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Abstract
The rapid spread of the numerous outbreaks of the coronavirus disease 2019 (COVID-19) pandemic has fueled interest in 
mathematical models designed to understand and predict infectious disease spread, with the ultimate goal of contributing to 
the decision making of public health authorities. Here, we propose a computational pipeline that dynamically parameterizes 
a modified SEIRD (susceptible-exposed-infected-recovered-deceased) model using standard daily series of COVID-19 cases 
and deaths, along with isolated estimates of population-level seroprevalence. We test our pipeline in five heavily impacted 
states of the US (New York, California, Florida, Illinois, and Texas) between March and August 2020, considering two 
scenarios with different calibration time horizons to assess the update in model performance as new epidemiologic data 
become available. Our results show a median normalized root mean squared error (NRMSE) of 2.38% and 4.28% in cali-
brating cumulative cases and deaths in the first scenario, and 2.41% and 2.30% when new data are assimilated in the second 
scenario, respectively. Then, 2-week (4-week) forecasts of the calibrated model resulted in median NRMSE of cumulative 
cases and deaths of 5.85% and 4.68% (8.60% and 17.94%) in the first scenario, and 1.86% and 1.93% (2.21% and 1.45%) 
in the second. Additionally, we show that our method provides significantly more accurate predictions of cases and deaths 
than a constant parameterization in the second scenario (p < 0.05). Thus, we posit that our methodology is a promising 
approach to analyze the dynamics of infectious disease outbreaks, and that our forecasts could contribute to designing effec-
tive pandemic-arresting public health policies.

Keywords  COVID-19 · Infectious diseases · Mathematical epidemiology · Modified SEIRD model · Dynamic 
parameterization · Data-informed modeling

1  Introduction

The detection of the first cases of the novel coronavirus 
SARS-CoV-2 (Severe Acute Respiratory Syndrome Coro-
navirus 2) in Wuhan (China) in December 2019 marked 
the onset of the coronavirus disease 2019 (COVID-19) 
pandemic [1, 2]. Since then, the ensuing surge of COVID-
19 outbreaks across the world has fueled interest in math-
ematical modeling the spread of infectious disease [3–8]. 
These mathematical models have been widely used by public 
health authorities to monitor and make predictions about the 
progression of the COVID-19 outbreaks worldwide [9, 10]. 
For example, these models have been leveraged to anticipate 
peaks of patients with severe symptoms in the healthcare 
system, design effective non-pharmaceutical interventions 
(NPIs; e.g., masking, social distancing, and lockdowns) to 
reduce the spread of ongoing outbreaks, and efficiently allo-
cate medical resources [11–13].
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Mathematical models in epidemiology can be classified 
into two broad paradigms: statistical and mechanistic. Statis-
tical models usually consist of purely empirical formulations 
based on a set of predetermined mathematical functions 
that match the global trend of the observations registered 
in epidemiological data series (e.g., infections, deaths, etc.) 
[14, 15]. Other statistical approaches can provide greater 
modeling flexibility by eliminating the need for predefined 
functions, instead relying on machine learning techniques for 
predictive modeling [16]. Despite their demonstrated ability 
to reproduce and forecast complex outbreak dynamics [17], 
statistical models rely heavily on incoming data series and 
do not account for the underlying mechanisms of disease 
spread. Hence, these limitations may result in uncertain 
long-term predictions and high susceptibility to overesti-
mation [14, 16, 18]. Conversely, in mechanistic models, the 
population under study is divided into subgroups according 
to their disease status (e.g., susceptible, exposed, infected, 
recovered, deceased) and a set of mathematical functions 
describes the interaction between the different subgroups as 
well as the movement across compartments. This description 
is most commonly provided through a system of ordinary 
differential equations (ODEs). Available epidemiologi-
cal data is then leveraged to estimate the ODE parameters 
that characterize the mechanisms of disease transmission, 
recovery, and mortality. The formulation of most mecha-
nistic models for infectious disease spread can be traced 
back to the special case of an epidemic model proposed 
by Kermack and McKendrick [18–22]. Using this model 
as a starting formulation, new mechanistic models can be 
defined by adding more compartments and mechanisms of 
transmission or disease progression to describe more com-
plex dynamics. For example, during the early stages of the 
COVID-19 pandemic, several studies aimed at accounting 
for disease-specific phenomena, such as levels of disease 
severity and distinct pre-symptomatic stages [3, 6, 23–26]. 
Additionally, these models can also be extended to a spati-
otemporal formulation based on partial differential equa-
tions (PDEs) by accounting for local population densities in 
each compartment as well as the mechanisms characterizing 
the mobility of individuals in the region under study [5, 11, 
27–29]. Agent-based models are another type of mechanistic 
approach that have also been used in the context of infectious 
disease spread. Instead of relying on differential equation 
formulations, these models rely on a set of rules governing 
disease transmission, recovery, and mortality to gain insight 
into the connection between local interactions and global 
dynamics of infectious disease spread over a region of inter-
est [30]. In general, mechanistic models are always limited 
by the set of hypotheses underlying their formulation, which 
aim at characterizing the spread of the pathological agent 
within the population under study, and by the availability 
of specific data to identify the parameters governing each 

mechanism in the model. Additionally, classical mechanistic 
approaches with a single set of constant parameters cannot 
capture multiple waves in an ongoing outbreak (e.g., SIR 
and SEIR models; see Supplementary Fig. S1), the effect of 
dynamic human behavior (e.g., contacts between individu-
als), or NPIs that could vary in time and dynamically impede 
the spread of SARS-CoV-2 (e.g., masking, social distanc-
ing). To account for these events, classical mechanistic mod-
els require an extended formulation featuring, for example, 
a parameter update (e.g., NPI implementation) [11, 31] or 
the introduction of mechanisms enabling feedback between 
immune and susceptible individuals [32].

Hybrid approaches have been developed to overcome the 
limitations of the classic statistical and mechanistic modeling 
paradigms [33]. Using data-driven dynamic parameterizations 
of mechanistic models and leveraging techniques borrowed 
from statistical approaches, hybrid models have shown an 
improvement over purely statistical or mechanistic models 
in terms of explaining the changing nature of mechanistic 
parameters due to human behavior and government interven-
tions during infectious disease outbreaks [31, 34, 35]. This 
hybrid approach has also attracted much attention in other 
areas of computational biology and medicine, such as the 
modeling of cancer growth and therapeutic response [36–39]. 
To calibrate and update time-resolved parameterizations of 
mechanistic models of infectious disease outbreaks using 
incoming epidemiological data, some studies have shown 
promising results by leveraging Bayesian methods [18, 
40–43]. However, this approach requires the estimation of 
unknown prior distributions for the model parameters and this 
may result in a significant bias in parameter identification, 
especially at the onset of an outbreak [18]. While a hybrid 
method based on machine learning techniques has also shown 
promise [29], this approach is generally limited by the lack 
of large amounts of disease-specific datasets, especially at 
the beginning of infectious disease outbreaks. Additionally, 
standard epidemiological data usually characterize only a sub-
set of the mechanistic compartments in the model (e.g., infec-
tions and deaths). This limitation considerably complicates 
the determination of time-resolved parameters with respect to 
classical mechanistic approaches due to the ill-posed nature 
of inverse problems [44]. To address this issue, data-driven, 
time-resolved parameterizations may require several assump-
tions or inferences from previous studies that are critical to the 
performance of a model (e.g., relationships between param-
eters, assumption of constant value or of the temporal change 
of a parameter, initial value estimates, expected parameter 
ranges) [5, 11, 13, 24, 27, 45]. Generally, more complex mod-
els require more assumptions about the parameters to mitigate 
the parameter identifiability issues [3].

In this work, we present a data-informed methodology to 
perform the dynamic parameterization of a modified SEIRD 
(Susceptible-Exposed-Infected-Recovered-Deceased) 
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model of COVID-19 spread that has been previously used 
to reproduce early outbreaks in Italy, Brazil, and the US 
[11, 27, 28, 46]. We further develop a computational pipe-
line that implements our methodology, and we test it in five 
of the most heavily impacted states (by case numbers) of 
the US between March and August 2020, such that we can 
neglect the effects of vaccines and loss of immune protec-
tion [47–49]. To obtain time-resolved parameters for this 
mechanistic model, our method utilizes two standard epi-
demiological data sources: daily series of cumulative num-
ber of infections observed ( CIO ) and cumulative number of 
deaths ( D ) [50]. Additionally, we propose to leverage fixed 
point estimates of seroprevalence (i.e., presence of SARS-
CoV-2 antibodies in the blood) as a surrogate measurement 
of the proportion of recovered individuals in the population 
under study [51–54]. The computational pipeline that we 
propose in this work performs dynamic model calibration 
and outbreak forecasting for a geographical region of interest 
in three steps. First, we calculate successive weekly param-
eterizations using our model to obtain daily estimates of 
epidemiological parameters. We then fit quadratic B-splines 
to the resulting daily estimates of the parameters to obtain 
smooth time-resolved functions representing parameter 
dynamics. Using the resulting parameter function fits, we 
proceed to calculate model predictions of the future number 
of COVID-19 cases and deaths. Finally, we analyze the abil-
ity of our approach to recapitulate outbreak dynamics, yield 
short-term forecasts, and provide insight into the progression 
of the COVID-19 outbreaks in the analyzed states of the US 
during the early months of the pandemic.

The remainder of this work is organized as follows. Sec-
tion 2 describes the data, the mechanistic model, the pro-
posed computational pipeline, and the numerical and statisti-
cal methods used in our calculations. Section 3 presents our 
resulting model fits and forecasts as well as the estimated 
time-resolved trends of the parameters. Section 4 discusses 
the results, the limitations of this work, and future directions 
of research. Finally, Sect. 5 provides concluding remarks.

2 � Methods

2.1 � Epidemiological data

We focus on five of the most impacted states in different 
regions of the US in terms of total confirmed case numbers 
by late-summer 2020: California (CA), Texas (TX), Florida 
(FL), New York (NY), and Illinois (IL). Standard epidemio-
logical population variables describing the evolution of the 
COVID-19 pandemic in the US at the state level have been 
made available in the public domain by the Center for Sys-
tems Science and Engineering at Johns Hopkins University 
(JHU CSSE) [50]. As the reliability, accuracy and universal 

availability of the number of recovered individuals have been 
in question since the early stages of the pandemic, we only 
extracted the daily series of cumulative numbers of infections 
observed ( CIO ) and deaths ( D ) from this database to conduct 
the present study [55, 56]. To inform the recovered compart-
ment in our model, we use biweekly state-wide estimations of 
seroprevalence ( Sp ) that were obtained through the summer 
of 2020 [51]. Thus, we assume that the population recovered 
from COVID-19 carries detectable SARS-CoV-2 antibod-
ies, which is consistent with the previously published studies 
on SARS-CoV-2 seroprevalence [57–60], and that recovery 
from COVID-19 confers immunity for the time horizon of our 
study [54]. Consequently, we consider the reported Sp values 
[51] as a proxy for the percentage of recovered individuals 
in the living population of each state within our modeling 
framework.

2.2 � Mechanistic model

We employ a modified SEIRD-type compartmental model 
obtained from previous mathematical epidemiology studies 
designed to recapitulate and forecast the early outbreak of 
COVID-19 in the Lombardy region of Italy [11, 27]. Fig-
ure 1 provides a visual summary of the model mechanisms, 
along with the main variables and parameters involved in the 
formulation. In brief, we assume that the population of the 
region of interest can be classified into five compartments 
according to their disease status: susceptible ( S ), exposed 
( E ), infected ( I ), recovered ( R ), and deceased ( D) . Hence, 
the living population ( N ) can be calculated as the sum of 
the individuals in the S , E , I , and R compartments at any 
time. Disease transmission occurs through the interaction 
between the symptomatic and susceptible individuals, as in 
the classical SIR model [22], as well as between suscepti-
ble and exposed individuals. The latter pathway accounts 
for the asymptomatic disease transmission, which has been 
regarded as a key driver of the COVID-19 pandemic [11, 18, 
25]. For simplicity, we assume a unique transmission rate � 
for susceptible-exposed and susceptible-infected interactions 
[11, 27, 28, 46]. Exposed individuals may either recover 
without developing symptoms at a rate �e (i.e., asympto-
matic recovery), or exhibit them and move to the infected 
compartment at a rate � . Then, symptomatic individuals may 
either recover at a rate �r (i.e., symptomatic recovery) or 
ultimately die at a rate �d . The model further assumes that 
disease transmission predominantly takes place in highly 
populated areas through an Allee effect term characterized 
by a fixed population threshold A . Additionally, while the 
D compartment automatically accounts for the cumulative 
number of deaths, we introduce an ancillary compartment to 
account for the cumulative infections observed ( CIO , i.e., the 



816	 Engineering with Computers (2024) 40:813–837

1 3

cumulative number of cases). Thus, the model can be written 
as the following set of ODEs:

While this model was originally posed assuming a con-
stant value for the epidemiological parameters �, �,�e,�r, 
and �d , here we define these parameters as functions of time 
(i.e., p ≡ p(t) ) to investigate the time-resolved mechanisms 
underlying the spread of COVID-19.

2.3 � Data‑driven dynamic parameterization

We developed a three-step computational pipeline to perform 
a data-driven, time-resolved calibration of the SEIRD model 
and yield accurate short-term forecasts of outbreak progres-
sion. This section is divided into three parts respectively 
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describing each of the steps in our computational pipeline, 
which are also illustrated in Fig. 2. Supplementary Table S1 
further provides a summary of the definitions of the model 
parameters and variables of interest within the computational 
pipeline. In brief, we first use the available CIO and D data 
series in the calibration timeframe [0, Tc] , where Tc denotes 
the calibration time horizon, to obtain daily estimates of the 
epidemiological parameters by leveraging a combination of 
rolling weekly model calibrations and dynamic mean filter-
ing. This approach is further cast as a multi-start strategy 
to select the optimal initial guess for the model parameters, 
determine the best initial conditions for the model, and find 
an adequate level of parameter regularization to limit sharp 
oscillations during the successive parameterizations. Second, 
the daily estimates of the epidemiological parameters are fit 
with quadratic B-splines to obtain a smooth representation of 
the time-resolved dynamics of these parameters. Finally, we 
use the resulting parameter spline fits to solve the model and 
obtain short-term predictions of outbreak spread dynamics 
over the 4 weeks after the calibration time horizon Tc . The 
selection of the best solution to the multi-start dynamic model 
calibration, the determination of the optimal B-spline fit, and 
the assessment of model performance during calibration and 
forecasting is performed by comparing the model outcomes in 
each of the steps of the computational pipeline to the available 
D , CIO , and Sp data.

