
Vol.:(0123456789)1 3

Engineering with Computers (2024) 40:931–951
https://doi.org/10.1007/s00366-023-01834-7

ORIGINAL ARTICLE

Higher‑order block‑structured hex meshing of tubular structures

Domagoj Bošnjak1  · Antonio Pepe2 · Richard Schussnig3 · Dieter Schmalstieg2 · Thomas‑Peter Fries1

Received: 17 January 2023 / Accepted: 24 April 2023 / Published online: 16 May 2023
© The Author(s) 2023

Abstract
Numerical simulations of the cardiovascular system are growing in popularity due to the increasing availability of compu-
tational power, and their proven contribution to the understanding of pathodynamics and validation of medical devices with
in-silico trials as a potential future breakthrough. Such simulations are performed on volumetric meshes reconstructed from
patient-specific imaging data. These meshes are most often unstructured, and result in a brutally large amount of elements,
significantly increasing the computational complexity of the simulations, whilst potentially adversely affecting their accuracy.
To reduce such complexity, we introduce a new approach for fully automatic generation of higher-order, structured hexahedral
meshes of tubular structures, with a focus on healthy blood vessels. The structures are modeled as skeleton-based convolution
surfaces. From the same skeleton, the topology is captured by a block-structure, and the geometry by a higher-order surface
mesh. Grading may be induced to obtain tailored refinement, thus resolving, e.g., boundary layers. The volumetric meshing is
then performed via transfinite mappings. The resulting meshes are of arbitrary order, their elements are of good quality, while
the spatial resolution may be as coarse as needed, greatly reducing computing time. Their suitability for practical applications
is showcased by a simulation of physiological blood flow modelled by a generalised Newtonian fluid in the human aorta.

Keywords  Mesh generation · Convolution surfaces · Block structure · Higher-order meshes · Transfinite mappings

1  Introduction

Domains with a tubular structure are featured in various
applications, particularly in biomedically motivated ones,
such as blood flow and bronchial airflow [1–3]. Such geom-
etries can be reconstructed from medical imaging data for

different applications, including computational fluid dynam-
ics (CFD) (Fig. 1). The discretization of these domains is
most often performed through unstructured mesh generation,
supported by its capabilities to robustly capture complex
geometries [4, 5]. The lack of control over the number of
nodes and elements in the mesh, as well as the number of
elements sharing a given node [6], are among the reasons
one may prefer structured meshing approaches. The difficul-
ties in structured mesh generation for nontrivial geometries
are well-known, though they may be alleviated by providing
sufficient topological and geometrical domain information,
as well as a priori identification of potential singularities or
sharp jumps arising in simulations.

A prominent example for special solution features, which
should be considered in the mesh generation, are bound-
ary layers in computational fluid dynamics [7], where one
expects very strong velocity gradients. Special treatment
of boundary layers is vital for any fluid simulation, and it
should therefore be performed on the mesh level. Hexahe-
dra are the imminently suitable element type in this regard,
bolstered by the ability to induce anisotropy via mesh grad-
ing [8], with a 2D example in Fig. 2b. Thereby, tailored
mesh refinement is obtained, inducing thinner elements

 *	 Domagoj Bošnjak
	 bosnjak@tugraz.at

	 Antonio Pepe
	 antonio.pepe@tugraz.at

	 Richard Schussnig
	 richard.schussnig@uni-a.de

	 Dieter Schmalstieg
	 schmalstieg@tugraz.at

	 Thomas‑Peter Fries
	 fries@tugraz.at

1	 Institute of Structural Analysis, Graz University
of Technology, 8010 Graz, Austria

2	 Institute of Computer Graphics and Vision, Graz University
of Technology, 8010 Graz, Austria

3	 High‑Performance Scientific Computing, University
of Augsburg, 86159 Augsburg, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-023-01834-7&domain=pdf
http://orcid.org/0000-0003-1225-5652

932	 Engineering with Computers (2024) 40:931–951

1 3

near the domain boundary, capturing the aforementioned
phenomenon whilst retaining the number of mesh elements.
Alternatively, tetrahedra are a common choice, given their
flexibility and popularity in unstructured mesh generation
[5], though hex or hex-dominant unstructured approaches
are also available [9]. Also, meshes may consist of both
hexahedra and tetrahedra, including prisms and pyramids
for transition [10].

