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Abstract
The modelling of electrokinetic flows is a critical aspect spanning many industrial applications and research fields. This has
introduced great demand in flexible numerical solvers to describe these flows. The underlying phenomena are microscopic,
non-linear, and often involving multiple domains. Therefore often model assumptions and several numerical approximations
are introduced to simplify the solution. In this work we present a multi-domain multi-species electrokinetic flow model
including complex interface and bulk reactions. After a dimensional analysis and an overview of some limiting regimes, we
present a set of general-purpose finite-volume solvers, based on OpenFOAM® , capable of describing an arbitrary number
of electrochemical species over multiple interacting (solid or fluid) domains (Icardi and Barnett in F Municchi spnpFoam,
2021. https://doi.org/10.5281/zenodo.4973896). We provide a verification of the computational approach for several cases
involving electrokinetic flows, reactions between species, and complex geometries. We first present three one-dimensional
verification test-cases, and then show the capability of the solver to tackle two- and three-dimensional electrically driven
flows and ionic transport in random porous structures. The purpose of this work is to lay the foundation of a general-purpose
open-source flexible modelling tool for problems in electrochemistry and electrokinetics at different scales.

Keywords Electrochemical modelling · Stokes-Poisson-Nernst-Planck · OpenFOAM · Porous media · Fluid-solid systems

1 Introduction

Electrokinetic flows is a highly active topic of discussion
branching over a multitude of scientific fields. Examples
include chloride transport in reinforced concrete [13, 38],
ion regulation in biological cells [20, 40], fuel cells [42] and
electrochemical energy storage [23, 33], such as batteries and
super-capacitors [17, 18, 32]. Consequently, the demand for
the numerical modelling of electrokinetic flows, often due
to complex geometries or multi-physics barring analytical
solutions, spans a great deal of fields. While each real-world
example given often comes with its own bespoke problems
to consider, they are all describable as specific cases under a
generalised model for electrokinetic flow problems. There-
fore, the motivation for this paper is to lay the foundational
work of a general-purpose open-source computational fluid
dynamics (CFD) toolbox for the modelling of electrokinetic
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flows [11]. Built in a modular and sequential fashion so addi-
tional physics, like steric effects [14, 21, 37] or chemical
activity [34], can be subsequently ’grafted’ onto the work-
flow and solved too. As such, we chose the finite-volume
CFD package OpenFOAM® as our underlying CFD package
for implementation.

With electrokinetic flows the involvement of electrical
forces leads to a number of interesting phenomena. One such
phenomenon is electro-osmosis [1], where an applied electric
field inducesfluidmovement due to formationof electric dou-
ble layers, see Fig. 2. Another interesting set of phenomena
are known as induced-charge electrokinetics. Whilst similar
to traditional electrokinetic phenomena, the difference comes
from the double layer being induced by an applied electric
field [36]. The main difficulty of modelling electrokinetic
flows stems from the microscopic scale of phenomena. For
applications with large scale domains, solving at the micro-
scopic scale can be computationally taxing. For systemswith
complex geometries, such as porous media, this difficulty is
furthered.

To describe electrokinetic flows we require modelling
the ion concentrations, electric potential and fluid veloc-
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ity, with the Stokes-Nernst-Planck-Poisson (SPNP) model.
In this work, for the velocity field we will, in fact, consider
Stokes’ flow as, at the micro- and meso-scale, the viscous
forces far outweigh the inertial due to small velocities and
length scale [35]. The Stokes equation is coupled with the
Poisson’s equation for the electric potential, relating the elec-
tric fields composition to the variation in ion charge density.
Finally these are both coupled with the Nernst-Planck equa-
tion to describe the ion transport. In using Nernst-Planck, we
neglect any ion-ion interaction by assuming the ionic solution
is sufficiently dilute.

The Nernst-Planck ionic flux was first formulated in its
steady form for a one-dimensional cylinder by Nernst [26].
It was later extended by Planck [30] to a transient setting,
furthermore introducing the continuity and Poisson’s equa-
tions [22]. In doing this the two paved the way in helping
develop SPNP, providing a simple yet accurate description
of electrokinetic flow for dilute solutions.

A common similarity in many applications containing
electrokinetic flows is the involvement of multiple regions,
such as fluid electrolyte and solid electrodes in batter-
ies. These regions exchange ions with each other and in
some instances contain chemical reactions exchanging mass
between species. For batteries these reactions are a neces-
sary process for operational use. However in examples such
as chloride corrosion in reinforced concrete, it is a detriment
[25]. As such, modelling these reactions has just as much
importance as the flow they reside in.

Whilst used extensively in a wide range of physical set-
tings by the research community, SPNP does come with its
own caveats. For one, SPNP neglects any ion-ion interactions
that may occur by assuming a dilute solution. This may not
hold true for solutions with many ionic species [32]. Also, as
SPNP is a continuum model, any steric effects are ignored.
As such, many efforts have been made extending SPNP to be
include other physical processes. To cover steric effects, free
energy functionals using density functional theory (DFT)
accounting for long-range Coulomb correlation and hard
sphere (HS) interactions of ions [14, 21, 37] are formulated.
Extensions to make Nernst-Planck more thermodynamically
consistent under non-equilibrium thermodynamics [8, 18]
have also been proposed. To model non-ideal solutions, [34]
proposes an added term to the Nernst-Planck ionic flux
considering varying chemical activities solved by the Debye-
Hückel model.

Whilst these extensions do further the physical realism of
the original SPNP model, this often exacerbates other chal-
lenges of SPNP. One of the foremost being the non-linear
coupling between fields. For example, in [34] the Debye-
Hückel model equates the chemical activity of a species to
the solutions ionic strength. This in part creates explicit cou-
pling between all ionic concentrations unlike in classic SPNP,

resulting in more complex, often unviable, computational
approaches.

The development of numerical solvers for such equations
within general PDE and CFD toolboxes is something that has
been discussed for decades.

Two common approaches can be taken to solve systems of
coupled discretised equations. The first being the so-called
block-coupled, with all equations solved at once in a large
matrix. Whilst taking a large amount of memory, it upholds
the coupling between fields and is numerically robust. The
second is the segregated approach and consists in solving
each equation separately and in sequence. Since this leads
to a decoupling of the equations, appropriate iterative meth-
ods [27, 28] must be used to ensure coupling between fields.
The advantages of a segregated approach are the lower mem-
ory requirements, easy preconditioning of the equations, and
their multi-stage structure that allows a better control on
the solution procedure. However, block-coupled approaches
tend to scale betterwith the number of processors.When con-
structing our solvers to model electrokinetic flows, we chose
a segregated iterative approach to couple the equations and
the different domains.

This work presents a multi-region multi-species SPNP
model and discusses its implementation in finite-volumes
segregated solvers, built with the OpenFOAM® library and
released open-source [11]. We present the mathematical
model, including a dimensional analysis, and consider multi-
ple solid andfluid regions,with general reaction and interface
models.

Whilst other finite-volumes and finite-elements solvers
have been developed [3, 19, 29, 39, 41], restrictions such
as being designed for specific applications, single domains,
dimensionality, absence of reactions, steady state or ignoring
the fluid velocity are often made.

Another point of novelty also stems from a general non-
linear reaction model, so that various reaction rate models
such as Butler-Volmer [33] or the rate law [6] can be applied.

This work is organised in the following way. Within
§2 we present the governing equations of Stokes-Poisson-
Nernst-Planck andwhat fluid properties are assumed to gives
accurate flow description. In §3 we perform dimensional
analysis to understand the transport regimes possible andhow
this results in the often used electro-neutrality approxima-
tion. For §4 we outline what is required to capture reactions
at a multi-region interface given different restriction on ion
movement. In §5 the implementation of our solvers for single
and multi-region is discussed, as well as the iterative algo-
rithm performed when introducing our reactive conditions.
To verify accuracy of our solvers and reactive conditions, we
provide necessary numerical examples in §6, with conclud-
ing remarks given in §7.
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Fig. 1 Graphical representation of the whole domain � = �s ∪ �f
considering two sub-domains: �s a solid region (not necessarily con-
nected), with external boundary ∂�s; and, �f a fluid region with ∂�f
external boundary such that ∂� = ∂�s ∪ ∂�f. Solid–fluid interface
denoted as �

2 Stokes-Poisson-Nernst-Planckmodel

Here we discuss the equations that make up Stokes-Poisson-
Nernst-Planck, modelling the advective, diffusive and elec-
trostatic forces of an ionic solution. As many real-world
applications of electrochemistry involve interacting solids
and fluids we consider a multi-domain scenario of a whole
domain � split, without loss of generality, into two sub-
domains �f, a fluid, and �s, a solid, such that � = �f ∪ �s,
and with � being the solid–fluid interface and ∂� = ∂�f ∪
∂�s the external boundaries. See Fig. 1 for a theoretical
sketch of the domain �. More in general, in some applica-
tions and in our computational framework, we have allowed
for an arbitrary number of solid and fluid regions, sepa-
rated by different interfaces. We consider N ionic species,
with concentrations and valencies ci and zi respectively, and
i = 1, ..., N . To describe the ionic transport we must define
equations for the electric fieldE, ion concentrations ci within
� and fluid velocity u within �f.