2.3.1 � Dynamic mean filtering of rolling weekly 
parameterizations of the mechanistic model

The first step in the computational pipeline consists of per-
forming dynamic mean filtering of rolling weekly param-
eterizations of the mechanistic model based on daily series 

Fig. 1   Mechanistic model of COVID-19 spread. This figure illus-
trates the compartments in the SEIRD model utilized in this work, 
along with the mechanisms of interaction between them. The suscep-
tible population ( S ) is exposed to the disease by contact with either 
exposed individuals ( E ) or infected individuals ( I ) at the rate � . 
Exposed individuals may develop symptoms and move to the infected 
subgroup at a rate � . A fraction of symptomatic patients recovers at a 

rate �
r
 and moves into the recovered subgroup ( R ). However, the rest 

of the infected group eventually dies at a rate �
d
 , and deceased indi-

viduals are counted within the deceased population ( D ). The model 
also features asymptomatic transmission, considered as one of the key 
driving forces of COVID-19 spread. Hence, a fraction of the exposed 
population never shows symptoms and directly moves into the recov-
ered subgroup at a rate �

e
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of CIO and D data collected over a global calibration time-
frame [0, Tc] . Mean filtering is extensively leveraged to 
smooth epidemiological data for their use within predictive 
mathematical models of outbreak evolution of infectious dis-
eases [29, 61–63]. Here, we propose to apply a mean filter 
on successive calibrations of the mechanistic model with 
constant parameter values over rolling 1-week windows to 
obtain daily estimates of the epidemiological parameters of 
the model (i.e., �, �,�e,�r, and �d).

We define a window of length nw as a set of any nw con-
secutive days [tk, tk + nw − 1] within the calibration time-
frame [0, Tc] , such that k = 0,… , nt − 1 with nt denoting the 
total number of rolling nw windows in 

[
0, Tc

]
 . In this work, 

we set nw = 7, which corresponds to a 1-week window (see 
Supplementary Fig. S2). For each window, we calibrate the 
model using a nonlinear least-squares method informed by 
the CIO and D data collected in days [tk, tk + nw − 1] and 
assuming a constant value for the epidemiological param-
eters. We perform this procedure iteratively, advancing the 
window by one day after each constant parameterization. 
Table 1 provides the parameter space to constrain this cali-
bration problem, which was determined by considering the 
value ranges for similar parameters on previously published 
studies of the early stages of the COVID-19 pandemic [31, 
47, 64–67]. Additionally, we assume that the epidemiologi-
cal parameters are constant over the length of each day, as 
this is the lowest temporal resolution of the data used in this 
work. This assumption facilitates the merging of different 
steps of the computational pipeline without dramatically 

limiting the usability of the model and resulting parameter 
trends.

Let pj,m,k denote a parameter value obtained at day tm by 
calibrating the model with constant parameters for the win-
dow starting on day tk ( k,m = 0,… , nt − 1;j = 1,… , 5 cor-
responding to �, �,�e,�r, and �d ). Then, we define the daily 
estimate of each parameter at day tm , p̂j,m , as the mean of the 
corresponding parameter values obtained from the constant 
model parameterizations over all the 1-week windows con-
taining day tm in the calibration timeframe [0, Tc] :

Fig. 2   Flowchart of the computational pipeline. We first perform 
successive weekly calibrations of the model by leveraging the avail-
able data on cumulative deaths ( D ) and infection observations ( CIO ) 
within the calibration timeframe [0,T

c
] to obtain daily estimates of 

the model parameters. These rolling weekly calibrations are further 
cast within a multi-start strategy that samples multiple values for the 
initial parameter guesses and initial model conditions (i.e., at day 0), 
while also testing variable levels of parameter regularization to limit 
spurious oscillations in the parameter values within the calibration 
timeframe. Hence, the best solution to the multi-start approach con-
sists of the daily parameter estimates, initial parameter estimates, and 
initial model conditions that jointly minimize the mismatch between 
the model solution and the available D , CIO , and Sp data during the 

calibration period. Afterwards, B-spline curves are fit to the resulting 
daily estimates of the parameters to obtain a smooth functional repre-
sentation of the time-resolved changes of the epidemiological param-
eters. To this end, we consider a collection of B-spline fits using a 
varying number of basis functions and leverage endpoint regulariza-
tion, which contributes to render smooth projection of parameter val-
ues into the forecasting timeframe (i.e., for times t > T

c
 ). To select 

the optimal B-spline fit for each state, we assess the model outcomes 
obtained with each B-spline fit against the D , CIO and Sp data avail-
able during the calibration timeframe. Finally, we assess the resulting 
time-resolved parameter trends and perform forecasts over the next 4 
weeks (i.e., 28 days) after the calibration time horizon T

c

Table 1   Parameter bounds 
used in the multi-start 
selection of initial guesses 
and during the rolling weekly 
parameterizations of the SEIRD 
model

These parameter bounds were 
selected empirically upon the 
basis of previously published 
studies on the early progression 
of the COVID-19 pandemic [31, 
47, 64–67]

Parameters Calibra-
tion bounds 
(day−1)

�
[

1

10
, 4

]

�
[

1

14
,
1

4

]

�
e

[
1

40
,

1

1.33

]

�
r

[
1

40
,
1

2

]

�
d

[
1

300
,

1

10

]
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where na is the number of available windows containing 
day tm . For the majority of days in [0, Tc] , na = nw = 7  days. 
However, notice that for days tm with m < nw − 1 and 
m > Tc − nw + 1 the number of available windows is 
na < nw = 7 days.

We apply the mean filter defined in Eq. (7) dynamically 
as the calibrations over all the windows containing day 
tm are completed. This approach enables the regulariza-
tion of the parameter values in the immediately consecu-
tive window (i.e., [tm+1, tm+1 + nw − 1] ) with respect to the 
daily estimates obtained for day tm (i.e., p̂j,m ). The rationale 
for this procedure is that it facilitates a smooth transition 
in the parameter values during the calibration of subse-
quent windows. Thus, the objective functional Jw used in 
the nonlinear least-squares fitting method for the weekly 
parameterizations is defined as

The first two terms on the right-hand side of Eq. (8) are 
the squared sums of the model-data mismatch of the cumu-
lative deaths ( D ) and infection observations ( CIO ) over 
the nw days of the window (i.e., 

{
ti
}
i=m,…,m+nw−1

 ), respec-
tively. The third term regularizes the values of the five 
epidemiological parameters to be calibrated within a win-
dow starting on day tm ( pj,m , j = 1,… , 5 ; i.e., �, �,�e,�r, 
and �d ) to their corresponding value of the filtered daily 
estimates obtained via Eq. (7) for the day immediately 
preceding the first day included in the current window 
(i.e., p̂j,m−1 ). In Eq. (8), wD,wCIO, and wreg are weights that 
enable the adjustment of the relative participation of each 
term in the objective functional Jw . In each window, the 
weights wD and wCIO are scaled relative to one another to 
enable a similar participation of the model-data mismatch 
in the D and CIO compartments. In particular, we set 
wCIO = 0.1 and wD = 0.1CIOobs∕Dobs  , where CIOobs  and 
Dobs are the average values of the CIO and D observations 
in the current window. The choice of regularization weight 
wreg is determined for each US state in this study and 
depends on several factors, such as the noise in the epide-
miological data series, the size of the population of each 
state, and the dynamic effect of the mean filter on stabiliz-
ing and smoothening the rolling weekly calibrations. 

(7)p̂j,m =
1

na

∑m

k=m−(na−1)
pj,m,k,

(8)

Jw =w2

D

m+nw−1∑
i=m

(
Dmodel

(
ti
)
− Dobs

(
ti
))2

+ w2

CIO

m+nw−1∑
i=m

(
CIOmodel

(
ti
)
− CIOobs

(
ti
))2

+ w2

reg

5∑
j=1

(
pj,m − p̂j,m−1

p̂j,m−1

)2

.

Hence, varying strengths of regularization result in radi-
cally differing outcomes, ranging from a negligible effect 
on model calibration for very low wreg values, which may 
lead to large oscillations of the parameters over consecu-
tive windows, to a severe effect for very high values of 
wreg , which may yield almost constant daily estimates over 
[0, Tc].

The dynamic calibration method described in this sec-
tion is further cast as a multi-start problem to determine 
the global optimal time-resolved parameterization of our 
model over the parameter space defined in Table 1. This 
approach samples multiple initial guesses for the epidemio-
logical parameters for the first window in [0, Tc] . The initial 
guesses for the ensuing windows are set to the values of the 
filtered daily estimates obtained for the day that immediately 
precedes the beginning of each window (i.e., the last day for 
which the mean filter in Eq. (7) can be applied). Addition-
ally, we extend this multi-start strategy to estimate the initial 
conditions of the model that cannot be extracted from the 
available epidemiological data. For D0 and CIO0 , we use the 
values reported at day 0 by the JHU CSSE database [50]. 
We also assume that the number of recovered individuals is 
negligible on the day after DNE (day 0), so we fix R0 = 0 . 
Notice that this is not a limiting assumption to describe the 
evolution of COVID-19 outbreaks with our model since the 
individuals in the R compartment do not contribute to dis-
ease transmission during the timeframe of this study (see 
Sects. 2.1, 2.2). Hence, we only need to estimate the initial 
conditions for the compartments of infected and exposed 
individuals (i.e., I0 and E0 ), since we can then calculate the 
initial condition S0 as:

where N0 is the US census estimate for the total population 
of the state under consideration [68]. Thus, we include I0 
and E0 = keI0 in the multi-start strategy to find their optimal 
value within the empirically-defined bounds given by:

For any of the subsequent windows starting at day tm 
( m ≥ 1) , the model compartments are initialized to the val-
ues obtained from solving the ODE system using the filtered 
daily estimates p̂j,m( j = 1, .., 5 ) from day 0 to day tm−1 in the 
time interval [0, tm].

We leverage latin hypercube sampling to generate a set 
of nLHS candidate combinations of initial guesses of the epi-
demiological parameters and the initial conditions I0 and 
E0 within the parameter bounds defined in Table 1 and Eqs. 

(9)S0 = N0 −
(
E0 + I0 + R0 + D0

)
,

(10)
CIO0

10
≤ I0 ≤ CIO0,

(11)1 ≤ ke ≤ 20.
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(10), (11), respectively. To this end, we further assume uni-
form distributions for each of the sampled quantities. Addi-
tionally, to determine an adequate strength of regularization 
in Eq. (8), we perform the multi-start calibration for different 
empirically-defined values of the corresponding regulariza-
tion weight, namely wreg = 30, 100, 150, and 400 . Then, 
we choose the optimal combination of initial parameter 
guesses, initial conditions of the model, and regularization 
weight as the one minimizing the selection functional Jc , 
given by

where nD , nCIO , and nSp denote the number of available D , 
CIO , and Sp measurements (i.e., Dobs , CIOobs , and Spobs , 
respectively) over the calibration timeframe [0, Tc] . Thus, 
each term in the right-hand side of Eq. (12) represents the 
percent normalized root mean squared error (NRMSE) of 
the model-estimated D , CIO , and Sp (i.e., Dmodel , CIOmodel , 
and Spmodel , respectively) with respect to the mean of the 
observations of each of these variables over the calibration 
timeframe [0, Tc] (i.e., Dobs , CIOobs , and Spobs , respectively). 
The model-estimated values of Sp(t) are calculated as the 
ratio of the model solution obtained for the recovered popu-
lation R(t) to the living population N(t) (i.e., the sum of all 
non-deceased SEIRD compartments). Furthermore, �D , �CIO , 
�Sp are relative weights for the participation of the NRMSE 
of D , CIO , and Sp in Jc over the calibration timeframe [0, Tc] , 
and are respectively set at 1, 1 and 0.2. In particular, the 
lower value of  �Sp aims to scale the NRMSE of Sp to be 
comparable to that corresponding to CIO and D , while limit-
ing the effect the relatively high level of uncertainty of the 
Sp data available in the literature [51–53, 55].

2.3.2 � B‑spline fitting

We employ B-splines to construct a smooth functional 
representation capturing the temporal changes in the daily 
estimates of the model parameters and enabling the extrapo-
lation of these parameter trends to forecast outbreak evo-
lution. B-splines are piecewise polynomial functions that 

(12)

Jc =
1

3
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can provide a smooth and flexible framework to represent 
both simple and complex temporal changes in parameter 
trends [69–71]. Additionally, B-spline formulations can 
be readily extended to increasingly longer time intervals, 
thereby enabling the accommodation of new daily param-
eter estimates informed by incoming epidemiological data 
to update forecasts during the monitoring of an infectious 
disease outbreak.

We calculate the B-spline representation of the time-
resolved dynamics of each epidemiological parameter (i.e., 
�, �,�e,�r, and �d ) over the forecasting timeframe [0, Tf ] , 
such that Tf > Tc . Hence, the resulting B-spline parameter 
functions aim at reproducing the observed outbreak dynam-
ics over the calibration timeframe [0, Tc] and render a projec-
tion of the parameter trends enabling model forecasting over 
the time interval [Tc,Tf ] . We denote the time-resolved B-spline 
representation of each epidemiological parameter by

where nf  is the number of basis functions chosen to build the 
B-spline over [0, Tf ] , Ni,q denotes each of the B-spline basis 
functions of polynomial degree q , and Pj,i are the scalar coef-
ficients to be fit to the daily estimates of each epidemiologi-
cal parameter ( j = 1,… , 5  corresponding to �, �,�e,�r, and 
�d , respectively). In this work, we use quadratic B-splines 
(i.e., q = 2 ), as they possess a sufficient level of smoothness 
and flexibility to represent the dynamic changes in the daily 
estimates of the model parameters. To construct the B-spline 
fit defined in Eq. (13), it is also necessary to define a knot 
vector, which consists of a set of non-decreasing scalar val-
ues that determines the position of the basis functions. Here, 
we use open uniform knot vectors of the form 
[0, 0, 0, r1, r2,… , rnf−q−1, Tf , Tf , Tf ] , where r1, r2,… , rnf−q−1 
are evenly spaced knots placed throughout the calibration 
timeframe (see Supplementary Fig. S3). For simplicity, we 
assume that the B-spline representations pj(t) for all the epi-
demiological parameters are built with the same B-spline 
basis functions.