Automatic structured hexahedral mesh generation is com-
monly performed on specific classes of domains. Herein, we
restrict ourselves to healthy blood vessels, with the emphasis
on patient-specific aortas. Such structures naturally admit a
topological skeleton, i.e., a centerline abstracting the topol-
ogy of the domain. Skeleton-based mesh generation includes
a wide variety of approaches. One approach might be to con-
sider so-called quad layout extraction [11], which was also
extended to three dimensions in [12]. An important feature is
the placement and subdivision of cubes at the junction points
of the skeleton. Additional mesh optimization is performed
to guarantee element validity. In [13], a hex mesh generation
based on filling a triangular surface mesh was presented,
providing a level of control between surface fitting and mini-
mum mesh quality. Generation of explicit and smooth cylin-
drical maps, i.e., maps between a tubular domain and a cyl-
inder in the polar coordinate system, was performed in [14].
A recent skeleton-reliant method for so-called face extrusion
quad meshes is given in [15]. Semiautomatic approaches

exist as well, e.g., for vascular modelling based on a block
structure and a quadrilateral surface mesh [16]. High qual-
ity hexahedral meshing of large vascular structures based
on a centerline input was performed by Ghaffari et al. [17].
A very recent and rather extensive survey of hex and hex-
dominant mesh generation as well as mesh post-processing
may be found in [18]. Furthermore, skeleton-based meth-
ods often go in the direction of quadrilateral scaffolds, i.e.,
coarse quadrilateral representations of the surface around
the skeleton, such as scaffolding based on Voronoi diagrams
[19], also mentioned by the same authors in [20], as well
as a scaffolding approach in [21], citing a minimal number
of quads for the given topological regularity. A somewhat
similar three-dimensional concept is a block-structure, i.e.,
a division of the domain into coarse blocks. As the block
structure captures the topology of the domain, and the skel-
eton is meant to abstract the very same topology, it was a
natural choice to merge these two approaches. Relevant
examples include a method based on a block structure ena-
bling different element types presented in [22], and a sur-
vey of block-structured approaches in [23]. A comparison
of computational fluid dynamics meshes generated based on
various block structure generation methods was performed
as well [24]. The block structure approach additionally ena-
bles the generation of rather coarse, but domain-conforming
meshes. In particular, this enables applying the geometric
multigrid method [25], a powerful iterative algorithm, which

Fig. 1   The overall pipeline: a the CT scan, b the CT scan with segmentation, c the extracted skeleton, d the convolution surface, e the block-
structure, f the higher-order surface mesh on top of the block-structure, g the volumetric mesh, h velocity u obtained via a fluid flow simulation

933Engineering with Computers (2024) 40:931–951	

1 3

however requires the availability of several nested grids with
varying spatial resolution of the same domain.

Most of the aforementioned work is focused on obtaining
linear (first-order) meshes. Therein, geometric and approxi-
mation errors can be reduced by using more elements to
discretise the domain, which is known as h-FEM. Instead
of using more linear elements, one may rather improve the
order of the elements, known as p-FEM [26]. Better per-
formance is achieved by increasing the polynomial degree
of the FE shape functions, and thus the number of nodes
per element, as shown in Fig. 2c. A well-known example
of a higher-order approach are the so-called Taylor-Hood
elements [27]. They are particularly popular when solving
incompressible flow problems, where we seek to deter-
mine pressure and velocity. Therein, elements of order k
are used for velocity, and of order k − 1 for pressure, noting
that equal orders lead to instabilities [28]. Many modern
fluid flow solvers are turning to the higher-order paradigm
as well [29]. Moreover, structured, higher-order, hexahe-
dral meshes are the standard in isogeometric analysis [30,
31]. An early work by Zhang et al. offers a NURBS-based
sweeping method for mesh generation [32]. The generation
of truncated T-splines, showing desirable properties whilst
enabling localized refinement, was the focus in [33]. Patient-
specific flow with the focus on higher-order representation
of realistic motion in a single lumen may be found in [34].
A review of patient-specific NURBS construction was given

in [35]. Finally, the process of going from scanned images
all the way to applicable geometrical models was covered in
detail in a recent book [36], and earlier in the review paper
[37]. Further advantages of higher-order approaches are dis-
cussed extensively in [38], wherein the lack of appropriate
higher-order mesh generators was particularly emphasized.