2.1 Stokes’ flow

Consider �f, with velocity profile u(x, t) governing the
advective dynamics of the ions.AssumeanegligibleReynolds
numbers Re defined by the fluid density ρf, characteristic
velocity U , characteristic length scale L and dynamic vis-
cosity μ:

Re := ρfLU

μ
� 1,

such that viscous forces within�f outweigh the inertial. This
common assumption in ionic transport [7, 15, 35] leads to
linear Stokes flow. Furthermore we assume the fluid to be

incompressible, i.e.,

μ∇2u = ∇p − ρelE, x ∈ �f, (1)

∇ · u = 0, x ∈ �f, (2)

where p = p(x, t), ρel = ρel(x, t) = F
∑N

i=1 zi ci and E are
the static fluid pressure, electric charge density and electric
field, respectively, and F is Faraday’s constant. Compared
to the standard Stokes equation, we have the presence of the
body force term ρelE, describing the Coulomb forces acted
on the fluid by the ions [15, 31]. We neglect any magnetic
contribution by assuming our ions move slowly such that E
is irrotational, i.e. ∇ × E = 0. This body force term may
be set to zero if the fluid is unaffected by E or the fluid is
approximated as electrically-neutral, ρel = 0. This will be
further discussed in §3.

The first coupling term, between the variables u, E and
ci appears here, showing one of the significant difficul-
ties of describing electrokinetic flows. The coupling terms
(particularly if non-linear) often add significant numeri-
cal difficulties. First of all, they make the velocity field
time-dependent. Although by neglecting the time derivative
we assume instantaneous relaxation to an equilibrium, and
thereby a steady solution, by involving ci (x, t) the relax-
ation becomes tied to the time scale of Nernst-Planck, which
is order magnitudes different. For segregated approaches,
the disparity of relaxation time scales between Stokes, Pois-
son and Nernst-Planck—leading to mixed parabolic-elliptic
systems—can pose severe instability problems or slow con-
vergence of the coupled system.

2.2 Poisson equation

Tomodel the electric fieldE, neglecting magnetic forces,We
may then write E = −∇φ and focus on the electric potential
φ = φ(x, t). Assume for each sub-domain their respective
electric permittivity ε is spatially constant. From Maxwell’s
equationsweobtainPoisson’s electrostatic equationdenoting
variations in φ by changes in the charge density ρel,

∇2φ = −ρel

ε
= − F

ε

N∑

i=1

zi ci , x ∈ �{f,s}, (3)

where ε = εs in the solid and ε = εf in the fluid. Again we
have direct coupling between our variables, here between ci
and φ, although this time the former appears linearly in the
source term. Like for Stokes flow, this equation depends on
time only through the source/coupling terms, in particular
the time-dependent ionic concentration ci (x, t).

123



4132 Engineering with Computers (2023) 39:4129–4152

2.3 Ionic transport

Assume the ionic fluid in �f is sufficiently dilute to ignore
ion-ion interactions and diffusion is isotropic. Under these
assumptions we may use the Nernst-Planck flux [10, 15, 22,
30] as

ji = j(ci , φ)

=
{−Di ,s (∇ci ) x ∈ �s,

−Di,f

(
∇ci + Fzi

RT ci∇φ
)

+ uci x ∈ �f,
(4)

where denote R, T , Di,f and Di,s are, respectively, the ideal
gas constant, absolute temperature and diffusion coefficient
of species i in the fluid and in the solid. Taking Eq. (4) in
conjunction with the continuity equation for mass conserva-
tion we arrive at the set of equations modelling transport of
ci ,

∂ci
∂t

+ ∇ · ji = 0, x ∈ �s,f. (5)

As mentioned, we assume a dilute solution to ignore
ion-ion interactions. This may not hold true in some cases.
Alternatively the Stefan-Maxwell equations [15, 16, 32] may
be used in lieu of Nernst-Planck. In short, Stefan-Maxwell
balances the driving forces exerted on a species with the
frictional forces between species. This introduces cross dif-
fusivities Di j describing the drag between species i and j
due to these frictional forces [15]. The added complexity
from such explicit coupling between species is difficult to
describe, as the exact description ofDi j is hard to determine
[32]. Even in situations where the ionic fluid is bordering on
dilute, it is common for Nernst-Planck to still be used [33]
due to its simplicity.

To close the system of equations listed here, we must
include conditions along the boundaries of �f and �s. We
briefly discuss some common choices below and their physi-
cal representation.We also require conditions at the interface
� to describe interaction between sub-domains. This is dis-
cussed further below for ci and φ when considering reactions
and (non-)conductive interfaces.

2.4 Boundary conditions

Belowwe list some relevant conditions for different physical
situations often seen in electrokinetic problems:

• Solid walls: Either a conductive or insulating wall. The
no-penetration (u · n = 0, and zero normal stresses),
where n is the outward unit normal to the boundary, or
no-slip condition (u = 0) may be used. Ionsmay not pass
through the wall so their fluxes are zero (ji · n = 0). If

conductive we impose a fixed normal current density Iw
along the wall (i ·n = F

∑

i

zi ji ·n = Iw) or fixed poten-

tial φw. If insulating (non-conductive) wemay simply set
Iw = 0.

• Permeable membrane and reactive boundaries: For a
membrane we may fix the flux of each species (ji · n =
jm), non-zero for those capable of passing through, zero
for who cannot. We will discuss the case of reactive
boundaries later in §4.2.

• Inlet/Outlet:Often used tomodel an in or outflow of fluid
or ions. For a momentum driven inlet, pressure or flow
velocity may be fixed (u = uin, p = pin/out). For ions we
may apply fixed fluxes (ji ·n = jin/out), resulting in a fixed
electric current (i · n = Iin/out). More complicated is to
determine suitable boundary conditions for the potential.
Typically either a Dirichlet φ = φin/out or a Neumann
condition can be imposed. The latter imposes the total
electric current to be either equal to zero or a fixed value.

• Periodicity:when dealing with large (quasi-)periodic (or
homogeneous) structures, it is often impossible to solve
for the entire domain of interest. In these cases, smaller
representative unit cells can be solved with (quasi-
)periodic external boundary conditions [5] are imposed.
In these cases, an additional driving forces (as a bulk
source term or a modification of the periodic BC) need
to be added.

3 Dimensional analysis

When dealing with systems of coupled transport equations
it is useful to perform a dimensional analysis to better
understand the relationships between the different transport
phenomena and identify the limiting regimes and possible
approximations. We denote dimensionless variables with a
hat symbol, e.g x̂ , and reference values with a bar unless
stated otherwise. We use the reference values L ,U , φ̄ and c̄i
for the length scale, velocity, electric potential and concen-
trations respectively. For pressure we take p̄ = μU

L as this
the appropriate form when under Stokes flow. For time, we
take the diffusive timescale t̄ = L2

Di
. With these choices and

defining C̄ = 1

2

N∑

i=1

z2i c̄i as the reference total ionic strength,

we obtain the dimensionless variables:

x̂ = x

L
, t̂ = Di t

L2 , û = u
U

, φ̂ = φ

φ̄
,

ĉi = ci
c̄i

, p̂ = pL

μU
. (6)

Substituting these dimensionless variables into Eqs. (1), (3)
and (5) the dimensionless system of equations are
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Di c̄i
L2

∂ ĉi
∂ t̂

+∇̂ ·
(

−Di

(
c̄i
L2 ∇̂ĉi+ F φ̄c̄i

L2RT
ĉi zi ∇̂φ̂

)

+Uc̄i
L

ĉi û
)

=0,

(7)

φ̄

L2 ∇̂2φ̂ = − F

ε

N∑

i=1

zi ĉi c̄i , (8)

μU

L2 ∇̂2û = μU

L2 ∇̂ p̂ + F φ̄

L
∇̂φ̂

N∑

i=1

zi ĉi c̄i . (9)

The underlying dimensionless numbers may be found by
dividing all other terms by the reference values of one term.