To calculate the set of scalar coefficients 
{
Pj,i

}
i=1,…,nf

 of the 
B-spline fit for each epidemiological parameter in our model, 
pj(t) , we leverage a nonlinear least-squares method. The coef-
ficients 

{
Pj,i

}
i=1,…,nf

 are also constrained to the bounds given 
for each parameter in Table 1. The objective functional to be 
minimized during the B-spline fit is given by

where pj
(
ti
)
 are the values of the B-spline for parameter pj 

( j = 1,… , 5 corresponding to �, �,�e,�r, and �d , respec-
tively) on each of the nt days 

{
ti
}
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 considered within 
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the calibration timeframe [0, Tc] , p̂j,i are the corresponding 
daily estimates of parameter pj obtained from the mean fil-
tering of the rolling weekly calibrations (see Sect. 2.3.1), and 
Pj,nf

 and Pj,nf−1
 are the scalar coefficients of the last two 

quadratic basis functions, which are the closest to the termi-
nal time horizon Tf  . Thus, the first term on the right-hand 
side of Eq.  (14) represents the mismatch between the 
B-spline fit and the daily estimates of each model parameter 
pj , while the second term regularizes the terminal slope of 
the parameter trend to limit dramatic surges or decreases of 
the parameter values within the forecasting interval [Tc, Tf ] . 
We empirically set the weights as wp = 1 and we = 3 . Notice 
that in Eq. (14) the determination of the B-spline coefficients {
Pj,i

}
i=1,…,nf

 only uses data in the calibration timeframe 
[0, Tc] (i.e., the daily parameter estimates from the mean fil-
tering of the rolling weekly calibration; see Sect. 2.3.1). 
However, since the B-spline representations are directly 
constructed over the forecasting timeframe [0, Tf ] , the result-
ing B-spline fit automatically provides a projection of the 
time-resolved parameter trend in the time interval [Tc, Tf ] , 
enabling the forecasting of outbreak dynamics up to the time 
horizon Tf .

Since the optimal number of basis functions cannot be 
determined a priori, we construct a collection of B-spline 
representations of the epidemiological parameters leverag-
ing increasingly richer bases ranging from nf = 3 , which is 
the minimum number of basis functions required to build a 
quadratic B-spline curve (i.e., nf = q + 1 ), to nf = 10 , which 
is a maximum value that we fix to avoid capturing the local 
noise that might be present in the daily parameter estimates 
from Sect. 2.3.1. Then, the optimal number of basis func-
tions is determined as the one rendering B-spline parameter 
fits that minimize the functional Jf  given by

In Eq. (15), �D , �CIO , and �Sp denote the relative weight 
of the NRMSE of D , CIO , and Sp over the calibration 
timeframe [0, Tc] and are determined empirically as 3, 3 
and 1. As for Jc in Eq. (12), the comparatively lower value 
of �Sp aims to scale the value of the NRMSE for Sp to 
those corresponding to D and CIO , while also limiting 
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the impact of the relatively high uncertainty in the Sp data 
[51–53, 55].

2.3.3 � Forecasting outbreak evolution

Since the B-spline functions are directly constructed over 
the forecasting timeframe [0, Tf ] , the resulting B-spline fits 
automatically provide a projection of the trend of the time-
resolved parameters in the time interval [Tc, Tf ] . We then use 
these spline-based parameter functions to solve the mecha-
nistic model in [0, Tf ] and, hence, obtain a forecast of the 
model compartments up to the time horizon Tf  . Given that 
the original dynamic model parameterization obtained via 
mean filtering featured daily-resolved parameter values (see 
Sect. 2.3.1), we also assume that the spline-based parameter 
values are constant during the length of each day for con-
sistency between the steps of our computational pipeline. 
To assess the validity of our forecasts with respect to the 
epidemiological data available in [Tc, Tf ] , we calculate the 
NRMSE of the model-predicted CIO , D , and Sp.

2.3.4 � Confidence intervals

The mean filter described in Sect. 2.3.1 is applied in the first 
step of our computational pipeline in a purely deterministic 
manner. We consider it as a pre-processing step of the epide-
miological data to obtain the daily parameter estimates that 
will ultimately facilitate a smooth dynamic parameteriza-
tion of our mechanistic model using B-splines. However, 
we characterize the uncertainty in the resulting spline fits of 
the epidemiological parameters as well as in the mechanistic 
model fits and forecasts by calculating 95% bootstrapped 
confidence intervals. For each optimal spline fit obtained for 
each epidemiological parameter, we generate 1000 bootstrap 
samples of the corresponding residual vector, which is calcu-
lated from the mismatch between the optimal B-spline fit and 
the daily estimates of each model parameter (see Eq. (14)). 
Each bootstrap sample is added to the daily estimates of the 
corresponding epidemiological parameter, and we calculate 
a B-spline fit following the approach described in Sect. 2.3.2 
with the optimal number of basis functions. We repeat this 
operation with the 1000 bootstrap samples, thereby obtain-
ing a collection of 1000 B-spline coefficient sets that define 
an equal number of B-spline fits for each epidemiological 
parameter. Hence, to calculate the 95% confidence interval 
of the B-spline fits of each epidemiological parameter, we 
take the 2.5 and 97.5 percentiles of the resulting collection 
of B-spline fits over the forecasting timeframe [0, Tf ] . Then, 
we use the 1000 sets of dynamic epidemiological parameters 
from the corresponding 1000 B-spline fits obtained for each 
epidemiological parameter, and we solve the SEIRD model 



821Engineering with Computers (2024) 40:813–837	

1 3

for each of dynamic parameter set following the approach 
in Sect. 2.3.3. Hence, the 95% confidence intervals of the 
SEIRD model fits and forecasts are obtained by taking the 
2.5 and 97.5 percentiles of the corresponding mechanistic 
model solutions over the forecasting timeframe [0, Tf ].

2.3.5 � Dynamic versus constant parameterization 
of the mechanistic model

To assess the degree of improvement arising from the use 
of our computational pipeline, we compare the calibration 
and forecasting results of our dynamic parameterization 
approach with respect to a standard constant parameteri-
zation scheme. Hence, the constant parameterization aims 
at finding a unique set of epidemiological parameters 
(i.e., �, �,�e,�r, and �d )  that fit the model to the CIO and 
D data series over the calibration timeframe [0, Tc] . This 
parameterization is also performed via a nonlinear least-
squares method leveraging the functional in Eq. (8) with-
out the inter-window regularization term. We further cast 
this parameterization problem within the same multi-start 
approach described in Sect. 2.3.1 and, hence, we choose 
the initial parameter guess and initial model conditions 
using the selection functional provided by Eq. (12).

2.4 � Computational study setup

The data sources described in Sect.  2.1 were used to 
construct two scenarios to assess the performance of our 
time-resolved parameterization method. These scenarios 
are based on the date of the last Sp estimate leveraged 
to inform the dynamic calibration of the mechanistic 
model. First, we use scenario D152, in which the calibra-
tion timeframe ranges from the day following the decla-
ration of national emergency (DNE) in the US (March 
14, 2020) up to 152 days after the DNE, when the first 
Sp state-specific estimates used in this study were meas-
ured [51] (see Supplementary Table S2). Hence, scenario 
D152 features the minimum amount of CIO , D , and Sp 
data to leverage our dynamic calibration method. Then, 
we further consider scenario D166, where the calibra-
tion timeframe spans from the day after the DNE and 
up to 166 days following the DNE, thereby including 
two Sp estimates to inform the parameterization of the 
model [51] (see Supplementary Table S2). We use sce-
nario D166 to assess how the availability of further CIO , 
D , and Sp data to inform the dynamic model calibration 
contributes to update the ensuing model forecasts of the 
COVID-19 outbreak spread. As the outbreak evolution 
may considerably change over one month, in both sce-
narios we focus on forecasting the model solution during 

the 4 weeks after the time horizon used for model calibra-
tion (i.e., Tf = Tc + 28  days) [41, 72]. Hence, in both sce-
narios, the model predictions in the time interval [Tc, Tf ]  
are compared to daily measurements of CIO and D as well 
as two biweekly estimates of Sp [51] (see Supplementary 
Table S2).

2.5 � Numerical and statistical methods

The computational pipeline described in this work is fully 
implemented in MATLAB® (R2021a, The Mathworks, Natick, 
MA, USA). The SEIRD model in Eqs. (1)–(6) is solved using a 
Runge–Kutta method as provided by ode45 [73]. The calibra-
tion of the mechanistic model within each rolling window as 
well as the B-spline fits are carried out by leveraging lsqnonlin 
from the Optimization Toolbox. Specifically, we use the trust-
region-reflective algorithm to solve these two types of non-
linear least-squares problems. We further use lhsdesign from 
the Statistics and Machine Learning Toolbox to perform Latin 
hypercube sampling ( nLHS = 1500 ) of the candidate initial 
parameter guesses and initial conditions of the model within 
the multi-start step of the computational pipeline assuming 
uniform distributions for each input. Additionally, we use 
ranksum from the Statistics and Machine Learning Toolbox 
to perform one-sided and two-sided Wilcoxon rank sum tests 
( � = 0.05 ) to compare the calibration and forecasting results 
of our dynamic parameterization, as well as the correspond-
ing results obtained with the dynamic versus the standard 
parameterization with constant parameter values over the 
whole calibration timeframe.

3 � Results

3.1 � The proposed computational pipeline 
recapitulates COVID‑19 infection spread 
and provides accurate short‑term forecasts 
over 2 weeks

We first employed our computational pipeline in the D152 
scenario, which features the minimum amount of CIO , D , 
and Sp data to use our dynamic calibration method (see 
Sect. 2.4). Figure 3 shows the model fits and forecasts of 
COVID-19 outbreak dynamics that result from applying 
our computational pipeline to the data from the five states 
considered in this study in the D152 scenario. Table 2 fur-
ther provides the cumulative and weekly values of NRMSE 
assessing the quality of the model fits and forecasts. Addi-
tionally, methodological details for each state in this sce-
nario, such as the selected regularization weight of the 
dynamic mean filter, the estimation of the initial conditions, 
and the number of quadratic B-spline basis functions that 
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represent the parameters can be found in Supplementary 
Table S3.

Despite the diverse epidemiological dynamics of COVID-
19 infection spread indicated by the time courses of CIO and 
D in Fig. 3, our computational pipeline achieves a median 
(range) NRMSE of 2.38% (1.40%, 6.98%) and 4.28% 
(1.99%, 5.63%) in these two compartments during dynamic 
model calibration, respectively (see Table 2). Additionally, 
the median (range) of NRMSE for Sp during dynamic model 
calibration is 14.14% (2.41%, 38.50%), such that the model 
estimations of Sp are all either within or near the reported 
95% CI of the corresponding Sp estimates in the literature 
(see Supplementary Table S2).

During the forecasting interval, the cumulative NRMSE 
values reported in Table 2 show that the performance of 
our computational pipeline to forecast the COVID-19 

outbreak dynamics is comparable to its ability to reca-
pitulate the observations of D,CIO , and Sp during the 
calibration timeframe in each state. Indeed, no significant 
difference was observed between the cumulative NRMSE 
of CIO , D , and Sp obtained during calibration and each 
of the weeks within the forecasting interval across the 
five states (p = 0.22, 0.42, and 0.22 between calibration 
and longest forecast in two-sided Wilcoxon rank-sum 
tests, respectively). Nevertheless, the results in Table 2 
also suggest that the model predictions may worsen as 
we consider an increasingly distant forecasting time hori-
zon, although the changes in weekly NRMSE for CIO , 
D , and Sp across the five states are not significant under 
two-sided Wilcoxon rank-sum testing. For example, the 
median (range) of the weekly NRMSE of CIO across the 
five states is 5.85% (1.10%, 7.38%) in the second week, 

Fig. 3   Recapitulation and forecasting of COVID-19 outbreak dynam-
ics using the dynamic parameterization of the mechanistic model 
obtained in the D152 scenario. This figure shows the fits and forecasts 
of COVID-19 infectious spread obtained with our computational 
pipeline in the D152 scenario in the states of California (a), Texas 
(b), Florida (c), New York (d), and Illinois (e). From left to right, the 
first plot in each panel shows the susceptible ( S ) and recovered ( R ) 
subpopulations; the second plot shows the exposed ( E ) and infected 
( I ) subpopulations along with the CIO ; and the third plot shows the 

cumulative deaths ( D ). The shaded areas around the model fits and 
forecasts for each compartment represent the corresponding 95% 
bootstrapped confidence intervals. The vertical dotted line indicates 
the end of calibration period and the beginning of the forecasting 
interval. Daily measurements of CIO and D were obtained from the 
JHU CSSE COVID-19 dashboard [50], and are represented as hol-
low circles. Pointwise estimates of the recovered population were 
obtained from published seroprevalence ( Sp ) studies and error bars 
indicate their corresponding 95% confidence intervals [51]
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and 8.60% (1.98%, 25.20%) in the fourth week ( p = 0.42; 
two-sided Wilcoxon rank-sum test). Similarly, the median 
(range) of the weekly NRMSE of D across the five states 
is 4.68% (0.83%, 13.64%) in the second week, and 17.94% 
(0.70%, 37.78%) in the fourth week ( p = 0.42; two-sided 
Wilcoxon rank-sum test). Finally, the median (range) of 
the Sp forecasts is 25.59% (2.81%, 61.83%) in the second 
week, and 34.82% (9.27%, 47.46%) in the fourth week ( p 
= 1.00; two-sided Wilcoxon rank-sum test). As a notable 

exception, we observe significantly lower weekly NRMSE 
values for the predictions of CIO in the first week versus 
the second week of the forecasting interval ( p = 0.048; 
one-tailed Wilcoxon rank-sum test). Additionally, despite 
the high NRMSE obtained for the Sp forecasts, these 
model predictions still remain either comparable to or 
completely within the 95% confidence interval reported 
for the Sp data (see Fig. 3 and Supplementary Table S2).