The generation of higher-order meshes should be accom-
panied with a suitable shape representation method. Herein,
we utilise convolution surfaces [39], relying heavily on the
fact they offer a smooth representation. A more detailed
overview of the topic of shape modelling, as well as accom-
panying details regarding convolution surfaces, are given
in Sect. 2.

Finally, we highlight topological restrictions of the
domains we mesh. The tubular shapes we encounter in
principle contain only bifurcations, and only rarely trifurca-
tions. However, the algorithm is capable of resolving certain,
modestly complex n-furcations where n ≤ 6. A particularly
problematic situation of interest, to an extent already men-
tioned in [17], is the occurrence of multiple bifurcations
very close to each other. This is only amplified by the poten-
tial large differences in the radii of the vessels. Similar to
[12], we place cubes at junctions, but the present approach
differs in the cube schemes, refinement strategies and re-
orientation algorithms. In particular, our tactic for skeleton-
based block structure generation is only locally dependent
on the skeleton, thus loops (i.e., a skeleton, or parts of it,

Fig. 2   Demonstration of mesh features: a a structured quad mesh and an unstructured triangle mesh, b an isotropic mesh and an anisotropic
graded mesh, and c a linear and a higher-order mesh, where both have the same amount of elements

934	 Engineering with Computers (2024) 40:931–951

1 3

without any endpoints) do not present particular issues, as
shown in examples in Sect. 4. The algorithm is furthermore
capable of resolving loops in the skeleton, which might be
encountered, e.g., when modelling the entire venal or arterial
system. This aspect, however, is not of immediate interest
within the present work.

1.1 � Contribution

In this work, we introduce the following features:

•	 Automatic generation of structured hexahedral meshes of
arbitrary order, utilising the convolution surfaces for sur-
face representation, as the fact that they are smooth per-
fectly complements the notion of higher-order meshes.

•	 A skeleton-based block structure generation method
yielding very coarse (valid) meshes, contained in an
approach that is not limited to existing block structure
templates, but instead flexible towards new ones.

•	 A block-structured mesh generator that offers straight-
forward parametric control over mesh grading, through
which the user easily controls the elements representing
the boundary layers, without introducing new elements
or affecting the surface representation quality.

Figure 1 showcases the entire pipeline from a CT scan to a
structured volume mesh, and its application in a numerical
simulation.

2 � Shape modelling of vascular structures

This section provides an overview of shape modelling tech-
niques to represent vascular structures with an emphasis on
the method used in our workflow (Fig. 1a–d). The aim is
to represent vascular structures as smooth and differenti-
able shapes, a common requirement of different numerical

tasks, like gradient-based optimization, and that guarantees
the absence of domain discontinuities in numerical simula-
tions. For this, shape acquisition is a preliminary step and
3D imaging modalities like CTA represent the gold standard
for acquisition and clinical assessment of deeper vascular
structures [40]. After image acquisition, 3D reconstruction
of such structures is done by segmenting the blood vessel
in the CTA volume (Fig. 1a, b), typically after a windowing
and denoising step as preprocessing [41]. The segmenta-
tion process generates a binary representation of the vascu-
lar structure inside the CTA grid. Recent reviews provide
a broad overview of this topic [40, 41]. However, binary
segmentations provide only a coarse and discrete representa-
tion. For visualisation purposes, it is common to build sur-
face meshes by means of Marching Cubes (MC). However,
MC is characterized by poor mesh quality [42] and supports
only unstructured meshing (Fig. 3, left). Shape modelling
can support the generation of higher quality meshes [43].
Distance transforms, which represent shapes as the distance
from their surface, can be coupled with algorithms like
Marching Tetrahedra to solve most issues of MC [44], yet
the computed mesh is unstructured. Template deformations
are a common technique to represent shapes with tailored
meshes when topology is constant [45]. For tubular struc-
tures with variable topology, like blood vessels, skeleton-
based representations are a valid alternative for shape rep-
resentation and modelling [46]. Skeletons are generally 1D
representations of the vascular structures that preserve their
morphology. They can be combined with radial information
to describe the cross-sectional shape of a blood vessel. Dif-
ferent cross-sectional priors have been considered, ranging
from circles, to ellipses, polynomials, and Fourier descrip-
tors [46, 47]. The skeleton provides information about blood
flow direction and can support the generation of structured
meshes. Sweeping and NURBS patches can be used to gen-
erate structured meshes from skeletal representations [32].
However, it can be challenging to connect different patches