For Eqs. (7) to (9) we divide by Di c̄i
L2 , 2C̄ F

ε
and 2C̄μU

2C̄ L2 respec-

tively, where recall C̄ is the reference ionic strength needed
to resolve the issue of not being able to factor out the refer-
ence concentrations c̄i . As such, the dimensionless equations
become:

∂ ĉi
∂ t̂

+ ∇̂ ·
(
−

(
∇̂ĉi + N ĉi zi ∇̂φ̂

)
+ Pei ûĉi

)
= 0, (10)

L2∇̂2φ̂ = −
∑N

i=1 ĉi c̄i zi
2C̄

, (11)

∇̂2û = ∇̂ p̂ + P
2C̄

N∑

i=1

ĉi c̄i zi ∇̂φ̂, (12)

where we have defined four dimensionless numbers N , Pe,
L and P . Note that whilst Eq. (7) had four terms, we only
arrive at two numbers due to our choice of reference time.
The same can be said with Eq. (12) and chosen reference
pressure. The result, four numbers for the three equations
with forms given in Eq. (13) as:

N = F φ̄

RT
= eφ̄

kBT
, Pe = UL

Di
,

L2 = εkBT

2NAe2L2C̄
, P = 2FLφ̄C̄

μU
, (13)

written in terms of the aforementioned reference values,
where we denote e, kB and NA to be the elementary charge,
Boltzmann’s constant and Avogadro’s number respectively.
N represents the ratio of electrostatic over diffusive forces,
withN � 1 indicating diffusion is dominant.We also obtain
the Péclet number Pe, i.e., the ratio of advective over diffusive
phenomena, and L = λD

L the dimensionless Debye length,
with the dimensional form λD defined as

λD =
√

εkBT

2NAe2C̄
, (14)

approximating the distance at which a charge’s electrostatic
effect persists. Typically L � 1, stating how the Debye
length is much smaller than the reference length L . Finally

Fig. 2 A graphical representation of the electric double layer along
a positively charged surface, comprised of a thin layer of adsorbed
negative ions (Stern layer) and loosely connected positive and negative
ions (Diffuse layer)

we have P denoting the ratio of viscous and electric forces
upon our fluid.λD is also the approximatewidth of a common
electrokinetic phenomena known as the electric double layer
(EDL), see Fig. 2, that forms on boundaries. The EDL con-
sists first of ions adsorbed at the boundary, known as the Stern
layer, and another of free ions moved by electrical attraction
and diffusive motion by the Stern layer, deemed the diffuse
layer.

For sufficiently thin EDLs there is a common model
reduction known as the electro-neutrality assumption, often
employed in development of macroscopic models [17, 33,
35]. This reduction can in fact be determined through dimen-
sional analysis and will be briefly discussed next.

3.1 Asymptotics and electro-neutrality

The electro-neutrality approximation states that for a suffi-
ciently dilute electrolyte all charges of ionic species within
the solution roughly cancel each other out, leaving the solu-
tion electrically neutral. Electro-neutrality for a solution
containing N species is defined as

N∑

i=1

zi ci = 0, (15)

and is often used as model reduction when modelling ionic
flows. Where Eq. (15) becomes invalid however is in the thin
charged double layers, or EDL, mentioned above and often
seen in real-world settings.

To get an understanding ofwhere electro-neutrality comes
from and how it relates to EDL formation, we perform an
asymptotic analysis. Without any lack of generality, we limit
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here to a one-dimensional electrolyte and abinary electrolyte.
In the numerical framework described above an arbitrary
number of ionic species in three-dimensions can be consid-
ered. Let x ∈ 	 where 	 = [0, 1] is a binary electrolyte
solution with ionic concentrations c1 and c2 of opposing
valencies. For now we omit any boundary conditions, only
requiring those chosen result in a boundary layer formation
near x = 0. To arrive at Eq. (15) we start by considering the
asymptotics of the outer (bulk) layer away from x = 0. For
simplicity we only consider the leading order terms.
Outer (bulk) layer To arrive at an asymptotic leading order
solution in the bulk layer of 	 we take the following expan-
sions of û, φ̂, p̂, ĉ1 and ĉ2. These denote the fluid velocity,
electric potential, pressure and ion concentrations respec-
tively, all dimensionless. Expansions are taken in powers of
ε = L2, the squared dimensionless Debye screening length
since ε � 1, or, λD � L:

φ̂ = φ(0) + εφ(1) + O(ε2), (16)

ĉi = c(0)
i + εc(1)

i + O(ε2), i = 1, 2, (17)

û = u(0) + εu(1) + O(ε2), (18)

p̂ = p(0) + ε p(1) + O(ε2). (19)

Substituting these expansions into the transport Eqs.
(10)–(12) for one-dimension, alongside the incompressibil-
ity condition, we arrive at

O(ε2) = ∂

∂t

(
c(0)
i + εc(1)

i

)
+ ∂

∂x

(

Pei
[
u(0) + εu(1)

]

[
c(0)
i + εc(1)

i

]
− ∂

∂x

(
c(0)
i + εc(1)

i

)

−N zi
(
c(0)
i + εc(1)

i

) ∂

∂x

(
φ(0) + εφ(1)

))

, i = 1, 2, (20)

O(ε2) = ε
∂2

∂x2

(
φ(0) + εφ(1)

)
+ 1

2C̄

2∑

i=1

zi c̄i
(
c(0)
i + εc(1)

i

)
,

(21)

O(ε2) = − ∂2

∂x2

(
u(0) + εu(1)

)
+ ∂

∂x

(
p(0) + ε p(1)

)

+ P
2C̄

∂

∂x

(
φ(0) + εφ(1)

) 2∑

i=1

zi c̄i
(
c(0)
i + εc(1)

i

)
,

(22)

O(ε2) = ∂

∂x

(
u(0) + εu(1)

)
. (23)

By considering only the leading order terms i.e., terms of
O(1), these equations reduce to,

∂

∂t
c(0)
i + ∂

∂x

(

Pei u
(0)c(0)

i − ∂

∂x
c(0)
i − N zi c

(0)
i

∂

∂x
φ(0)

)

= 0, i = 1, 2, (24)

0 = z1c̄1c
(0)
1 + z2c̄2c

(0)
2 , (25)

∂2

∂x2
u(0) = ∂

∂x
p(0), (26)

∂

∂x
u(0) = 0. (27)

Note how Eq. (25) is the electro-neutrality approxima-
tion mentioned before, for a binary solution, and a direct
consequence of the asymptotics. This implies said electro-
neutrality is only accurate up to leading order. What’s more
the electric body force of Stokes vanishes as a consequence
of Eq. (25). To close the system an equation for the leading
order potential φ(0) is required. This is possible by multiply-
ing Eq. (24) by their respective valencies zi and reference
values c̄i , summing over i , and utilizing Eq. (25). Resulting
in the equation,

∂

∂x

(

u(0)
∑

i

Pei zi c̄i c
(0)
i −

∑

i

zi c̄i
∂

∂x
c(0)
i

−N
∑

i

z2i c̄i c
(0)
i

∂

∂x
φ(0)

)

= 0, (28)

which represents a steady equation for φ(0). This can be
interpreted as a modified Ohm’s law with new conductivity
accounting for all contributions to the total current: advec-
tive, diffusive and electrical, from left to right.

Now that we have constructed the asymptotic solution, up
toO(1), for the outer (bulk) layer of	, we move on to deter-
mine the inner (boundary) layer asymptotics. As mentioned
at the start, we state said inner layer formation is near x = 0
of	. Much like the outer layer, wemake no case of boundary
conditions, only that a boundary layer near x = 0 forms as a
result of them.
Inner solution:

To construct a solution for the inner layer near x = 0 of
	 we define the variable y to span the inner layer and be a
’fast’ variable counterpart to x , changing more rapidly,

y = x√
ε
, y ∈ [0,∞). (29)

By the definition of x ∈ 	, y therefore has domain [0,∞),
as y = 0 for x = 0 and y → ∞ for x → 1, since ε � 1.
Such change of variable gives derivatives via chain rule as:

∂

∂x
= 1√

ε

∂

∂ y
,

∂2

∂x2
= 1

ε

∂2

∂ y2
. (30)

123



Engineering with Computers (2023) 39:4129–4152 4135

Substitution of the above derivatives into the original trans-
port equations Eqs. (10)–(12) results in,

∂ ĉi
∂ t̂

+ 1√
ε

∂

∂ y

(

Pei ûĉi − 1√
ε

∂ ĉi
∂ y

− 1√
ε
N zi ĉi

∂φ̂

∂ y

)

= 0,

(31)

∂2φ̂

∂ y2
= − 1

2C̄

2∑

i=1

zi c̄i ĉi , (32)

1

ε

∂2û

∂ y2
= 1√

ε

∂ p̂

∂ y
+ 1√

ε

P
2C̄

∂φ̂

∂ y

2∑

i=1

zi c̄i ĉi , (33)