Fig. 3   (continued)
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3.2 � Assimilation of further data improved 
the performance of the computational pipeline 
in recapitulating and forecasting the dynamics 
of COVID‑19 outbreaks

We investigate the adaptive performance of our computa-
tional pipeline as further epidemiological data becomes 
available in the D166 scenario, where we extend the calibra-
tion timeframe by 2 weeks and assimilate the corresponding 
daily measurements of D and CIO as well as an additional Sp 
estimate (see Sect. 2.4). Figure 4 shows the model fits and 
forecasts of COVID-19 infection spread yielded by our com-
putational pipeline for the five states in the D166 scenario. 
Table 3 further provides the cumulative and weekly values 
of NRMSE measuring the quality of the model fits and fore-
casts. Additionally, methodological details for each state 

in this scenario can be found in Supplementary Table S3 
(e.g., regularization weights, initial conditions, number of 
B-spline basis functions).

Figure 4 shows that, in the D166 scenario, the compu-
tational pipeline provided updated time-resolved model 
parameters that enabled the recapitulation of the observed 
time courses of CIO , D , and Sp within the extended calibra-
tion timeframe, with a median (range) of NRMSE of 2.41% 
(0.38%, 4.54%), 2.30% (2.12%, 7.87%), and 20.62% (6.96%, 
34.03%) across the five states, respectively (see Table 3). 
Furthermore, we observe again that our computational pipe-
line exhibited a similar performance in recapitulating and 
forecasting CIO , D , and Sp according to the corresponding 
cumulative NRMSE values reported in Table 3 ( p = 0.55, 
0.31, and 1.00 between calibration and longest forecast in 
two-sided Wilcoxon rank-sum tests, respectively). Likewise, 

Table 2   Quality of fits and 
forecasts in the D152 scenario

This table provides the NRMSEs of state-specific model calibrations and forecasts of cumulative deaths 
( D ), cumulative infection observations ( CIO ), and seroprevalence ( Sp ). Model calibrations relied on D 
and CIO data during the 152 days following the DNE along with a single endpoint estimate of Sp at day 
152. The ensuing forecasts are calculated over the next 4 weeks following the time horizon for calibration, 
which are denoted by W1, W2, W3, and W4. The reported NRMSEs for the forecasts are provided on a 
weekly and cumulative basis (i.e., considering the 7 days in the ith week and the 7i days from the calibra-
tion time horizon up to the end of the ith week, respectively). The weekly NRMSE values for Sp are only 
available every 2 weeks because the corresponding estimates were measured at this frequency [51]

States Scenario Cumulative NRMSE (%) Weekly NRMSE (%)

D CIO Sp D CIO Sp

CA Calibration 2.32 2.00 2.41 – – –
Forecast W1 1.77 2.62 – 1.77 2.62 –
Forecast W2 3.63 5.68 61.83 4.68 7.38 61.83
Forecast W3 6.80 10.07 – 10.01 14.78 –
Forecast W4 11.33 15.98 50.50 17.94 25.20 42.36

TX Calibration 4.28 2.38 19.99 – – –
Forecast W1 6.65 3.27 – 6.65 3.27 –
Forecast W2 9.36 5.01 17.53 11.05 6.14 17.53
Forecast W3 11.88 6.86 – 14.90 9.17 –
Forecast W4 14.25 8.65 26.66 18.40 11.95 34.82

FL Calibration 5.27 6.98 38.50 – – –
Forecast W1 6.15 4.86 – 6.15 4.86 –
Forecast W2 10.89 5.40 59.87 13.64 5.85 59.87
Forecast W3 17.04 6.03 – 23.68 7.01 –
Forecast W4 25.25 6.85 52.94 37.78 8.60 47.46

NY Calibration 1.99 1.40 9.87 – – –
Forecast W1 0.74 0.96 – 0.74 0.96 –
Forecast W2 0.78 1.03 2.81 0.83 1.10 2.81
Forecast W3 0.78 1.18 – 0.76 1.43 –
Forecast W4 0.76 1.43 6.70 0.70 1.98 9.27

IL Calibration 5.63 5.05 14.14 – – –
Forecast W1 3.80 5.65 – 3.80 5.65 –
Forecast W2 3.91 5.69 25.59 4.01 5.73 25.59
Forecast W3 4.04 5.45 – 4.27 5.00 –
Forecast W4 4.20 5.28 27.30 4.61 4.83 28.44
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the results in Table 3 also show that the weekly NRMSE of 
CIO , D , and Sp may worsen as we consider an increasingly 
distant forecasting time horizon, although the inter-week 
changes in these NRMSE values across the five states are 
non-significant under two-sided Wilcoxon rank-sum testing. 
For example, the median (range) of the weekly NRMSE of 
CIO , D , and Sp is 1.86% (0.30%, 2.74%), 1.93% (0.20%, 
2.50%), and 19.25% (0.80%, 47.59%) in the second week, 
and 2.21% (0.85%, 3.64%), 1.45% (0.16%, 6.02%), and 
15.52% (0.32%, 31.55%) in the fourth week, respectively. 
As in the D152 scenario, we note that, while the NRMSE 
values obtained for Sp during calibration and forecasting are 
high, they are still within or comparable to the 95% confi-
dence interval of the Sp estimates reported in the literature 
(see Supplementary Table S2).

While the calibration performance in the D166 scenario 
is similar to that observed in the D152 scenario ( p = 0.69, 
0.69, and 0.55 for CIO , D , and Sp under two-sided Wilcoxon 
rank-sum testing, respectively), we see an overall improve-
ment in the forecasts of COVID-19 outbreak dynamics 
when further CIO , D , and Sp data are leveraged to inform 
the model in the D166 scenario. Comparing the prediction 
results from the D152 and D166 scenarios, we obtained 
that data assimilation in the latter led to superior forecasts 
of CIO values over the 4 weeks of the forecasting interval 
(p = 0.028, 0.048, 0.048, 0.028 for cumulative NRMSEs and 
p = 0.028, 0.048, 0.048, 0.028 for weekly NRMSEs under 
one-sided Wilcoxon rank-sum testing, respectively). This 
improvement in predictive power was also observed in the 
forecasts of D values in the D166 scenario (p = 0.048, 0.028, 
0.028, and 0.028 for cumulative NRMSEs and p = 0.048, 

Fig. 4   Recapitulation and forecasting of COVID-19 outbreak dynam-
ics using the dynamic parameterization of the mechanistic model 
obtained in the D166 scenario. This figure shows the fits and forecasts 
of COVID-19 infectious spread obtained with our computational 
pipeline in the D166 scenario in the states of California (a), Texas 
(b), Florida (c), New York (d), and Illinois (e). From left to right, the 
first plot in each panel shows the susceptible ( S ) and recovered ( R ) 
subpopulations; the second plot shows the exposed ( E ) and infected 
( I ) subpopulations along with the CIO ; and the third plot shows the 

cumulative deaths ( D ). The shaded areas around the model fits and 
forecasts for each compartment represent the corresponding 95% 
bootstrapped confidence intervals. The vertical dotted line indicates 
the end of calibration period and the beginning of the forecasting 
interval. Daily measurements of CIO and D were obtained from the 
JHU CSSE COVID-19 dashboard [50], and are represented as hol-
low circles. Pointwise estimates of the recovered population were 
obtained from published seroprevalence ( Sp ) studies and error bars 
indicate their corresponding 95% confidence intervals [51]
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0.028, 0.028, 0.048 for weekly NRMSEs under one-sided 
Wilcoxon rank-sum testing, respectively). Nevertheless, the 
quality of the prediction of Sp values was comparable in 
the second and fourth weeks of the forecasting interval in 
both scenarios (p = 0.27, 0.15 for cumulative NRMSEs and 
p = 0.27, 0.11 for weekly NRMSEs under one-sided Wil-
coxon rank-sum testing, respectively).

Table 4 further analyzes the change in weekly NRMSEs 
of the predictions obtained in the D152 and D166 scenar-
ios for CIO , D , and Sp over the two overlapping weeks of 

the forecasting interval in the two scenarios. Due to the 
biweekly frequency of the Sp data, the comparison to the 
corresponding model prediction is performed only in the 
second week of the forecasting interval of the D166 sce-
nario (i.e., the fourth week of the forecasting interval in 
the D152 scenario). During the first week of the forecast-
ing period in the D166 scenario, the median (range) of 
the change in the NRMSE of CIO and D and are − 5.92% 
(− 13.74%, − 1.36%) and − 9.04% (− 22.77%, − 0.61%), 
respectively. During the second week, the change in the 

Fig. 4   (continued)
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weekly NRMSE of the forecasts of CIO , D , and Sp are 
− 6.61% (− 23.34%, − 1.67%), − 15.83% (− 35.27%, 
− 0.50%), and − 2.71% (− 41.56%, 12.77%). These 
changes in the predictive performance were significant 
for CIO and D both in the first week ( p = 0.008 and 0.028 
under one-sided Wilcoxon rank-sum testing, respectively) 
and the second week of the forecasting interval of the 
D166 scenario ( p = 0.016 and 0.028 under one-sided Wil-
coxon rank-sum testing, respectively). Changes in the Sp 
prediction during overlapping weeks were not significant 
( p = 0.21; one-sided Wilcoxon rank-sum test). However, 
the magnitude of improvement in forecasts differs for each 

state. For example, while we obtain substantial reduction 
of the NRMSE of CIO , D , and Sp in California during the 
second week of the forecasting interval in the D166 sce-
nario (− 15.83%, − 23.34%, and − 41.56%, respectively), 
the corresponding reduction in NRMSE values in Illinois 
is comparatively milder (− 4.14%, − 2.09%, and − 2.71%). 
Additionally, there were two cases in which the NRMSE 
of the predictions is higher in the D166 scenario than in 
the D152 scenario, which correspond to the forecasts of 
Sp in Texas (12.77%) and New York (2.05%). However, 
these increases are relatively small compared to the large 
uncertainty associated with Sp estimations [51–53, 55].

Table 3   Quality of fits and 
forecasts in the D166 scenario

This table provides the NRMSEs of state-specific model calibrations and forecasts of cumulative deaths 
( D ), cumulative infection observations ( CIO ), and seroprevalence ( Sp ). Model calibrations relied on D and 
CIO data during the 152 days following the DNE along with two endpoint estimates of Sp at days 152 and 
166. The ensuing forecasts are calculated over the next 4 weeks following the time horizon for calibration, 
which are denoted by W1, W2, W3, and W4. The reported NRMSEs for the forecasts are provided on a 
weekly and cumulative basis (i.e., considering the 7 days in the ith week and the 7i days from the calibra-
tion time horizon up to the end of the ith week, respectively). The weekly NRMSE values for Sp are only 
available every 2 weeks because the corresponding estimates were measured at this frequency [51]

States Scenario Cumulative NRMSE (%) Weekly NRMSE (%)

D CIO Sp D CIO Sp

CA Calibration 2.12 2.41 20.96 – – –
Forecast W1 0.97 1.04 – 0.97 1.04 –
Forecast W2 1.67 1.52 0.80 2.10 1.86 0.80
Forecast W3 2.20 2.04 – 2.90 2.73 –
Forecast W4 2.71 2.33 20.07 3.68 2.95 31.55

TX Calibration 3.00 1.98 20.62 – – –
Forecast W1 2.37 0.42 – 2.37 0.42 –
Forecast W2 2.15 1.04 47.59 1.93 1.38 47.59
Forecast W3 2.03 1.41 – 1.81 1.89 –
Forecast W4 1.88 1.40 29.21 1.45 1.36 10.50

FL Calibration 7.87 4.52 34.03 – – –
Forecast W1 0.90 1.09 – 0.90 1.09 –
Forecast W2 1.92 1.62 19.25 2.50 2.00 19.25
Forecast W3 2.79 2.07 – 3.81 2.71 –
Forecast W4 4.03 2.60 17.09 6.02 3.64 15.52

NY Calibration 2.15 0.38 6.96 – – –
Forecast W1 0.15 0.07 – 0.15 0.07 –
Forecast W2 0.18 0.22 11.32 0.20 0.30 11.32
Forecast W3 0.18 0.39 – 0.17 0.58 –
Forecast W4 0.23 0.55 20.75 0.34 0.85 28.70

IL Calibration 2.30 4.54 18.49 – – –
Forecast W1 0.68 1.48 – 0.68 1.48 –
Forecast W2 0.58 2.24 25.73 0.47 2.74 25.73
Forecast W3 0.48 2.28 – 0.17 2.34 –
Forecast W4 0.42 2.26 20.18 0.16 2.21 0.32
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3.3 � Refinement of model parameterizations drives 
the improvement of model forecasting accuracy 
as epidemiological data are assimilated 
into the model calibration

Figures 5 and 6 provide the time courses of the state-spe-
cific model parameters calculated with our computational 
pipeline for the D152 and D166 scenarios, respectively. 
Furthermore, Supplementary Figures S4 and S5 show the 
corresponding raw daily estimates obtained from the roll-
ing weekly parameterization of the model and used for 
B-spline fitting (see Sect. 2.3). The D152 and D166 sce-
narios required a median (range) of 10 (7,10) and 8 (7,10) 
basis functions, respectively (see Supplementary Table S3). 
Parameters exhibiting a marked oscillatory trend in their fil-
tered daily estimates required a higher number of B-spline 
basis functions to smoothly capture their dynamics. This 
feature also tended to narrow the 95% confidence intervals 
of the corresponding B-spline fits, as each basis function 
described a shorter segment of the B-spline curve represent-
ing the parameter dynamics.

