

 