∂ û

∂ y
= 0, (34)

where all variables û, p̂, φ̂ and ĉi are in terms of y e.g., ĉi =
ĉi (y, t). Just like the outer layer, we substitute the asymptotic
expansions Eqs. (16)–(19) into the above equations to obtain,

∂

∂t

(
c(0)
i + εc(1)

i

)
+ 1√

ε

∂

∂ y

(

Pei
[
u(0) + εu(1)

] [
c(0)
i + εc(1)

i

]

− 1√
ε

∂

∂ y

(
c(0)
i + εc(1)

i

)

− N zi
1√
ε

(
c(0)
i + εc(1)

i

) ∂

∂ y

(
φ(0) + εφ(1)

) )

= O(ε2),

i = 1, 2, (35)

∂2

∂ y2

(
φ(0) + εφ(1)

)
= − 1

2C̄

2∑

i=1

zi c̄i
(
c(0)
i + εc(1)

i

)
+ O(ε2),

(36)

1

ε

∂2

∂ y2

(
u(0) + εu(1)

)
= 1√

ε

∂

∂ y

(
p(0) + ε p(1)

)

+ 1√
ε

P
2C̄

∂

∂ y

(
φ(0) + εφ(1)

) 2∑

i=1

zi c̄i
(
c(0)
i + εc(1)

i

)

+ O(ε2), (37)
∂

∂ y

(
u(0) + εu(1)

)
= O(ε2). (38)

Considering only the leading order terms of the four equa-
tions above we arrive at the following leading order set of
equations for the inner layer:

∂

∂ y

(

− ∂

∂ y
c(0)
i − N zi c

(0)
i

∂

∂ y
φ(0)

)

= 0, i = 1, 2, (39)

∂2

∂ y2
φ(0) = − 1

2C̄

2∑

i=1

zi c̄i c
(0)
i , (40)

∂2

∂ y2
u(0) = 0, (41)

∂

∂ y
u(0) = 0. (42)

Like the outer layer equations, to close the system we
need another equation, this time for p(0). Considering the
O(ε(1/2)) terms of Eq. (37) we can retrieve such an equation
as

∂

∂ y
p(0) + P

2C̄

∂

∂ y
φ(0)

2∑

i=1

zi c̄i c
(0)
i = 0. (43)

As mentioned earlier, when considering situations involving
multiple sub-domains we must also have appropriate inter-
face conditions. In many real applications of electrokinetic
flows there are chemical reactions at interfaces between sub-
domains, exchanging mass across the ionic species involved.
In these cases, neglecting the EDL might lead to significant
errors. In the next section we will consider such reactions
occurring on our interface �, formulating appropriate condi-
tions to capture them whilst retaining mass conservation.

4 Multi-domain formulation and reactions

Here we formulate conditions to model heterogeneous reac-
tions which are crucial for many electrochemical and elec-
trokinetic problems. We write a general reaction rate that
ensures total mass conservation and apply it to form reac-
tive interface conditions, where we consider the scenarios
of species that exist in the whole domain (unrestricted) or
only in a specific sub-domain (restricted). We then discuss
conditions on φ when the interface is conductive or non-
conductive.

4.1 Reactionmodel

Consider a general elementary reaction transferring mass
between reactants i = J , ..., K and products i = K +
1, ..., M with exchanged molar masses Bi and valencies zi .
We denote νi > 0 to be the stoichiometric coefficients deter-
mining the number of moles of species i is lost or gained
and n the number of released (n < 0) or absorbed (n > 0)
electrons, alongside the electron mass e−. The mass balance
of the reaction reads:

K∑

i=J

νi Bi + ne− =
M∑

i=K+1

νi Bi , (44)

n =
M∑

i=K+1

ziνi −
K∑

i=J

νi zi . (45)

To formulate Eq. (44) as conditions on � we first determine
the rate ri at which each species in our reaction is exchanging
mass.More complex reactions involving several intermediate
reactions can be decomposed into elementary steps, i.e a set
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of elementary reactions. Typically the overall reaction rate is
then given by the rate of the slowest elementary reaction [6].
One option to determine the rate is the law of mass action,
also known as the rate law [2, 6]. Given an ideal solution and
reaction involving chemical species [ j] with stoichiometric
coefficients ν j , at dynamic equilibrium

∑

reactants

ν j [ j] �
∑

products

ν j [ j], (46)

where the net reaction rate (density) r ′ with units [mol/m2 s],
is given by:

r ′ = kf
∏

j

(

c
ν j
j

)

reac
− kr

∏

j

(

c
ν j
j

)

prod
. (47)

Here kf, kr are the rate constants for the forward and reverse
reaction and can be empirically modelled by the Arrhenius
equation [6, 31]. Note that r ′ is always positive, so we cannot
simply take ri = r ′ as we must allow ri < 0 for reactant
species. Instead, we define the coefficient αi as

αi =
{

−1 reactants,

+1 products,
(48)

and, multiplying by r ′ and νi , we obtain:

ri = αiνi r
′ = αiνi

⎛

⎝kf

K∏

j=J

(

c
ν j
j

)

reac
− kr

M∏

j=K+1

(

c
ν j
j

)

prod

⎞

⎠ ,

i = J , ..., M . (49)

For species not involved in the reaction we set ri = 0.
Assuming a closed reactive system, i.e no trace ion species,
we can represent the mass conservation as the balance across
reaction rates ri :

N∑

i=1

miri = 0. (50)

We weight by the molar masses mi to convert from moles (a
non-conserved quantity between species) to grams. We use
the rate law as the example here as it is valid for many reac-
tions [6]. It is also the more general form for the commonly
used Butler-Volmer equation for faradaic reactions, which
uses the energy dependence of kf and kr to give explicit elec-
tric potential dependency. It is important to notice that the
units of measure of the reaction rate are [mol/s] for bulk
reaction and [mmol/s] for surface reactions. Therefore, for
the case of linear reactions, the reaction constants ki can be
either [1/s] or [m/s].

4.2 Interface conditions

The reaction models above can be applied in the bulk or
on a interface. Here we apply them on � for φ and ci given
conductive or non-conductive interface and surface reactions
respectively. We employ general reaction rates ri to balance
the ionicfluxes ji through�withmass exchangedby the reac-
tion. For φ we use conservation of charge to find conditions
on the current passing through � when acting conductively
or non-conductively.

4.2.1 Interface conditions for ions concentration

Here we outline reactive conditions along � to model Eq.
(44). We use a set of general, possibly non-linear, reaction
rates ri for i = J , . . . , M of ion species involved in Eq. (44).
Wemake no assumptions on the formof ri , other thanmaking
sure Eq. (50) holds true. For species not involved we simply
take flux continuity. the results is jump conditions in ionic
flux between �s and �f, equal to their respective reaction
rates ri :

[

ji · n
]�s

�f

=

⎧
⎪⎨

⎪⎩

ri x ∈ � for i = J , ..., M,

0 x ∈ � for i 
= J , ..., M .

(51)

Here we denote
[
ji · n]

�f
to be the normal flux evaluated at

� from �f’s side. Alongside this we assume continuity of
concentrations to provide our second condition:

ci
∣
∣
�s

= ci
∣
∣
�f

, x ∈ �. (52)

So, for all species involved in the reaction eq. (44) we have
the difference in ionic flux from �s and �f to be the rate ri
of the respective species. In some scenarios one or more of
the ion species may be restricted to reside in a single sub-
domain of�. This can however be easilymodelled by simply
modifying the conditions of those restricted species, setting
both ji and ci to be zero in the inaccessible domains.

4.2.2 Interface conditions for the potential

We consider conditions for the electric potential φ given two
situations. Suppose our interface � is acting as a conductor
such that we see a electric current flowing through. Assume
we are under the most general case where all ion species
are unrestricted. Conservation of charge and Ohm’s law then
implies the change in current through� is proportional to the
sum of changes in ionic fluxes:

F
N∑

i=1

zi

[

ji · n
]�s

�f

=
[

σ∇φ · n
]�s

�f

, x ∈ �. (53)
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Here we denote σ to be the electric conductivity which is
discontinuous across the interface. Alongside this we assume
continuity of the potential:

φ
∣
∣
�s

= φ
∣
∣
�f

, x ∈ �. (54)

We see therefore that the conditions on the current are closely
linked to the previous reactive conditions. As if no reaction
occurs at�, we simply have continuity of current due to ionic
flux continuity. If a reaction is present, then eq. (51) tells us
our jump in current is proportional to the sum of reaction
rates ri alongside their respective charge numbers zi .