The assimilation of further data during the dynamic 
parameterization of the model in the D166 scenario resulted 

in an update of the daily estimates obtained from the roll-
ing weekly calibration (see Supplementary Figs. S4 and 
S5), which further induced an update of the corresponding 
B-spline fits describing the dynamics of the epidemiologi-
cal parameters (see Figs. 5, 6). In general, the B-spline fits 
within the overlapping region of the calibration timeframes 
between both scenarios (i.e., the 152 days following the 
DNE) remained very similar, with a median (range) root 
mean-squared difference of 0.0074 (0.0002, 0.0685) day−1 
across all states and parameters. The update in the dynamic 
parameterization of the model derived from data assimila-
tion in the D166 scenario was primarily noticeable in the 
terminal trend in the parameter B-spline fits, which led to 
the improvement in forecasting results observed in the D166 
scenario (see Sect. 3.2). For example, comparing Figs. 5 and 
6, we observe that the terminal trend in the contact rate ( � ) in 
New York is updated to higher values in the D166 scenario 
to account for the persistent presence of infections occurring 
in the population of this state. Conversely, in Illinois, instead 
of the approximately constant value obtained for the termi-
nal contact rate obtained in the D152 scenario, the incoming 
data considered in the D166 scenario ultimately update the 
temporal trend of this parameter to a slight slowdown. These 

Table 4   Comparison of 
forecasting accuracy between 
the D152 and D166 scenarios

This table provides the changes in the NRMSE of cumulative deaths ( D ), cumulative infection observa-
tions ( CIO ), and seroprevalence ( Sp ) measured from the state-specific forecasts in weeks 3 and 4 of the 
D152 scenario (Table  2) with respect to weeks 1 and 2 of the D166 scenario (Table  3). A decrease in 
NRMSE (i.e., a negative value in this table) represents an improvement in forecasting accuracy in the 
D166 scenario as data between days 152 and 166 are assimilated in the model calibration. Conversely, an 
increase in NRMSE (i.e., a positive value in this table) represents a worse forecasting result in the D166 
scenario. The reported changes in NRMSEs for the forecasts are provided on a weekly basis. The weekly 
NRMSEs for Sp are only available every 2 weeks because the corresponding estimates were available at 
this frequency [51]

States Scenario NRMSE-D (%) NRMSE-CIO (%) NRMSE-Sp (%)

CA Forecast
D152-W3 vs. D166-W1

− 9.04 − 13.74 –

Forecast
D152-W4 vs. D166-W2

− 15.83 − 23.34 − 41.56

TX Forecast
D152-W3 vs. D166-W1

− 12.53 − 8.75 –

Forecast
D152-W4 vs. D166-W2

− 16.47 − 10.57 12.77

FL Forecast
D152-W3 vs. D166-W1

− 22.77 − 5.92 –

Forecast
D152-W4 vs. D166-W2

− 35.27 − 6.61 − 28.21

NY Forecast
D152-W3 vs. D166-W1

− 0.61 − 1.36 –

Forecast
D152-W4 vs. D166-W2

− 0.50 − 1.67 2.05

IL Forecast
D152-W3 vs. D166-W1

− 3.59 − 3.52 –

Forecast
D152-W4 vs. D166-W2

− 4.14 − 2.09 − 2.71
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two comparisons are further illustrated in detail in Supple-
mentary Fig. S6. Considering the 2-week interval between 
the two calibration time horizons (i.e., between days 152 and 
166), the mean (range) of the root mean-squared difference 
is 0.0282 (0.0000, 0.0926) day−1 across of all epidemiologi-
cal parameters and states, which contributes to a noticeable 
change in D and CIO compartments (see Figs. 3, 4, 5, 6). In 
particular, on day 152 we observed a mean (range) abso-
lute change of − 0.0072 (− 0.0698, 0.0758) day−1 across all 
the parameter values. Likewise, on day 166, we obtained 
an absolute difference of − 0.0096 (− 0.1113, 0.0771) day−1 
across all the parameter values.

Figures 5 and 6 further show that the parameter trends 
computed using our computational pipeline revealed 
some noticeable similarities between the states. First, 
the contact rate �(t) exhibits a steep decrease soon after 
the DNE, which suggests that individuals were actively 
limiting contact before the DNE, and that this behavior 

was predominant during the first weeks of the outbreak in 
each state. Second, the death rate �d(t) showed an over-
all decreasing trend towards the end of the calibration 
timeframe in both scenarios, although the peak in death 
rate occurred at different times across the states. Hence, 
the dynamics of �d(t) suggests an underlying progressive 
improvement in effectively managing COVID-19 patients 
at medical centers across the US. Third, the symptomatic 
recovery rate �r(t) tends to exhibit a substantial increase 
either in the beginning or towards the end of the calibra-
tion time horizon in both scenarios (i.e., by the beginning 
of summer 2020). This trend may suggest an intense test-
ing campaign during broad infectious spread in the popu-
lation. Finally, the asymptomatic recovery �e(t) and the 
symptomatic recovery �r(t) rates exhibit the largest oscil-
lations, which suggest a greater difficulty in estimating 
their dynamics [41, 56]. In Sect. 4, we comment further 

Fig. 5   B-spline representations of dynamic model parameters for 
each state in the D152 scenario. Panels (a–e) show the temporal func-
tions describing the dynamics of the epidemiological model param-
eters obtained with our computational pipeline in the D152 scenario 
for the states of California, Texas, Florida, New York, and Illinois, 
respectively. These time-resolved functions were obtained by fitting 
the corresponding parameter daily estimates resulting from the mean 

filtering step with quadratic B-splines. The resulting B-spline fits pro-
vide the dynamics of each parameter during both the calibration and 
forecasting periods, which are separated by a vertical dashed line in 
each plot. The shaded area surrounding each parameter B-spline fit 
indicates the corresponding 95% bootstrapped confidence interval. 
The number of basis functions used to represent the parameters in 
each state can be found in Supplementary Table S3
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on the epidemiological implications of these parameter 
trends.

For completeness, we compared the fitting and forecasting 
results of our dynamic calibration pipeline to those obtained 
using a standard non-dynamic approach (i.e., with constant 
parameter values over time). Supplementary Figures S7 and 
S8 show the fits and forecasts obtained with this standard 
calibration method in the D152 and D166 scenarios, respec-
tively, while Supplementary Tables S4 and S5 provide the cor-
responding NRMSE values. Moreover, Supplementary Figs. 
S9–S11 compare the NRMSE distributions obtained with the 
dynamic and constant (i.e., non-dynamic) parameterization 
approach during the calibration and forecasting timeframes 
in the D152 and the D166 scenarios, respectively. Comparing 
Figs. 3 and 4 to Supplementary Figs. S7 and S8, the dynamic 
parameterization proposed in this study renders qualitatively 
better fits and forecasts than a classical constant parameter 
calibration. From a quantitative standpoint, our computational 

pipeline with a dynamic model parameterization provides a 
superior fit to the observed data during the calibration time-
frame of both scenarios, with significantly lower NRMSE in 
CIO and D in both the D152 scenario ( p = 0.008 and 0.008 
under two-sided Wilcoxon rank-sum testing, respectively) and 
in the D166 scenario ( p = 0.008 and 0.008 under two-sided 
Wilcoxon rank-sum testing, respectively). The results of our 
dynamic calibration approach did not show a significantly bet-
ter forecasting ability in the D152 scenario (e.g., p = 0.421, 
0.421, and 0.690 for the 4-week cumulative NRMSE of CIO , 
D , and Sp forecasts under two-sided Wilcoxon rank-sum test-
ing, respectively), although we observe a trend towards lower 
weekly NRMSE values for the predictions of CIO using our 
dynamic calibration method (see Supplementary Fig. S9). Fol-
lowing the data assimilation in the D166 scenario, our compu-
tational pipeline yields superior predictions of the CIO than the 
model with constant parameters in the first, third, and fourth 
week of the forecasting interval ( p = 0.008, 0.008, and 0.008  

Fig. 6   B-spline representations of dynamic model parameters for 
each state in the D166 scenario. Panels (a–e) show the temporal func-
tions describing the dynamics of the epidemiological model param-
eters obtained with our computational pipeline in the D166 scenario 
for the states of California, Texas, Florida, New York, and Illinois, 
respectively. These time-resolved functions were obtained by fitting 
the corresponding parameter daily estimates resulting from the mean 

filtering step with quadratic B-splines. The resulting B-spline fits pro-
vide the dynamics of each parameter during both the calibration and 
forecasting periods, which are separated by a vertical dashed line in 
each plot. The shaded area surrounding each parameter B-spline fit 
indicates the corresponding 95% bootstrapped confidence interval. 
The number of basis functions used to represent the parameters in 
each state can be found in Supplementary Table S3
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under two-sided Wilcoxon rank-sum testing, respectively). 
Additionally, in the D166 scenario, we further observe a 
trend towards lower weekly NRMSE in forecasting CIO in 
the second week after the calibration time horizon as well as 
in predicting the D compartment dynamics over the whole 
forecasting interval (see Supplementary Fig. S10). Regard-
ing Sp , no significance was obtained comparing the model 
recapitulations and predictions of this quantity using either 
calibration method, although we observe a trend towards lower 
NRMSE with our dynamic calibration approach (see Supple-
mentary Fig. S11).

4 � Discussion

We have presented a computational pipeline that enables the 
time-resolved parameterization of a mechanistic model of 
infectious disease spread to facilitate the recapitulation and 
forecasting of outbreak dynamics. This approach leverages 
the idea that it takes a short-to-intermediate timeframe for 
epidemiological changes to manifest in the case and death 
numbers reported during an outbreak. Thus, the computa-
tional pipeline seeks to capture the dynamic changes in the 
mechanisms of infectious disease spread through a time-
resolved parameterization primarily informed by standard 
time series of cumulative infections and deaths (i.e., CIO and 
D in our model, respectively). Additionally, in this study we 
further propose to leverage seroprevalence ( Sp) estimates 
as a surrogate for cumulative recoveries. We applied our 
computational pipeline in five of the most heavily impacted 
US states during the first wave of the COVID-19 pandemic 
(i.e., NY, FL, IL, TX, and CA). In general, our results show 
that the dynamic parameter trends can be used for analysis 
and making short-term forecasts during an outbreak, which 
tend to exhibit higher accuracy as we inform the model with 
further Sp estimates.

We dynamically parameterized the SEIRD model with 
our computational pipeline using two different calibration 
time horizons, at 152 and 166 days following the day after 
the DNE. This computational setup enabled us to analyze 
the performance of our dynamic parameterization method 
in two scenarios with different data availability, since in the 
D166 scenario the computational pipeline is informed by a 
larger number of daily measurements of CIO and D , as well 
as two Sp estimates instead of only one in the D152 sce-
nario. Our results show that the proposed dynamic calibra-
tion strategy enables the model to recapitulate the observed 
time series of CIO and D within an NRMSE of 10% in both 
scenarios (see Tables 2, 3, as well as Figs. 3, 4). The analysis 
of the model predictions was carried out over the 4 weeks 
following the calibration time horizon in each scenario. The 
short-term forecasts over the first 2 weeks result in accurate 
predictions of the CIO and D values, especially when fur-
ther epidemiological data was used to inform the dynamic 

calibration: while we observed cumulative NRMSEs for 
CIO and D around or below 10% in the D152 scenario, the 
corresponding values were always below 3% in the D166 
scenario (see Tables 2, 3, as well as Figs. 3, 4). However, 
the long-term forecasting performance diverges between the 
two calibration scenarios and across the states. In the D152 
scenario, fourth-week forecasts ranged from an accurate 
prediction of both the D and CIO compartments (e.g., less 
than 2% NRMSE in New York; see Fig. 3 and Table 2), to a 
considerable overestimation in the CIO and D compartments 
(e.g., near 25% NRMSE in California and 40% NRMSE in 
Florida, respectively; see Fig. 3 and Table 2). Conversely, 
the assimilation of further CIO , D , and especially Sp data in 
the D166 scenario led to forecasting NRMSE values for the 
CIO and D below 7% in the third and fourth weeks of the 
forecasting interval (see Table 3 and Fig. 4). Thus, the inclu-
sion of further epidemiological data in the computational 
pipeline led to significantly superior forecasts of CIO and D 
in the D166 scenario ( p < 0.05 during the whole forecasting 
period; see Sect. 3.2).

The comparison of the time-resolved B-spline fits rep-
resenting the dynamics of the model parameters in both 
scenarios further suggests that the improved forecasting 
performance in the D166 scenario is likely due to a better 
estimation of the parameter trends once the data between 
days 152 and 166 after the DNE are assimilated into the 
model calibration. The dynamic parameterization of the 
model may not capture incipient changes in the mecha-
nisms of disease spread near the calibration time horizon, 
which can compromise the quality of the ensuing forecasts. 
Conversely, if these mechanisms do not exhibit significant 
changes by the calibration horizon, then our computational 
pipeline may enable an accurate longer-term prediction of 
D and CIO . Hence, poorer forecasts likely result from the 
limited ability of the local parameter trends to accurately 
capture long-term changes in the mechanisms that they rep-
resent, especially near the calibration time horizon. Never-
theless, while a priori we expect long-term predictions to 
exhibit poorer reliability than short-term forecasts, in some 
cases, the terminal trends of the parameters in the calibration 
period suffice to project reliable longer-term predictions of 
D and CIO . For instance, this superior long-term predic-
tive power was observed in New York in the D152 scenario 
(< 2% cumulative and weekly NRMSE of CIO and D in the 
fourth week of the forecasting period; see Table 2), and it is 
generalized in the D166 scenario across the five states ana-
lyzed in this study (< 7% cumulative and weekly NRMSE 
of CIO and D during the fourth week of the forecasting 
period; see Table 3). Thus, continuous assimilation of epi-
demiological data in the model calibration may contribute to 
refine the dynamic model parameterization and yield more 
accurate long-term predictions of D and CIO . Additionally, 
since forecasting accuracy is ultimately determined by the 
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reliability of the terminal trends of the parameter functions, 
future studies should investigate extensions of our compu-
tational pipeline to refine the terminal time-resolved param-
eterization of the model and quantify its uncertainty.

Seroprevalence studies have been deemed critically use-
ful in monitoring COVID-19 outbreaks and ensuing public 
health decision-making [51–53, 74]. A distinctive feature of 
our computational pipeline is using seroprevalence estimates 
(Sp ) to inform model calibration. However, while inform-
ing model calibration with several Sp values refined the 
predictive power of our computational pipeline, we gener-
ally observe a larger error in the fits and predictions of Sp 
compared to the error in the D and CIO compartments (see 
Tables 2, 3). This is likely a result of the limited availabil-
ity of seroprevalence data and its associated high level of 
uncertainty [51]. Indeed, these are the two primary reasons 
why we do not directly use the Sp estimates as an input to 
inform the rolling weekly calibrations, but rather to inform 
the selection functionals enabling the identification of the 
optimal initial condition estimates and number of basis func-
tions (in which the recovered subpopulation in the model is 
used to approximate the Sp estimate; see Sect. 2.3). Thus, 
we believe that more frequent and accurate seroprevalence 
studies could contribute to obtaining more precise forecasts 
of outbreak dynamics with our computational pipeline.

Selecting an initial time point early in the COVID-19 pan-
demic, such as the DNE, enabled us to neglect the recovered 
individuals before the model calibration timeframe. Yet, the 
initial number of exposed and symptomatic infected indi-
viduals remained unknown, and its estimation is pivotal to 
recapitulating outbreak dynamics since both subpopulations 
can transmit COVID-19 disease [5, 18, 25, 64]. To address 
this challenge, our computational pipeline accommodates 
the estimation of these initial conditions (i.e., E0 and I0 ) 
using a multi-start framework within the mean filtering step, 
which further selects optimal initial guesses for the epide-
miological parameters within admissible bounds based on 
early published values in the literature (Table 1). Notably, 
our results suggest that by the DNE, there were approxi-
mately 9–18 times more asymptomatic than symptomatic 
individuals (see Supplementary Table S2), which agrees 
with the early estimates in the literature [55].

A central outcome of our computational pipeline con-
sists of the set of state-specific time-resolved parameters 
that describe the evolution of the initial COVID-19 outbreak 
during the first five months after the DNE. We posit that 
the patterns contained in the dynamic changes in param-
eters may contain information about the progression of the 
COVID-19 outbreak and the impact of NPIs. For example, 
the contact rate �(t) sharply drops within the first month 
after the NPIs targeting the transmission rate of COVID-19 
came into effect around the DNE [61]. Then, approximately 
two months after the DNE, the states of New York, Illinois, 

and Florida start exhibiting a moderately increasing trend 
in disease transmission that is maintained until the summer 
of 2020. Although such increases have been attributed in 
part to the relaxation of NPIs [61], some models account for 
this phenomenon by introducing a lockdown fatigue term, 
as people may contribute to the transmission of the disease 
regardless of the NPIs in effect [75]. Additionally, the death 
rate �d(t) exhibits an overall decreasing trend over the ana-
lyzed period and becomes stable at values approximately 
ranging between 0.008 and 0.003 day−1, which agree with 
the previous estimates in the literature [65, 76] and indicate 
that there may have been a learning curve in successfully 
treating COVID-19 symptoms [77–79]. Furthermore, the 
dynamics of the asymptomatic recovery rate �e(t) , which 
represents the terminal step of the asymptomatic COVID-19 
infection pathway in our model, appears to follow different 
dynamics in each state. In New York and California, �e(t) 
exhibits a decreasing trend over the analyzed period, which 
may ultimately reflect the result of an effective application 
of NPIs and changes in social habits to reduce asymptomatic 
transmission. Moreover, the high values of the function 
describing �e in these two states suggest that asymptomatic 
transmission has been dominant in the early stage of the 
pandemic. While in Texas �e stays approximately constant 
over time, this parameter exhibits a rising trend in Illinois 
and Florida, which seems to be further supported by a paral-
lel increase in the contact rate �(t) . Hence, the dynamics of 
�e(t) obtained in this study suggests that the asymptomatic 
COVID-19 infection pathway is a central driver of COVID-
19 outbreak progression, as suggested by multiple studies in 
the literature [5, 11, 25]. Thus, future studies should further 
investigate the correlations between the parameter trends 
calculated with our computational pipeline, which may con-
tribute to obtain more robust model calibrations and param-
eter projections ultimately enabling more precise forecasts.

We further compared the performance of our compu-
tational pipeline featuring a dynamic parameterization of 
the mechanistic model against a standard non-dynamic 
calibration approach leveraging a constant value of the epi-
demiological parameter over the analyzed time period. As 
expected, this comparison revealed that our approach yields 
a significantly superior recapitulation of the daily measure-
ments of CIO and D ( p < 0.05; see Sect. 3.3). Both param-
eterization approaches rendered a comparable performance 
in forecasting outbreak dynamics in the D152 scenario, 
although the NRMSE distributions suggest a trend indicat-
ing superiority of our dynamic parameterization approach. 
The assimilation of further epidemiological data in the D166 
scenario revealed a significantly better performance in pre-
dicting CIO in the first, third and fourth weeks of the fore-
casting interval ( p < 0.05; see Sect. 3.3) as well as a trend 
towards a superior predictive power in the second week and 
in forecasting D over the whole forecasting interval. These 
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results align with the varying predictive performance of our 
dynamic parameterization approach depending on whether 
the daily parameter estimates capture ongoing changes in 
the mechanisms of disease transmission by the end of the 
calibration timeframe. Future studies could delve into this 
comparative analysis over sequential time horizons to refine 
the dynamic parameterization approach and improve the pre-
dictive performance against the standard calibration method 
with constant parameters (e.g., by improving the projection 
of the terminal trend in the B-spline parameter fits over the 
forecasting period).

Despite the promising results obtained with our compu-
tational pipeline, this study also features several limitations. 
First, our computational pipeline does not address the issue 
that epidemiological data may feature significant errors and 
uncertainties in data collection [72, 80, 81]. However, our 
approach can be straightforwardly extended by adding a pre-
processing step to de-noise the epidemiological data [29, 63]. 
Additionally, our computational pipeline could be recast in a 
Bayesian framework to accommodate a more robust quanti-
fication of uncertainty from the input data to model forecast-
ing [18, 35, 40–43]. With these developments, the compu-
tational pipeline could also palliate large oscillations in the 
daily parameter estimates between successive calibrations, 
and hence yield more reliable forecasts. Second, the dynamic 
mean filtering of our computational pipeline may have limited 
accuracy compared to more advanced methodologies, such 
as an Extended Kalman Filter [82, 83], which can effectively 
accommodate the estimation of uncertainty in the model 
parameters. Third, our pipeline is implemented in a sequen-
tial approach without feedback during calibration. Thus, our 
current approach could be extended by adding a loop from 
the spline fitting back to the mean filtering step, such that 
the trends captured by splines are leveraged to refine the roll-
ing window mean filtering step (e.g., within the regulariza-
tion term in Eq. (8)). Fourth, we only considered quadratic 
B-spline bases constructed with open uniform knot vectors 
to represent the time-resolved parameter functions. We think 
that this functional space is a practical choice that can provide 
sufficient smoothness to accommodate the dynamic param-
eterization of infectious disease models. However, future 
studies could investigate the performance of other alterna-
tives within our computational pipeline, such as B-splines 
of different polynomial degrees and with optimally located 
knots [69–71] or logistic functions [18, 42, 84]. This analysis 
could also provide a deeper insight in the impact of noise and 
underreported data on the resulting dynamic parameterization. 
Fifth, we assume that five epidemiological parameters in the 
model (i.e., �, �,�e,�r, and �d ) require a dynamic parameteri-
zation. Previous studies have represented complex COVID-
19 outbreak dynamics leveraging a smaller set of dynamic 
parameters or only the transmission rate � as a time-varying 
parameter [11, 18, 27, 42, 43, 84]. In the development of the 

computational pipeline presented in this study we observed 
that neither constant parameters nor leveraging only � as a 
dynamic parameter rendered a superior performance in repro-
ducing and predicting COVID-19 outbreaks than our dynamic 
parameterization approach (see Supplementary Figs. S7, S8, 
and S12). Nevertheless, we think that future studies should 
investigate model selection strategies [85, 86], which can be 
used to adaptively optimize the number of dynamic param-
eters during the course of an infectious disease outbreak. 
Sixth, our modeling approach does not account for the spatial 
mobility of the population. Although domestic and interna-
tional travel was heavily restricted at the beginning of the 
pandemic, our computational pipeline could be extended to 
account for the movement of the population through a mobil-
ity network or using a PDE based on our mechanistic model 
[5, 11, 27, 64]. Finally, this study aimed at providing an initial 
assessment of our computational pipeline, so we restricted its 
application to five states and two calibration scenarios during 
the early stage of the COVID-19 pandemic in the US. Thus, 
future studies could investigate the application of our method 
recursively over subsequent time horizons, in other states in 
the US and other countries, and in more advanced stages of 
the COVID-19 pandemic. In the latter case, the mechanistic 
model may require an extension to accommodate the decay of 
antibodies inducing loss of protection against the disease (e.g., 
by introducing a feedback loop from the R to the S compart-
ment) as well as the protective effect of COVID-19 vaccines 
[47, 48]. Additionally, considering longer timeframes for the 
recapitulation and prediction of outbreak dynamics than those 
considered in this study may require the inclusion of natality 
and non-COVID-19 mortality terms in the model [11, 27] (see 
Supplementary Fig. S13).

We believe that dynamic parameterization methods, like 
the one proposed in this study, may have significant future 
applications that could impact public health decision-mak-
ing. For example, the model forecasts and time-resolved 
parameterizations may serve as a basis to define model-
inspired early markers of severe outbreaks and characterize 
the effect of diverse types of NPIs on the mechanisms of out-
break progression. Such developments would enable a priori 
quantitative estimation of the necessary level of restriction 
for an NPI to be effective in a specific region, which could be 
further adjusted as more epidemiological data is assimilated 
into the model calibration. Likewise, these predictions could 
be used to anticipate regions that are predicted to experi-
ence severe outbreaks and lead to a preliminary allocation 
of essential medical materials and workforce to mitigate 
the pressure on the health system of those regions. Thus, 
the predictive technology detailed in this work has a great 
potential to act as a decision-making tool to guide public 
health interventions targeting specific mechanisms of infec-
tious disease spread.
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5 � Conclusion

We have developed a computational pipeline that enables the 
dynamic parameterization of a modified SEIRD model (sus-
ceptible-exposed-infected-recovered-deceased) describing 
COVID-19 outbreak dynamics using time series of cumula-
tive infections ( CIO ) and deaths ( D ), as well as pointwise 
seroprevalence ( Sp ) estimates as a surrogate for the num-
ber of recovered individuals. Our computational pipeline 
allows for the estimation of dynamic daily parameters from 
these epidemiological datasets, which are then fit to quad-
ratic B-spline basis functions to obtain a smooth temporal 
formulation of the dynamics of the model parameters. We 
demonstrate that such a dynamic parameterization approach 
can be used to recapitulate outbreak dynamics and forecast 
future COVID-19 cases and deaths. Future developments 
of our methodology could potentially enable public health 
officials to gain a deeper understanding of the mechanisms 
underlying infectious disease outbreaks and, hence, use this 
information as a predictive tool to design region-specific 
outbreak-arresting NPIs and optimize the allocation of lim-
ited resources to prepare regional healthcare systems for 
overwhelming influxes of patients. We believe that these 
capabilities could contribute to advancements in the current 
public health paradigms in terms of monitoring, manage-
ment, and preparedness against future outbreaks.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00366-​023-​01816-9.

Acknowledgements  O.D acknowledges the Undergraduate Research 
Fellowship at The University of Texas at Austin. T.E.Y acknowledges 
the CPRIT RR160005 grant support. T.E.Y. is a CPRIT Scholar of 
Cancer Research. G.L. was partially supported by a Peter O’Donnell 
Jr. Postdoctoral Fellowship from the Oden Institute for Computational 
Engineering and Sciences at The University of Texas at Austin and 
acknowledges funding from the European Union’s Horizon 2020 
research and innovation program under the Marie Skłodowska-Curie 
grant agreement No. 838786.

Author contributions  Conceptualization: OOD, AV, TEY, GL. Meth-
odology: OOD, AV, TEY, GL. Software: OOD. Validation: OOD, GL. 
Formal analysis: OOD, AV, TEY, GL. Investigation: OOD, EYY, AV, 
TEY, GL. Resources: OOD. Data curation: OOD. Writing—original 
draft: OOD, TEY, GL. Writing—review and editing: OOD, EYY, AV, 
TEY, GL. Visualization: OOD, GL. Supervision: TEY, GL. Project 
Administration: TEY, GL. Funding acquisition: OOD, TEY, GL.

Funding  Open access funding provided by Università degli Studi di 
Pavia within the CRUI-CARE Agreement.

Data availability  The complete datasets used in this study as well as 
the MATLAB scripts for their analysis with our mechanistic model are 
available at Zenodo (https://​doi.​org/​10.​5281/​zenodo.​77556​40).

Declarations 

Conflict of interest  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Li Q, Guan X, Wu P et al (2020) Early transmission dynamics in 
Wuhan, China, of novel coronavirus-infected pneumonia. N Engl 
J Med 382:1199–1207. https://​doi.​org/​10.​1056/​NEJMo​a2001​316

	 2.	 Hui DS, Azhar E, Madani TA et al (2020) The continuing 2019-
nCoV epidemic threat of novel coronaviruses to global health — 
The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J 
Infect Dis 91:264–266. https://​doi.​org/​10.​1016/j.​ijid.​2020.​01.​009

	 3.	 Giordano G, Blanchini F, Bruno R et al (2020) Modelling the 
COVID-19 epidemic and implementation of population-wide 
interventions in Italy. Nat Med 26:855–860. https://​doi.​org/​10.​
1038/​s41591-​020-​0883-7

	 4.	 Teslya A, Pham TM, Godijk NG et al (2020) Impact of self-
imposed prevention measures and short-term government-
imposed social distancing on mitigating and delaying a COVID-
19 epidemic: a modelling study. PLoS Med 17:e1003166. https://​
doi.​org/​10.​1371/​journ​al.​pmed.​10031​66

	 5.	 Gatto M, Bertuzzo E, Mari L et al (2020) Spread and dynamics of 
the COVID-19 epidemic in Italy: effects of emergency contain-
ment measures. Proc Natl Acad Sci 117:10484–10491. https://​doi.​
org/​10.​1073/​pnas.​20049​78117

	 6.	 Ivorra B, Ferrández MR, Vela-Pérez M, Ramos AM (2020) Math-
ematical modeling of the spread of the coronavirus disease 2019 
(COVID-19) taking into account the undetected infections. The 
case of China. Commun Nonlinear Sci Numer Simul 88:105303. 
https://​doi.​org/​10.​1016/j.​cnsns.​2020.​105303

	 7.	 Davies NG, Klepac P, Liu Y et al (2020) Age-dependent effects in 
the transmission and control of COVID-19 epidemics. Nat Med 
26:1205–1211. https://​doi.​org/​10.​1038/​s41591-​020-​0962-9

	 8.	 Yang H, Sürer Ö, Duque D et al (2021) Design of COVID-19 
staged alert systems to ensure healthcare capacity with mini-
mal closures. Nat Commun 12:3767. https://​doi.​org/​10.​1038/​
s41467-​021-​23989-x

	 9.	 South Carolina Department of Health and Environmental Control 
SC Testing Data & Projections (COVID-19) on August 9, 2020. 
In: SC Test. Data Proj. COVID-19. https://​scdhec.​gov/​covid​19/​
covid-​19-​data. Accessed 9 Aug 2020

	10.	 Cramer EY, Ray EL, Lopez VK, et al (2022). Evaluation of indi-
vidual and ensemble probabilistic forecasts of COVID-19 mortal-
ity in the United States. Proceedings of the National Academy of 
Sciences, 119(15), e2113561119. https://​doi.​org/​10.​1073/​pnas.​
21135​61119