If� is non-conductive insteadwefix separately the current
on each side of � and no longer impose continuity:

F
N∑

i=1

zi
[
ji · n]

�f
= [

σ∇φ · n]
�f

, x ∈ �, (55)

F
N∑

i=1

zi
[
ji · n]

�s
= [

σ∇φ · n]
�s

, x ∈ �. (56)

5 Numerical implementation

As we have mentioned our goal is to construct simple, effec-
tive numerical solvers to the Stoke-Poisson-Nernst-Planck
(SPNP)model at the pore scale. Todo so,we employ the com-
putational fluid dynamics (CFD) package OpenFOAM® due
to its open-source nature, large active community and robust
handling of complex geometries. OpenFOAM® is a finite
volume library for general unstructuredmesh. Coupled equa-
tions are solved iteratively in a segregated/splitted approach,
solving sequentially each discretised equation. This removes
the explicit coupling between equations, as well as the need
of linearising multi-linear terms (terms linear in each vari-
able but where multiple variables appear) at the expense of
having internal iterations. Thesewould be unavoidable also if
we adopted a monolithic approach due to the non-linearities
of the model.

Two separate solvers have been implemented. The first,
pnpFoam, models electrokinetic flow of a single ionic fluid,
modelled by SPNP. The second, pnpMultiFoam, is more gen-
eralised, modelling a general set of ionic fluids and solids
following SPNP and diffusion respectively. Furthermore we
developed the numerical counterpart, named mappedChem-
icalKinetics, to the reactive conditions in §4.2.1 for the case
of a binary reaction. In this section we will describe in detail
the structure of the solvers and the corresponding boundary
conditions.

5.1 Single- andmulti-domain solvers

OpenFOAM® discretise each equation using a sparse matrix
M with entries relating to the cell centres of the mesh. For
example, for the fluid momentum the discrete form reads:

M[u] = −∇p − ρel∇φ, (57)

where [u] is the vector of unknown velocities at cell centres
andM the coefficient matrix scaling the effect of neighbour-
ing cell velocities. Note the right hand terms are left as source
terms and are computed explicitly and the gradients opera-
tors can be discretised with different schemes (details about
the schemes will be presented in the results section). To solve
for the pressure–velocity coupling we employ the PIMPLE
algorithm with an extra term due to the electric body force.
This works by decomposingM into its diagonal, A, and off-
diagonal,H, partsM[u] = Au−H. This leads to the velocity
correction equation:

u = H
A

− 1

A
∇p − 1

A
ρel∇φ. (58)

Interpolating u to the cell faces and taking the dot product
with cell face area vectors Sf leads to the flux U correction
equation,

U = uf · Sf =
(
H
A

)

f
· Sf −

(
1

A

)

f
Sf · ∇⊥

f pn+1

−
(

ρel∇φ

A

)

f
· Sf, (59)

where subscript f denotes values at cell faces. Discretising
the incompressibility condition ∇ · u = 0 gives ∇ · U = 0
which when applied to the flux correction equation forms the
pressure correction equation:

∇ ·
([

H
A

]

f
∇p

)

= ∇ ·
([

H
A

]

f
−

[
ρel∇φ

A

]

f

)

. (60)

This is solved iteratively until convergence. In an external
loop, momentum and pressure equations are coupled with
the concentration and potential equations. When the mesh is
highly skewed, or for complex discretisation schemes with
implicit-explicit terms, additional iterations can be added for
each single equation. The pseudo-code algorithm for our sin-
gle ionic fluid solver pnpFoam is presented in Algorithm 1.
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The same method is employed within the algorithm of
pnpMultiFoam, our solver for ionic transport over a general
set of ionic fluids and solids, where each region is solved
separately, and an additional outer loop is added to ensure
the coupling between regions. The algorithm is presented in
Algorithm 2. Both solvers here are presented for the case
of non-electroneutral solution. In case the electroneutrality
is assumed, the algorithm is slightly modified to solve a
modified potential equation Eq. (28) (with ionic conductivity
instead of permittivity) and with the last species calculated
to ensure electro-neutrality.

5.2 Boundary and interface conditions

To make use of the object orientation of OpenFOAM® , all
conditions are first reformulate as effective Robin conditions.
We consider here, as an example, the inhomogeneous Robin
BC for a variable c with coefficients D�, K � and F� along a
boundary � with normal n:

D�∇nc|� = −K �c|� − F�. (61)

In OpenFOAM® the boundary values c|� and ∇nc|� are
approximated using the value of the cell centres with faces
along �:

c|� ≈ α1cc + α2, (62)

∇nc|� ≈ α3cc + α4 ≈ B(cf − cc) . (63)

Here cc and cf are the values of c at the cell centre and face
respectively. The α’s are the interpolation weights, and B is
the inverse distance between the cell centre and the boundary.
We can then rearrange Eq. (61) using Eqs. (62) and (63) to
find the α values that allow us to approximate Eq. (61) using
the cell centres cc:

α1 = D�B

D�B − K �
, α2 = F�

D�B − K �
, α3

= K �B

D�B − K �
, α4 = F�B

D�B − K �
. (64)

This forms the basis of the Robin BC implemented. Refor-
mulating all other conditions into a form like Eq. (61) lets us
reuse the same equations in Eq. (64) to approximate all other
conditions.

The interface conditions are implemented as a derived
class named mappedChemicalKinetics. If we consider here
the limiting case of two reacting species cs and cf, restricted to
their respective sub-domains �s and �f respectively. Along
the interface � connecting the two sub-domains is the reac-
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tion:
βsXs ↔ βfXf. (65)

The general reactive conditions eq. (51) in this case reduces
to the following condition along �:

jf|�f · n = js|�s · n = r(cf|�f , cs|�s), (66)

where we denote here �s to be evaluation at the �s side of �

and n the unit normal of � facing into �f. Note the reaction
rate r is kept general and not necessarily linear. Equation66
is solved iteratively using the Newton–Raphson method, lin-
earised about the previous solution cN = (cNs cNf )�. Here
the previous solution could be the solution at the previous
time step (if an explicit time stepping is chosen) or at the
previous internal iteration (for fully implicit time stepping).
This allows us to rewrite Eq. (66) into two decoupled effec-
tive Robin conditions for cN+1

s and cN+1
f that we solve

separately. The coupling between the two sides of the inter-
face conditions (and therefore the two domains) is achieved
through the internal iterations but, for stiff reactions, addi-
tional sub-looping to update both boundary values whenever
one of the two domains is solved for. In Algorithm 3 we
detail themappedChemicalKinetics pseudo-code to solve the
effective Robin conditions. As both resulting effective Robin
conditions are solved in the same manner we only write here
solving of the condition for cf.

More details about the linearisation can be found in
Appendix A. Alongside the reactive conditions we have also
implemented a number of simpler conditions, such as the
continuity of total fluxes, continuity of value or continuity of
derivatives, often used within applications. Just as with the
non-linear reactive condition, we rewrite all conditions into
effective Robin conditions.
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6 Numerical examples

Here we present four numerical examples of electroki-
netic flows. To verify accuracy of results we compare with
the spectral Matlab® toolbox Chebfun [9] with machine-
precision accuracy. The first case verifies accuracy of the flow
description given a single ion species using a pressure-driven
infinite ion channel similar to [4]. Next we verify accu-
racy when considering multiple ion species. Afterwards we
verify the implemented reactive interface conditions coun-
terpart to §4.2.1. The final case displays the capabilities of
our solver(s), simulating ionic transport within a randomised
solid–fluid porous medium.

To show spatial convergence of OpenFOAM® results
we use the following normalised L2 error point norm.
We use here the dummy variables v and vcref to denote
OpenFOAM® and Chebfun results respectively as an exam-
ple:

L2-norm error = ‖v − vcref‖2
‖vcref‖2 . (67)

6.1 SPNP in an infinite channel

To verify pnpFoam and pnpMultiFoam for a single ion
species take �, of length L , with two boundaries �t and �b

denoting the top and bottom channel walls respectively. Take
boundaries �in and �out denoting the inlet and outlet of fluid
in �. To mathematically describe this channel as infinite in
length we take periodic conditions on �in and �out.