	11.	 Viguerie A, Lorenzo G, Auricchio F et al (2021) Simulating 
the spread of COVID-19 via a spatially-resolved susceptible–
exposed–infected–recovered–deceased (SEIRD) model with het-
erogeneous diffusion. Appl Math Lett 111:106617. https://​doi.​org/​
10.​1016/j.​aml.​2020.​106617

	12.	 Ferguson N, Laydon D, Nedjati Gilani G et al (2020) Report 9: 
impact of non-pharmaceutical interventions (NPIs) to reduce 

https://doi.org/10.1007/s00366-023-01816-9
https://doi.org/10.5281/zenodo.7755640
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1056/NEJMoa2001316
https://doi.org/10.1016/j.ijid.2020.01.009
https://doi.org/10.1038/s41591-020-0883-7
https://doi.org/10.1038/s41591-020-0883-7
https://doi.org/10.1371/journal.pmed.1003166
https://doi.org/10.1371/journal.pmed.1003166
https://doi.org/10.1073/pnas.2004978117
https://doi.org/10.1073/pnas.2004978117
https://doi.org/10.1016/j.cnsns.2020.105303
https://doi.org/10.1038/s41591-020-0962-9
https://doi.org/10.1038/s41467-021-23989-x
https://doi.org/10.1038/s41467-021-23989-x
https://scdhec.gov/covid19/covid-19-data
https://scdhec.gov/covid19/covid-19-data
https://doi.org/10.1073/pnas.2113561119
https://doi.org/10.1073/pnas.2113561119
https://doi.org/10.1016/j.aml.2020.106617
https://doi.org/10.1016/j.aml.2020.106617


835Engineering with Computers (2024) 40:813–837	

1 3

COVID19 mortality and healthcare demand. Imperial College, 
London

	13.	 Brauner JM, Mindermann S, Sharma M et al (2021) Inferring 
the effectiveness of government interventions against COVID-19. 
Science 371:802. https://​doi.​org/​10.​1126/​scien​ce.​abd93​38

	14.	 IHME COVID-19 health service utilization forecasting team, 
Murray CJ (2020) Forecasting COVID-19 impact on hospital 
bed-days, ICU-days, ventilator-days and deaths by US state in 
the next 4 months. medRxiv, 2020.03.27.20043752. https://​doi.​
org/​10.​1101/​2020.​03.​27.​20043​752

	15.	 Schneble M, De Nicola G, Kauermann G, Berger U (2021) A 
statistical model for the dynamics of COVID-19 infections and 
their case detection ratio in 2020. Biom J 63:1623–1632. https://​
doi.​org/​10.​1002/​bimj.​20210​0125

	16.	 Ardabili SF, Mosavi A, Ghamisi P et al (2020) COVID-19 out-
break prediction with machine learning. Algorithms 13:249. 
https://​doi.​org/​10.​3390/​a1310​0249

	17.	 Chen L-P, Zhang Q, Yi GY, He W (2021) Model-based fore-
casting for Canadian COVID-19 data. PLoS ONE 16:e0244536. 
https://​doi.​org/​10.​1371/​journ​al.​pone.​02445​36

	18.	 Kuhl E (2021) Computational epidemiology: data-driven mod-
eling of COVID-19. Springer International Publishing, Cham

	19.	 Anderson RM, May RM (1991) Infectious diseases of humans: 
dynamics and control. Oxford University Press, Oxford

	20.	 Roosa K, Chowell G (2019) Assessing parameter identifiability in 
compartmental dynamic models using a computational approach: 
application to infectious disease transmission models. Theor Biol 
Med Model 16:1. https://​doi.​org/​10.​1186/​s12976-​018-​0097-6

	21.	 Hauser A, Counotte MJ, Margossian CC et al (2020) Estimation of 
SARS-CoV-2 mortality during the early stages of an epidemic: a 
modeling study in Hubei, China, and six regions in Europe. PLoS 
Med 17:e1003189. https://​doi.​org/​10.​1371/​journ​al.​pmed.​10031​89

	22.	 Kermack WO, McKendrick AG (1927) A contribution to the math-
ematical theory of epidemics. Proc R Soc Lond A 115:700–721

	23.	 Alleman TW, Vergeynst J, De Visscher L et al (2021) Assessing 
the effects of non-pharmaceutical interventions on SARS-CoV-2 
transmission in Belgium by means of an extended SEIQRD model 
and public mobility data. Epidemics 37:100505. https://​doi.​org/​
10.​1016/j.​epidem.​2021.​100505

	24.	 Mwalili S, Kimathi M, Ojiambo V et al (2020) SEIR model for 
COVID-19 dynamics incorporating the environment and social 
distancing. BMC Res Notes 13:352. https://​doi.​org/​10.​1186/​
s13104-​020-​05192-1

	25.	 Peirlinck M, Linka K, Sahli Costabal F et al (2020) Visualizing 
the invisible: the effect of asymptomatic transmission on the out-
break dynamics of COVID-19. Comput Methods Appl Mech Eng 
372:113410. https://​doi.​org/​10.​1016/j.​cma.​2020.​113410

	26.	 Tomochi M, Kono M (2021) A mathematical model for COVID-
19 pandemic—SIIR model: effects of asymptomatic individuals. 
J Gen Fam Med 22:5–14. https://​doi.​org/​10.​1002/​jgf2.​382

	27.	 Viguerie A, Veneziani A, Lorenzo G et al (2020) Diffusion–reac-
tion compartmental models formulated in a continuum mechanics 
framework: application to COVID-19, mathematical analysis, and 
numerical study. Comput Mech 66:1131–1152. https://​doi.​org/​10.​
1007/​s00466-​020-​01888-0

	28.	 Grave M, Viguerie A, Barros GF et al (2021) Assessing the spatio-
temporal spread of COVID-19 via compartmental models with 
diffusion in Italy, USA, and Brazil. Arch Comput Methods Eng 
28:4205–4223. https://​doi.​org/​10.​1007/​s11831-​021-​09627-1

	29.	 Wang Z, Zhang X, Teichert GH et al (2020) System inference for 
the spatio-temporal evolution of infectious diseases: Michigan in 
the time of COVID-19. Comput Mech 66:1153–1176. https://​doi.​
org/​10.​1007/​s00466-​020-​01894-2

	30.	 Zohdi TI (2020) An agent-based computational framework for 
simulation of global pandemic and social response on planet 

X. Comput Mech 66:1195–1209. https://​doi.​org/​10.​1007/​
s00466-​020-​01886-2

	31.	 Paiva HM, Afonso RJM, de Oliveira IL, Garcia GF (2020) A data-
driven model to describe and forecast the dynamics of COVID-19 
transmission. PLoS ONE 15:e0236386. https://​doi.​org/​10.​1371/​
journ​al.​pone.​02363​86

	32.	 Viguerie A, Carletti M, Veneziani A, Silvestri G (2022) Modeling 
of asymptotically periodic outbreaks: a long-term SIRW2 descrip-
tion of COVID-19? arXiv, 2203.08298. https://​doi.​org/​10.​48550/​
arXiv.​2203.​08298

	33.	 IHME COVID-19 Forecasting Team COVID-19 model FAQs. 
In: Inst. Health Metr. Eval. https://​www.​healt​hdata.​org/​covid/​faqs. 
Accessed 22 Mar 2022

	34.	 Fang Y, Nie Y, Penny M (2020) Transmission dynamics of the 
COVID-19 outbreak and effectiveness of government interven-
tions: a data-driven analysis. J Med Virol 92:645–659. https://​doi.​
org/​10.​1002/​jmv.​25750

	35.	 Cazelles B, Champagne C, Nguyen-Van-Yen B et al (2021) A 
mechanistic and data-driven reconstruction of the time-varying 
reproduction number: application to the COVID-19 epidemic. 
PLOS Comput Biol 17:e1009211. https://​doi.​org/​10.​1371/​journ​
al.​pcbi.​10092​11

	36.	 Oden JT, Diller KR, Bajaj C et al (2007) Dynamic data-driven 
finite element models for laser treatment of cancer. Numer Meth-
ods Partial Differ Equ 23:904–922. https://​doi.​org/​10.​1002/​num.​
20251

	37.	 Liu J, Hormuth DA, Davis T et al (2021) A time-resolved experi-
mental–mathematical model for predicting the response of glioma 
cells to single-dose radiation therapy. Integr Biol 13:167–183. 
https://​doi.​org/​10.​1093/​intbio/​zyab0​10

	38.	 Brady-Nicholls R, Nagy JD, Gerke TA et al (2020) Prostate-spe-
cific antigen dynamics predict individual responses to intermittent 
androgen deprivation. Nat Commun 11:1750. https://​doi.​org/​10.​
1038/​s41467-​020-​15424-4

	39.	 Wu C, Lorenzo G, Hormuth DA et al (2022) Integrating mecha-
nism-based modeling with biomedical imaging to build practical 
digital twins for clinical oncology. Biophys Rev 3:021304. https://​
doi.​org/​10.​1063/5.​00867​89

	40.	 Linka K, Peirlinck M, Kuhl E (2020) The reproduction number 
of COVID-19 and its correlation with public health interven-
tions. Comput Mech 66:1035–1050. https://​doi.​org/​10.​1007/​
s00466-​020-​01880-8

	41.	 Gaglione D, Braca P, Millefiori LM et al (2020) Adaptive Bayes-
ian learning and forecasting of epidemic evolution—data analy-
sis of the COVID-19 outbreak. IEEE Access 8:175244–175264. 
https://​doi.​org/​10.​1109/​access.​2020.​30199​22

	42.	 Cunha Jr A, Barton DAW, Ritto TG (2023) Uncertainty quantifica-
tion in mechanistic epidemic models via cross-entropy approxi-
mate Bayesian computation. Nonlinear Dynamics, 1-31. https://​
doi.​org/​10.​1007/​s11071-​023-​08327-8

	43.	 Zhang S, Ponce J, Zhang Z et al (2021) An integrated framework 
for building trustworthy data-driven epidemiological models: 
application to the COVID-19 outbreak in New York City. PLOS 
Comput Biol 17:e1009334. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​
10093​34

	44.	 Massonis G, Banga JR, Villaverde AF (2021) Structural identifi-
ability and observability of compartmental models of the COVID-
19 pandemic. Annu Rev Control 51:441–459. https://​doi.​org/​10.​
1016/j.​arcon​trol.​2020.​12.​001

	45.	 Weitz JS, Beckett SJ, Coenen AR et al (2020) Modeling shield 
immunity to reduce COVID-19 epidemic spread. Nat Med 
26:849–854. https://​doi.​org/​10.​1038/​s41591-​020-​0895-3

	46.	 Guglielmi N, Iacomini E, Viguerie A (2022) Delay differential 
equations for the spatially resolved simulation of epidemics with 
specific application to COVID-19. Math Methods Appl Sci. 
https://​doi.​org/​10.​1002/​mma.​8068

https://doi.org/10.1126/science.abd9338
https://doi.org/10.1101/2020.03.27.20043752
https://doi.org/10.1101/2020.03.27.20043752
https://doi.org/10.1002/bimj.202100125
https://doi.org/10.1002/bimj.202100125
https://doi.org/10.3390/a13100249
https://doi.org/10.1371/journal.pone.0244536
https://doi.org/10.1186/s12976-018-0097-6
https://doi.org/10.1371/journal.pmed.1003189
https://doi.org/10.1016/j.epidem.2021.100505
https://doi.org/10.1016/j.epidem.2021.100505
https://doi.org/10.1186/s13104-020-05192-1
https://doi.org/10.1186/s13104-020-05192-1
https://doi.org/10.1016/j.cma.2020.113410
https://doi.org/10.1002/jgf2.382
https://doi.org/10.1007/s00466-020-01888-0
https://doi.org/10.1007/s00466-020-01888-0
https://doi.org/10.1007/s11831-021-09627-1
https://doi.org/10.1007/s00466-020-01894-2
https://doi.org/10.1007/s00466-020-01894-2
https://doi.org/10.1007/s00466-020-01886-2
https://doi.org/10.1007/s00466-020-01886-2
https://doi.org/10.1371/journal.pone.0236386
https://doi.org/10.1371/journal.pone.0236386
https://doi.org/10.48550/arXiv.2203.08298
https://doi.org/10.48550/arXiv.2203.08298
https://www.healthdata.org/covid/faqs
https://doi.org/10.1002/jmv.25750
https://doi.org/10.1002/jmv.25750
https://doi.org/10.1371/journal.pcbi.1009211
https://doi.org/10.1371/journal.pcbi.1009211
https://doi.org/10.1002/num.20251
https://doi.org/10.1002/num.20251
https://doi.org/10.1093/intbio/zyab010
https://doi.org/10.1038/s41467-020-15424-4
https://doi.org/10.1038/s41467-020-15424-4
https://doi.org/10.1063/5.0086789
https://doi.org/10.1063/5.0086789
https://doi.org/10.1007/s00466-020-01880-8
https://doi.org/10.1007/s00466-020-01880-8
https://doi.org/10.1109/access.2020.3019922
https://doi.org/10.1007/s11071-023-08327-8
https://doi.org/10.1007/s11071-023-08327-8
https://doi.org/10.1371/journal.pcbi.1009334
https://doi.org/10.1371/journal.pcbi.1009334
https://doi.org/10.1016/j.arcontrol.2020.12.001
https://doi.org/10.1016/j.arcontrol.2020.12.001
https://doi.org/10.1038/s41591-020-0895-3
https://doi.org/10.1002/mma.8068


836	 Engineering with Computers (2024) 40:813–837

1 3

	47.	 López L, Rodó X (2020) The end of social confinement and 
COVID-19 re-emergence risk. Nat Hum Behav 4:746–755. https://​
doi.​org/​10.​1038/​s41562-​020-​0908-8

	48.	 Kassa SM, Njagarah JBH, Terefe YA (2020) Analysis of the miti-
gation strategies for COVID-19: From mathematical modelling 
perspective. Chaos Solitons Fractals 138:109968. https://​doi.​org/​
10.​1016/j.​chaos.​2020.​109968

	49.	 Annas S, Pratama MI, Rifandi M et al (2020) Stability analysis 
and numerical simulation of SEIR model for pandemic COVID-19 
spread in Indonesia. Chaos Solitons Fractals 139:110072. https://​
doi.​org/​10.​1016/j.​chaos.​2020.​110072

	50.	 Dong E, Du H, Gardner L (2020) An interactive web-based dash-
board to track COVID-19 in real time. Lancet Infect Dis 20:533–
534. https://​doi.​org/​10.​1016/​S1473-​3099(20)​30120-1

	51.	 Bajema KL, Wiegand RE, Cuffe K et al (2021) Estimated SARS-
CoV-2 seroprevalence in the US as of September 2020. JAMA 
Intern Med 181:450. https://​doi.​org/​10.​1001/​jamai​ntern​med.​2020.​
7976

	52.	 Anand S, Montez-Rath M, Han J et al (2020) Prevalence of SARS-
CoV-2 antibodies in a large nationwide sample of patients on dial-
ysis in the USA: a cross-sectional study. Lancet 396:1335–1344. 
https://​doi.​org/​10.​1016/​S0140-​6736(20)​32009-2

	53.	 Chiu WA, Ndeffo-Mbah ML (2021) Using test positivity and 
reported case rates to estimate state-level COVID-19 prevalence 
and seroprevalence in the United States. PLOS Comput Biol 
17:e1009374. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10093​74

	54.	 (2022) Interim Guidelines for COVID-19 Antibody Testing in 
Clinical and Public Health Settings. In: Cent. Dis. Control Prev. 
https://​www.​cdc.​gov/​coron​avirus/​2019-​ncov/​lab/​resou​rces/​antib​
ody-​tests-​guide​lines.​html#​ref-​16. Accessed 22 Mar 2022

	55.	 Havers FP, Reed C, Lim T et al (2020) Seroprevalence of anti-
bodies to SARS-CoV-2 in 10 sites in the United States, March 
23–May 12, 2020. JAMA Intern Med 180:1576. https://​doi.​org/​
10.​1001/​jamai​ntern​med.​2020.​4130

	56.	 French A, Nguyen QP (2021) The “good” metric is pretty bad: 
why it’s hard to count the people who have recovered from 
COVID-19. https://​covid​track​ing.​com/​analy​sis-​updat​es/​why-​its-​
hard-​to-​count-​recov​ered. Accessed 3 Mar 2022

	57.	 Gaebler C, Wang Z, Lorenzi JCC et al (2021) Evolution of anti-
body immunity to SARS-CoV-2. Nature 591:639–644. https://​doi.​
org/​10.​1038/​s41586-​021-​03207-w

	58.	 Wang Z, Muecksch F, Schaefer-Babajew D et al (2021) Naturally 
enhanced neutralizing breadth against SARS-CoV-2 one year 
after infection. Nature 595:426–431. https://​doi.​org/​10.​1038/​
s41586-​021-​03696-9

	59.	 Li K, Huang B, Wu M et al (2020) Dynamic changes in anti-
SARS-CoV-2 antibodies during SARS-CoV-2 infection and recov-
ery from COVID-19. Nat Commun 11:6044. https://​doi.​org/​10.​
1038/​s41467-​020-​19943-y

	60.	 Dispinseri S, Secchi M, Pirillo MF et al (2021) Neutralizing anti-
body responses to SARS-CoV-2 in symptomatic COVID-19 is 
persistent and critical for survival. Nat Commun 12:2670. https://​
doi.​org/​10.​1038/​s41467-​021-​22958-8

	61.	 IHME COVID-19 Forecasting Team, Reiner RC, Barber RM et al 
(2021) Modeling COVID-19 scenarios for the United States. Nat 
Med 27:94–105. https://​doi.​org/​10.​1038/​s41591-​020-​1132-9

	62.	 Pinto Neto O, Kennedy DM, Reis JC et  al (2021) Math-
ematical model of COVID-19 intervention scenarios for São 
Paulo—Brazil. Nat Commun 12:418. https://​doi.​org/​10.​1038/​
s41467-​020-​20687-y

	63.	 Guan G, Dery Y, Yechezkel M et al (2021) Early detection of 
COVID-19 outbreaks using human mobility data. PLoS ONE 
16:e0253865. https://​doi.​org/​10.​1371/​journ​al.​pone.​02538​65

	64.	 Peirlinck M, Linka K, Sahli Costabal F, Kuhl E (2020) Outbreak 
dynamics of COVID-19 in China and the United States. Biomech 

Model Mechanobiol 19:2179–2193. https://​doi.​org/​10.​1007/​
s10237-​020-​01332-5

	65.	 Tsay C, Lejarza F, Stadtherr MA, Baldea M (2020) Modeling, state 
estimation, and optimal control for the US COVID-19 outbreak. 
Sci Rep 10:10711. https://​doi.​org/​10.​1038/​s41598-​020-​67459-8

	66.	 You S, Wang H, Zhang M et al (2020) Assessment of monthly 
economic losses in Wuhan under the lockdown against COVID-
19. Humanit Soc Sci Commun 7:52. https://​doi.​org/​10.​1057/​
s41599-​020-​00545-4

	67.	 Zhang J, Litvinova M, Wang W et al (2020) Evolving epidemi-
ology and transmission dynamics of coronavirus disease 2019 
outside Hubei province, China: a descriptive and modelling study. 
Lancet Infect Dis 20:793–802. https://​doi.​org/​10.​1016/​S1473-​
3099(20)​30230-9

	68.	 U.S. Census Bureau (2020) American community survey 5-year 
estimates data profiles. Online resource. https://​www.​census.​gov/​
data/​devel​opers/​data-​sets/​acs-​5year.​html

	69.	 De Boor C (2001) A practical guide to splines: with 32 figures, 
Rev. Springer, New York

	70.	 Piegl LA, Tiller W (1997) The NURBS book, 2nd edn. Springer, 
Berlin

	71.	 Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analy-
sis: toward integration of CAD and FEA. Wiley, Chichester

	72.	 Bendavid E, Mulaney B, Sood N et al (2021) COVID-19 antibody 
seroprevalence in Santa Clara County, California. Int J Epidemiol 
50:410–419. https://​doi.​org/​10.​1093/​ije/​dyab0​10

	73.	 Dormand JR, Prince PJ (1980) A family of embedded Runge-
Kutta formulae. J Comput Appl Math 6:19–26. https://​doi.​org/​
10.​1016/​0771-​050X(80)​90013-3

	74.	 Stringhini S, Wisniak A, Piumatti G et al (2020) Seroprevalence 
of anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland 
(SEROCoV-POP): a population-based study. Lancet 396:313–319. 
https://​doi.​org/​10.​1016/​S0140-​6736(20)​31304-0

	75.	 Macdonald JC, Browne C, Gulbudak H (2021) Modelling COVID-
19 outbreaks in USA with distinct testing, lockdown speed and 
fatigue rates. R Soc Open Sci 8:210227. https://​doi.​org/​10.​1098/​
rsos.​210227

	76.	 Anastassopoulou C, Russo L, Tsakris A, Siettos C (2020) Data-
based analysis, modelling and forecasting of the COVID-19 out-
break. PLoS ONE 15:e0230405. https://​doi.​org/​10.​1371/​journ​al.​
pone.​02304​05

	77.	 Xu X, Han M, Li T et al (2020) Effective treatment of severe 
COVID-19 patients with tocilizumab. Proc Natl Acad Sci 
117:10970–10975. https://​doi.​org/​10.​1073/​pnas.​20056​15117

	78.	 Gupta S, Wang W, Hayek SS et al (2021) Association between 
early treatment with tocilizumab and mortality among critically 
ill patients with COVID-19. JAMA Intern Med 181:41. https://​
doi.​org/​10.​1001/​jamai​ntern​med.​2020.​6252

	79.	 Beigel JH, Tomashek KM, Dodd LE et al (2020) Remdesivir for 
the treatment of Covid-19—final report. N Engl J Med 383:1813–
1826. https://​doi.​org/​10.​1056/​NEJMo​a2007​764

	80.	 Dong E, Ratcliff J, Goyea TD et al (2022) The Johns Hopkins 
University Center for Systems Science and Engineering COVID-
19 Dashboard: data collection process, challenges faced, and les-
sons learned. Lancet Infect Dis. https://​doi.​org/​10.​1016/​S1473-​
3099(22)​00434-0

	81.	 Irons NJ, Raftery AE (2021) Estimating SARS-CoV-2 infections 
from deaths, confirmed cases, tests, and random surveys. Proc 
Natl Acad Sci 118:e2103272118. https://​doi.​org/​10.​1073/​pnas.​
21032​72118

	82.	 Todling R (1999) Estimation theory and foundations of atmos-
pheric data assimilation. Office Note Series onGlobal Modeling 
and Data Assimilation, Goddard Space Flight Center, USA. 
https://​gmao.​gsfc.​nasa.​gov/​pubs/​docs/​Todli​ng180.​pdf

https://doi.org/10.1038/s41562-020-0908-8
https://doi.org/10.1038/s41562-020-0908-8
https://doi.org/10.1016/j.chaos.2020.109968
https://doi.org/10.1016/j.chaos.2020.109968
https://doi.org/10.1016/j.chaos.2020.110072
https://doi.org/10.1016/j.chaos.2020.110072
https://doi.org/10.1016/S1473-3099(20)30120-1
https://doi.org/10.1001/jamainternmed.2020.7976
https://doi.org/10.1001/jamainternmed.2020.7976
https://doi.org/10.1016/S0140-6736(20)32009-2
https://doi.org/10.1371/journal.pcbi.1009374
https://www.cdc.gov/coronavirus/2019-ncov/lab/resources/antibody-tests-guidelines.html#ref-16
https://www.cdc.gov/coronavirus/2019-ncov/lab/resources/antibody-tests-guidelines.html#ref-16
https://doi.org/10.1001/jamainternmed.2020.4130
https://doi.org/10.1001/jamainternmed.2020.4130
https://covidtracking.com/analysis-updates/why-its-hard-to-count-recovered
https://covidtracking.com/analysis-updates/why-its-hard-to-count-recovered
https://doi.org/10.1038/s41586-021-03207-w
https://doi.org/10.1038/s41586-021-03207-w
https://doi.org/10.1038/s41586-021-03696-9
https://doi.org/10.1038/s41586-021-03696-9
https://doi.org/10.1038/s41467-020-19943-y
https://doi.org/10.1038/s41467-020-19943-y
https://doi.org/10.1038/s41467-021-22958-8
https://doi.org/10.1038/s41467-021-22958-8
https://doi.org/10.1038/s41591-020-1132-9
https://doi.org/10.1038/s41467-020-20687-y
https://doi.org/10.1038/s41467-020-20687-y
https://doi.org/10.1371/journal.pone.0253865
https://doi.org/10.1007/s10237-020-01332-5
https://doi.org/10.1007/s10237-020-01332-5
https://doi.org/10.1038/s41598-020-67459-8
https://doi.org/10.1057/s41599-020-00545-4
https://doi.org/10.1057/s41599-020-00545-4
https://doi.org/10.1016/S1473-3099(20)30230-9
https://doi.org/10.1016/S1473-3099(20)30230-9
https://www.census.gov/data/developers/data-sets/acs-5year.html
https://www.census.gov/data/developers/data-sets/acs-5year.html
https://doi.org/10.1093/ije/dyab010
https://doi.org/10.1016/0771-050X(80)90013-3
https://doi.org/10.1016/0771-050X(80)90013-3
https://doi.org/10.1016/S0140-6736(20)31304-0
https://doi.org/10.1098/rsos.210227
https://doi.org/10.1098/rsos.210227
https://doi.org/10.1371/journal.pone.0230405
https://doi.org/10.1371/journal.pone.0230405
https://doi.org/10.1073/pnas.2005615117
https://doi.org/10.1001/jamainternmed.2020.6252
https://doi.org/10.1001/jamainternmed.2020.6252
https://doi.org/10.1056/NEJMoa2007764
https://doi.org/10.1016/S1473-3099(22)00434-0
https://doi.org/10.1016/S1473-3099(22)00434-0
https://doi.org/10.1073/pnas.2103272118
https://doi.org/10.1073/pnas.2103272118
https://gmao.gsfc.nasa.gov/pubs/docs/Todling180.pdf


837Engineering with Computers (2024) 40:813–837	

1 3

	83.	 Bolzon G, Fedele R, Maier G (2002) Parameter identification of 
a cohesive crack model by Kalman filter. Comput Methods Appl 
Mech Eng 25:2847–2871

	84.	 Vasconcelos GL, Brum AA, Almeida FAG et al (2021) Stand-
ard and anomalous waves of COVID-19: a multiple-wave growth 
model for epidemics. Braz J Phys 51:1867–1883. https://​doi.​org/​
10.​1007/​s13538-​021-​00996-3

	85.	 Lorenzo G, Hormuth DA II, Jarrett AM et al (2022) Quantita-
tive in vivo imaging to enable tumour forecasting and treatment 
optimization. In: Balaz I, Adamatzky A (eds) Cancer, complexity, 
computation. Springer International Publishing, Cham, pp 55–97

	86.	 Lima EABF, Oden JT, Hormuth DA et al (2016) Selection, cali-
bration, and validation of models of tumor growth. Math Models 
Methods Appl Sci 26:2341–2368. https://​doi.​org/​10.​1142/​S0218​
20251​65005​5X

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s13538-021-00996-3
https://doi.org/10.1007/s13538-021-00996-3
https://doi.org/10.1142/S021820251650055X
https://doi.org/10.1142/S021820251650055X

	Dynamic parameterization of a modified SEIRD model to analyze and forecast the dynamics of COVID-19 outbreaks in the United States
	Abstract
	1 Introduction
	2 Methods
	2.1 Epidemiological data
	2.2 Mechanistic model
	2.3 Data-driven dynamic parameterization
	2.3.1 Dynamic mean filtering of rolling weekly parameterizations of the mechanistic model
	2.3.2 B-spline fitting
	2.3.3 Forecasting outbreak evolution
	2.3.4 Confidence intervals
	2.3.5 Dynamic versus constant parameterization of the mechanistic model

	2.4 Computational study setup
	2.5 Numerical and statistical methods

	3 Results
	3.1 The proposed computational pipeline recapitulates COVID-19 infection spread and provides accurate short-term forecasts over 2 weeks
	3.2 Assimilation of further data improved the performance of the computational pipeline in recapitulating and forecasting the dynamics of COVID-19 outbreaks
	3.3 Refinement of model parameterizations drives the improvement of model forecasting accuracy as epidemiological data are assimilated into the model calibration

	4 Discussion
	5 Conclusion
	Acknowledgements 
	References