Take a monovalent ionic fluid, i.e a single ion species c
with valency z = 1. Enforce a fixed external force J =(

−μ/H2

0

)

to induce transport across the channel length. To

allow electro-migration of c between the two channel walls,

fix φ = 0.1 along �t and φ = 0 on �b. For c apply no-flux
along �t and �b, denoting n to be the outward unit normal
of either �t or �b. We consider the channel at steady state
and, by assuming L is sufficiently large, take all derivatives
in x to be zero, i.e. ∂a

∂x = 0 for a ∈ {u, φ, c, p}. Just like
Poiseuille flow we assume a uni-directional velocity, such
that u = ( u1

0

)
. These assumptions in turn produce a one-

dimensional reduce system of equations in y.
The SPNP system with a single ionic species in an infinite

channel is considered with an added pressure-driven driving
force J:

μ∇2u − J − ∇p − Fc∇φ = 0 , x ∈ �, (68)

∇ · u = 0 , x ∈ �, (69)

ε∇2φ + Fc = 0 , x ∈ �, (70)

∇ ·
[

−D

(

∇c + F

RT
c∇φ

)

+ uc
]

= 0 , x ∈ �, (71)

u = 0 , φ = 0.05 , x ∈ �t (72)

u = 0 , φ = 0 , x ∈ �b, (73)

Fig. 3 Graphical representation of the infinite ion channel with channel
width H

123



Engineering with Computers (2023) 39:4129–4152 4141

Table 1 Dimensionless numbers, domain and transport properties for the SPNP equation in the infinite channel. We denote ε0 = 8.85 × 10−12 to
be the permittivity of vacuum

Symbol μ H ε N Pe L2 P

Value 10 1 × 10−6 40ε0 1.95 1.25 × 105 0.09 3.85 × 10−6

Fig. 4 a Comparison of Chebfun (blue dots) and pnpFoam (red line) of the pressure, fluid velocity, ion concentration, and electric potential
respectively, along the channel width i.e., in y. b L2 error norm convergence plot of pnpFoam results, showing spatial convergence of O(N−1)

−D

(

∇nc + F

RT
c∇nφ

)

+ cu · n = 0 , x ∈ �b ∪ �t,

(74)

a

∣
∣
∣
∣
�in

= a

∣
∣
∣
∣
�out

,
∂a

∂x

∣
∣
∣
∣
�in

= ∂a

∂x

∣
∣
∣
∣
�out

, a ∈ {c,u, φ, p}.
(75)

The complete system is solved in OpenFOAM® in a
periodic channel, and compared with the equivalent one-
dimensional model. By applying the assumptions of uni-
directional flow and zero derivatives in x we obtain a
one-dimensional reduced set of equations in y:

μ
d2u1
dy2

= − μ

H2 , x ∈ �, (76)

0 = dp

dy
+ Fc

dφ

dy
, x ∈ �, (77)

ε
d2φ

dy2
= −Fc, x ∈ �, (78)

0 = d2c

dy2
+ F

RT

(
dc

dy

dφ

dy
+ c

d2φ

dy2

)

, x ∈ �,

(79)

u1 = 0, φ = 0.05, x ∈ �t, (80)

u1 = 0, φ = 0, x ∈ �b, (81)

dc

dy
+ F

RT
c
dφ

dy
= 0, x ∈ �b ∪ �t, (82)

where we excluded the incompressibility condition as this is
trivially satisfied.

To compare results between Chebfun and our single
ionic fluid solver pnpFoam we the following dimensionless
numbers, geometrical parameters and transport properties,
according to Table 1.

When running pnpFoam we solve it in steady state and
take a large number of PIMPLE corrector iterations to
insure convergence of the coupled system. The mesh used
in OpenFOAM® is up to N = 420 cells (100 in x , 320 in y).
Comparison of results and the L2 error norm convergence
are shown in fig.4. We observe an accumulation of c along
�b, causing a large pressure gradient to form. sThe velocity
profile follows a parabolic arc, as expected, whilst we see
a non-linear profile for φ. Overall we find good agreement,
with linear order spatial convergence O(N−1).

6.2 Multi-component ionic fluid

ToverifypnpFoam andpnpMultiFoam for amulti-component
fluid we take two species c1 and c2 with opposite valen-
cies z1 = −z2 = 1 over the domain � ∈ [0, L] where
L = 1 × 10−6. We set a zero-flux BC, i.e., j(ci ) = 0 at
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Table 2 Dimensionless numbers and parameters for the multi-
component ionic fluid testcase

Symbol N Pe L P

Value 3.868 1 × 10−3 9 × 10−3 0

x = 0, L for both species and fix φ = 0.1 at x = L and
φ = 0 at x = 0.Wefix here a constant velocityu = 0.001 for
simplicity and we by-pass the solution of the Stokes system
(frozenFlow flag). Concentrations and potential are initially
set to ci = 1 × 10−3 and φ = 0.05(1 − cos πx

L ).
We consider here the dimensionless number values in

Table 2, indicating electrostatic forces dominate. From Lwe
find the Debye length as approximately λD = 308nm. Since
we are fixing u and neglecting Stokes we have P = 0.

When running pnpFoam we use a time step �t = 10−7s,
end time t = 1 × 10−5s, third-order implicit time scheme
(backward keyword) and a mesh of up to N = 1000 cells.
Results and L2 norm convergence plots are depicted in Sect.
6.3wherewefind good agreement of results and linear spatial
convergence of all fields.

We see the ions are transported to the outer walls due to the
high electric potential gradient. Most of the ions then accu-
mulate within λD from the walls forming two overlapping
EDLs. Non-linear behaviour between ci and φ is observed
through the slight shift in φ’s profile due to the clustering of
ions at the walls.

6.3 Reactive interface

Here we verify the accuracy of mappedChemicalKinetics,
the numerical counterpart to the conditions found in §4.2.1.
Consider the domain � = �s ∪ �f = [−1, 1] split into
fluid �f ∈ [−1, 0] and solid �s ∈ [0, 1], each containing the
species cf and cs respectively. Both species are restricted to
their respective sub-domain, i.e. cs = 0 in �f and vice versa.
Consider the following elementary reaction at the x = 0
interface: Figure. 5

[s] � [f]. (83)

As cs and cf are restricted to �s and �f respectively the
reactive conditions of Eqs. (51) and (52) become

j(cf) = j(cs), x = 0, (84)

j(cf) = kfcs − krcf, x = 0, (85)

where we have used the linear rate law to model the reaction
rate. Note cf and cs in Eqs. (84) and (85) are evaluated on
�f and �s’s side of x = 0 respectively. We set both species
as uncharged, i.e. zi = 0, to remove electrostatic effects and
u = 1 in �f to ignore Stokes. We initially set cs = 0 in �s

and cf = e−200(x+0.5)2 in �f so that a clear increase in cs can
be seen.

Looking at the dimensionless numbers for the problem in
Table 3 we can notice here that advection dominates.We also

Fig. 5 a Results of c1 (left curve) and c2 (right) at t = 1× 10−5s. Blue
and red denote Chebfun and pnpFoam results respectively. Black is the
initial condition. b Results of φ for Chebfun (blue) and pnpFoam (red)

at t = 1× 10−5s, with initial condition in black. c L2 point error norm
convergence plot, showing O(N−1) spatial convergence of pnpFoam
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Table 3 Table of dimensionless values

Symbol N Pe L P DaII,f DaII,r

Value 0 1 0 0 10 100

Fig. 6 Graphical representation of domain � containing a solid and
fluid with zero flux outer boundaries and reactive flux conditions at the
shared interface

include two more numbers from the reactive interface con-
ditions at x = 0. These are DaII,f and DaII,r, the Damköhler
numbers given as the ratio between the diffusion rate and
reaction rates, forward and reverse, respectively.

When running pnpMultiFoam to show qualitative com-
parison we use a time step �t = 10−3s, second-order
implicit time scheme backwards and mesh discretisation of
N = 1000 cells (500 in�f, 500 in�s). To show convergence
of results and compute the L2 error point normwemove to the
steadyState time scheme to compare steady states. Results of
the transient case are shown on the left in Fig. 7 where we
find good agreement. First an initial diffusion and advection
of cf is seen towards the interface, once cf reaches x = 0 it
reacts to form cs in �s, where afterwards cs diffuses through
�s. After t = 15s a steady state is reached implying chem-
ical equilibrium of the reaction. As for the L2 error norm
of the steady case, seen in Fig. 7, we find a second-order
convergence of mappedChemicalKinetics to Chebfun. This
is because the interface conditions are linear and therefore
exactly approximated by the linear approximation.

6.4 Random porous REV

To demonstrate the capabilities of our solvers, we consider a
randomly generated porous solid–fluid domain� = �s∪�f,
see Fig. 8. The random generation is done by a truncated
Gaussian random field [12, 24], sampled at the mesh points
and categorised into two bins, denoting solid and fluid cells,
by a threshold. Raising or lowering this threshold alters the
porosity of the domain.

To have� be amicroscopic representative elementary vol-
ume (REV) of a much larger macroscopic porous medium,

we apply periodic conditions along the outer boundaries
�ext = �in ∪ �out ∪ �t ∪ �b. To generate movement, we
fix a jump in φ between �in,s and �out,s, where the subscript
s denotes the section of�in neighbouring�s. This is tomimic
a fixed applied potential difference across the macroscopic
medium, such as an applied voltage across a battery cell. We
consider two ion species c1 and c2 with opposite valencies
z1 = −z2 = −1. The height and length of the region is set
as H = 1 × 10−4m.

In�f we start with a uniform concentration of c2, the same
is done for �s with c1. Fluid is initially taken at rest. Along
�sf we set no flux for c1 and flux continuity for c2. For φ

we assume continuity of the electric displacement D = εE
along�sf. In Table 4 we list the dimensionless number values
of the case.

The system is initialised with constant c1 and c2 in�f and
�s respectively. All fields are periodic on the outer bound-
aries �ext = �in ∪ �out ∪ �t ∪ �b, apart from φ where
we introduce a quasi-periodic condition with a fixed jump
between �in,s and �out,s, denoting the parts of �in and �out

neighbouring�s. We apply no flux and flux continuity for c1
and cs along �sf respectively. For φ we assume continuity of
the electric displacement D = εE along �sf:

c1(x, 0)=0, c2(x, 0)=1 × 10−8, φ(x, 0)=0, x ∈ �s;
(86)

c1(x, 0) = 1 × 10−8 , c2(x, 0) = 0 , φ(x, 0) = 0 ,

u(x, 0) = 0 , p(x, 0) = 0, x ∈ �f;
(87)

[

∇na

]�in,s

�out,s

= 0 ,

[

a

]�in,s

�out,s

= 0 ,

[

∇nφ

]�in,s

�out,s

= 0 ,

[

φ

]�in,s

�out,s

= 1 × 10−2, a ∈ {c1, c2};
(88)

[

∇na

]�in,f

�out, f

= 0 ,

[

a

]�in,f

�out, f

= 0, a ∈ {c1, c2, φ, p,u};
(89)

[

∇na

]�t

�b

= 0 ,

[

a

]�t

�b

= 0, a ∈ {c1, c2, φ, p,u};
(90)

j1 · n = 0 ,

[

j2 · n
]�sf,f

�sf,s

= 0 , ∇p · n = 0 , u · n = 0 ,

[

ε∇nφ

]�sf,f

�sf,s

= 0, x ∈ �sf.

(91)

To show consistency in the results we run four simulations
in total. This is done for two randomly generated meshes,
each discretised over two levels of refinement for N = 1 ×
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Fig. 7 Left: Molar concentration results of cf in fluid (dashed for
pnpMultiFoam, markers for Chebfun) and cs in solid (solid for pnpMul-
tiFoam, markers for Chebfun). Blue for initial concentrations, black

at intermediate times, red for final time (i.e steady state), Right: L2

norm convergence plot between Chebfun and mappedChemicalKinet-
ics/pnpMultiFoam

Fig. 8 Visual representation of the random porous domain containing
solid �s (grey) and fluid �f (white) with shared interface �sf

104 and N = 4 × 104 cells. We will use letters A and B to
differentiate between the random generations and subscripts
1 and 2 for the levels of refinement. E.g, A2 denotes the first
randommesh, refined using 4×104 cells. All runs use a time
step �t = 5 × 10−4 and second-order implicit time scheme
backwards. To observe the advective and electrostatic effects
on our ions we define the following velocities in �f:

vi = u − Di zi F

RT
∇φ, (92)

Table 4 Dimensionless numbers for the random porous media testcase

Symbol N Pe L P

Value 0.4 9.65 × 10−4 0.95 1

such that the continuity Eq. (5) in �f may be written as

∂ci
∂t

+ ∇ · (vi ci − Di∇ci ) = 0. (93)

Figure9 shows the results of the first random realisation
with a finer mesh (N = 4 × 104), where we observe a gra-
dient in φ formed between regions of �s connected at �in

and �out. This is primarily due to our jump condition for φ

applied along �in,s and �out,s. Whilst movement of our ion
species have an effect on this gradient, for the most part it
remains steady. The applied electrical driving force causes
the uniform concentration c1 in �f to accumulate around
the regions of �s connected at �out, where a higher electric
potential is present. Conversely, around �s connected at �in

we find a much lower, but not zero, concentration of c1. A
similar observation is found with c2, once diffused out of�s,
accumulating where there is a lower potential. As with c1, at
the region of �s connected at �out there is a much lower, but
again not zero, concentration of c2. We observe therefore the
formation of EDL’s, see §3, around these connected solids.
Given more time to evolve these EDL’s would become fur-
ther apparent, with more of c2 diffusing out of �s. As for v1
and v2 we find their magnitudes ||v1|| and ||v2|| are highest
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Fig. 9 Results of the first random solid–fluid geometry, discretised using 4 × 104 cells. a–f Profiles of c1 and c2 at t = 0.3, 1, 2s within �f. g–i
Profiles of c2 at t = 0.3, 1, 2s within �s. j–l Profiles of ||v1||, ||v2|| and φ at t = 2s
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Fig. 10 Results of the first random solid–fluid geometry, discretised using N = 1× 104 cells. Top two rows: Profiles of c1 and c2 at t = 0.3, 1, 2s
within �f. Third row: Profiles of c2 at t = 0.3, 1, 2s within �s. Bottom row: Profiles of ||u1||, ||u2|| and φ at t = 2s

within these EDL’s located at the connected solids due to
higher gradients in φ.

We can compare these results with coarse mesh (N =
1 × 104) results as well as with other random generation
seed. Results of first realisation with a coarse mesh, and of
a coarse and fine simulation of a second random realisation
are reported respectively in Figs. 10, 11, and 12.

7 Conclusions

In this paper we present the development of open-source
solvers in OpenFOAM® capable of simulating microscopic
electrokinetic flows of dilute ionic fluids. The underlying
system, known as Stokes-Poisson-Nernst-Planck, is thor-
oughly reviewed where we discuss the assumptions on the
fluid properties and limitations these bring. We later apply
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Fig. 11 Results of the second random solid–fluid geometry, discretised using N = 1× 104 cells. Top two rows: Profiles of c1 and c2 at t = 0.3, 1,
2s within �f. Third row: Profiles of c2 at t = 0.3, 1, 2s within �s. Bottom row: Profiles of ||u1||, ||u2|| and φ at t = 2s

dimensional analysis to characterise the effects of dominat-
ing physical forces. This analysis is later used to give better
understanding to a common model reduction, known as the
electro-neutrality assumption, as a result of such analysis.

Many real-world applications of these flows involve some
form of reactions between involved ionic species at the inter-
face between fluid and solid. As such, we formulate a fully
general reaction model capable of describing said hetero-

geneous reactions as a balance of fluxes across all reacting
species.

To verify flow descriptions obtained from our solvers
are accurate, we compare against highly accurate solutions
obtained, for simplified cases, with theMatlab toolboxCheb-
fun for a number of cases. With each case we find good
agreement, showing spatial grid convergence of the results.
We later use our solvers across a randomly generated solid–
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Fig. 12 Results of the second random solid–fluid geometry, discretised using N = 4× 104 cells. Top two rows: Profiles of c1 and c2 at t = 0.3, 1,
2s within �f. Third row: Profiles of c2 at t = 0.3, 1, 2s within �s. Bottom row: Profiles of ||u1||, ||u2|| and φ at t = 2s

fluid porous cell, similar to a representative elementary
volume (REV) used in homogenisation theory, to show the
solvers ability in handling complex micro-structures.

In the future we plan on constructing full physically real-
istic cases, such as modelling the electrokinetic flow through
a porous battery half-cell. Furthermore we later plan to
apply uncertainty quantification in conjunction with these

randomly generated porous cells, quantifying the effects on
the flow for varying geometrical properties.
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A. Quasi-coupled Newton iterative effective
reactive Robin conditions

A.1. General non-linear reaction rate for restricted
binary reaction

Let there be the following reversible binary reaction between
species cs and cf along the interface � shared by �s and �f,

νsXs ↔ νfXf, (94)

and consider each species is restricted to their respective sub-
domains:

cs =
{
0 x ∈ �f

cs x ∈ �s
, cf =

{
cf x ∈ �f

0 x ∈ �s
. (95)

In these circumstanceswe have the following condition along
� with reaction rate r :

js
∣
∣
�s

· n = r(cs|�s , cf|�f) = −jf
∣
∣
�f

· n′. (96)

We denote here n to be the unit normal along � facing out-
wards of �s and n′ = −n. Consider the reaction rate r is a
non-linear function of cs and cf. To obtain effective Robin
conditions of Eq. (96) for cs and cf we employ the Newton–
Raphson method. First, we take the vector form of Eq. (96)
with all terms moved to the left. To simplify writing, for now
we omit what side of � each term is evaluated on:

J(cs, cf) =
(
J1
J2

)

≡
( −Ds∇ncs−r(cs, cf)

(uf · n′)cf−Df∇n′cf− zfDfF
RT cf∇n′φf+r(cs, cf)

)

= 0. (97)

Assume we have a current approximate solution cN =
(cNs cNf )�. Linearising J around cN then gives

J(cN ) + ∂J
∂c

∣
∣
∣
∣
cN

(
c − cN

)
= 0, (98)

whereby setting c = cN+1 is the next iterative solution. We
denote here ∂J

∂c to be the Jacobian matrix of J. To determine
the Jacobian we define the directional derivative for some
function G(c) along the direction δc = c − cN as:

∂G

∂c
(δc) = lim

ε→0

G(c + εδc) − G(c)

ε
. (99)

Using this definition of the directional derivative we can then
determine the Jacobian within Eq. (98). Since the method is
similar for all components of J, we will focus on the first ele-
ment J1. Taking the directional derivative of J1 with respect
to cs along δcs at c = cN gives:

∂ J1
∂cs

∣
∣
∣
∣
cN

(δcs) = lim
ε→0

1

ε

(
−Ds∇n(c

N
s + εδcs)

−r(cNs + εδcs, c
N
f ) + Ds∇nc

N
s + r(cNs , cNf )

)
. (100)

Taking the following Taylor expansions about ε = 0 of r
and the concentration gradient,

∇n(c
N
s + εδcs) = ∇nc

N
s + ε∇nδcs + O(ε2), (101)

r(cNs + εδcs, c
N
f ) = r(cNs , cNf ) + εδcs

∂r

∂cs

∣
∣
∣
∣
cN

+ O(ε2),

(102)

then substituting into Eq. (100) we obtain:

∂ J1
∂cs

∣
∣
∣
∣
cN

(δcs) = −Ds∇nδcs − δcs
∂r

∂cs

∣
∣
∣
∣
cN

. (103)

The same can be done to find the directional derivative of
J1 with respect to cf, giving:

∂ J1
∂cf

∣
∣
∣
∣
cN

(δcf) = −δcf
∂r

∂cf

∣
∣
∣
∣
cN

. (104)

Repeating the same process for J2 of Eq. (97) and collecting
all elements together and evaluating at cN gives

∂J
∂c

∣
∣
∣
∣
cN

(δc)

=
⎛

⎝
−Ds∇nδcs − δcs

∂r
∂cs

− δcf
∂r
∂cf

δcs
∂r
∂cs

+ (uf · n′)δcf − zfDfF
RT δcf∇nφf + δcf

∂r
∂cf

⎞

⎠ , (105)

where derivatives in r are evaluated at cN . We may then
substitute Eq. (105) into Eq. (98) to get

⎛

⎝
−Ds∇ncs−r−δcf

∂r
∂cf

−δcs
∂r
∂cs

(uf · n′)cf−Df∇n′cf− zfDfF
RT cf∇n′φf+r+δcs

∂r
∂cs

+δcf,f
∂r
∂cf

⎞

⎠

= 0, (106)
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where r and its derivatives are evaluated at cN . Re-arranging
the first element of Eq.106, using the first order approxima-
tion ∇ncs = Bs(cs − cs,c) where cs,c is the value at the cell
centre of cells sharing a face with �, and substituting into the
second element then gives:

(uf · n′)cf − Df∇n′cf − zfDfF

RT
cf∇n′φf

= −r − δcf
∂r

∂cf
+ cNs

∂r

∂cs
+ P(cf), (107)

where

P(cf) = ∂r

∂cs

(−DsBscs,c + r + δcf
∂r
∂cf

− cNs
∂r
∂cs

DsBs + ∂r
∂cs

)

. (108)

Setting c = cN+1 to indicate the next iterative solu-
tion results in an iterative Robin condition of the form
−D∗

f ∇n′cN+1
f = −K ∗

f c
N+1
f −F∗

f , with effective coefficients
dependent on the previous iteration cN :

D∗
f = Df, (109)

K ∗
f = −

∂r
∂cs

∂r
∂cf

DsBs + ∂r
∂cs

+ ∂r

∂cf
− zfDfF

RT
∇n′φf + (uf · n′),

(110)

F∗
f = r − cNf

∂r

∂cf
− cNs

∂r

∂cs
− ∂r

∂cs(−DsBscs,c + r − cNf
∂r
∂cf

− cNs
∂r
∂cs

DsBs + ∂r
∂cs

)

. (111)

Remember, r and its derivatives are evaluated at the pre-
vious iteration cN . Similar steps can also be applied to the
accompanying iterative Robin condition for cs of the form
−D∗

s ∇ncN+1
s = −K ∗

s c
N+1
s − F∗

s , with coefficients:

D∗
s = Ds, (112)

K ∗
s =

∂r
∂cs

∂r
∂cf

(uf · n′) − DfBf − zfDfF
RT ∇n′φf + ∂r

∂cf

− ∂r

∂cs
, (113)

F∗
s = −r + cNf

∂r

∂cf
+ cNs

∂r

∂cs
− ∂r

∂cf( −DfBfcf,c − r + cNf
∂r
∂cf

+ cNs
∂r
∂cs

(uf · n′) − DfBf − zfDfF
RT ∇n′φf + ∂r

∂cf

)

. (114)

A.2. General non-linear unrestricted reaction rate

Here we will formulate a set of iterative Robin conditions
required to solve the reactive conditions for unrestricted
species and non-linear reaction. Consider a general non-
linear reaction with i = J , ..., K reactants and i = K +

1, ..., M products:

K∑

i=J

νi Bi + ne− =
M∑

i=K+1

νi Bi . (115)

We model Eq. (115) using the following conditions with
general, possibly non-linear, reaction rates ri :

[
ji · n]�s

�f
= ri (cJ , cJ+1, . . . , cM ) x ∈ � for i = J , ..., M,

(116)
[
ci

]�s
�f

= 0 x ∈ � for i = J , ..., M . (117)

Webegin bywriting ji in full and usen = −n′ to give ji |�f ·
n = −ji |�f · n′, a more acceptable form for OpenFOAM® .
Since formulating the necessaryRobin conditions is the same
for all species i , we omit the subscript from here onward
unless necessary. Instead we introduce two new subscripts s
and f denoting evaluation on the solid or fluid side of �:

−Di∇ncs + (uf · n′)cf − Di

(

∇n′cf + zi F

RT
∇n′φf

)

= ri (cJ , cJ+1, . . . , cM ). (118)

We next use the first order approximation ∇n′cf =
Bf(cf − cf,c), where the coefficient Bf is determined by
OpenFOAM® and cf,c denotes the cell centre value of cells
sharing a face with�. Alongside the continuity condition Eq.
(117) this allows us to rearrange Eq. (118) into a form close
to Robin:

−Di∇ncs, f = cs, f

[

−(uf,f · n′) + Di Bf + zi Di F

RTf,f
∇n′φf,f

]

−Di Bfcf,c + ri (c j=J ,...,M ). (119)

Since ri may be non-linear, we linearise about an initial
guess cN = (cNJ , cNJ+1, ..., c

N
i , ..., cNM ) of concentrations and

define δc j = c j − cNj :

ri (c j=J ,...,M )=ri (cN)+δcJ
∂ri
∂cJ

∣
∣
∣
∣
cN

+δcJ+1
∂ri

∂cJ+1

∣
∣
∣
∣
cN

+ ...

+δci
∂ri
∂ci

∣
∣
∣
∣
cN

+ ...

+δcM
∂ri
∂cM

∣
∣
∣
∣
cN

+ O(δc2). (120)

Substitute Eq. (120) into Eq. (119) and take cs = cN+1
s

to be the next iterative solution. To decouple the iterative
conditions, all other concentrations we set as c j = cNj for
i 
= j . The result is the following iterative Robin condition
for cN+1

s , the concentration of species i on the solid side of�:

− D�
s∇nc

N+1
s = − K �

s c
N+1
s − F�

s , (121)
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D�
s = Di , (122)

K �
s = uf · n′ − Di Bf − zi Di F

RT
∇n′φf − ∂ri

∂ci

∣
∣
∣
∣
cN

, (123)

F�
s = Di Bfcf,c − ri (cN ) + cNs

∂ri
∂ci

∣
∣
∣
∣
cN

. (124)

The same process can be done to determine the iterative
Robin condition for cf = cN+1

f , the concentration of species
i on the fluid side of �:

− D�
f ∇n′cN+1

f = −K �
f c

N+1
f − F�

f , (125)

D�
f = Di , (126)

K �
f = uf · n′ − Di Bs − zi Di F

RT
∇n′φf − ∂ri

∂ci

∣
∣
∣
∣
cN

, (127)

F�
f = Di Bscs,c − ri (cN ) + cNf

∂ri
∂ci

∣
∣
∣
∣
cN

. (128)
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