Fig. 3   Example of unstructured surface meshes of an Iliac bifurca-
tion, representing the terminal part of the human aorta. From the left:
Mesh explicitly generated using the Marching Cubes (MC) algorithm
on the binary segmentation. Voxel artifacts are evident. The following
mesh is generated using MC on a discrete distance function generated

from the binary volume. Voxel artifacts are less evident. Eventually,
a level set of the convolution surface (CS) is generated from the skel-
eton of the Iliac bifurcation. The CS also provides the normal vectors
for algorithms like Poisson reconstruction at different resolutions. No
voxel artifacts are evident

935Engineering with Computers (2024) 40:931–951	

1 3

[43]. Alternatively, implicit modelling techniques can be
used to reconstruct the cross-sectional shape and interpo-
late between two cross sections by means of blending [46] or
convolution surfaces [48] (Fig. 3). Implicit models represent
a shape by means of level sets:

In computational engineering, implicit descriptions of geom-
etries and interfaces became popular under the label level-
set method [49–51]. One may also incorporate (physical)
concepts for the change or transport of the involved level-
sets. Herein, we employ convolution surfaces for the implicit
description of the geometry. The algorithm proposed herein
also extends straightforwardly to other level-set representa-
tions, e.g, those based on signed distances.

2.1 � Topological skeletons

After acquisition and segmentation, the topological skel-
eton provides the means to both model shape and structure
(Fig. 1c). 3D shapes are typically represented either explic-
itly as surface meshes or implicitly as level sets. The lat-
ter also guarantee a degree of shape continuity, but neither
representation provides information on shape topology. A
way to analyze topology is to build the medial axis trans-
form (MAT) of a given shape Σ [52]. The MAT is defined
as the set of all spheres (Ci, ri) that are maximally inscribed
in Σ. The MAT is sensitive to noise as even small perturba-
tions can change the size, number, or origin of the maxi-
mally inscribed spheres. For tubular structures, the MAT is
approximated as the set of segments [48]

where the number and length of the segments define the
level of MAT approximation (Fig. 1c). While preserving the
general shape, such shape representation allows easy iden-
tification of critical points such as bifurcations by analyzing
the recurrence of a sphere origin Ci in the set. Bifurcation
points are characterized by more than two occurrences,
whereas an end point is characterized by a single occurrence.
Different methods have been suggested to regress a shape to
medial segments and build a topological skeleton [53], with
mesh contraction being one of the most common ones [54].

2.2 � Convolution surfaces

The MAT representation implicitly holds shape and topology
information. While it is common to reconstruct shapes as the
union of the medial axis spheres [55], implicit representations

(1)f (x, y, z) − C = 0.

Γ =
{
Si = (Ci,Cj, ri, rj) ∶ (Ci, ri), (Cj, rj) ∈ MAT ∧ i, j = 0,… ,N − 1

}
,

of the medial spheres can guarantee smoothness and differenti-
ability (Fig. 1d) [48, 56]. Particular examples of implicit rep-
resentations include metaballs [57], and convolution surfaces
[48]. Metaballs are defined as the convolution of N spherical
Gaussian functions over an Euclidean distance metric, cen-
tered in Oi [57]:

The chosen level C (Eq. 1) determines a geometric locus in
the convolution domain. Convolution surfaces extend the
concept of metaballs by replacing the sparse set of center
points with a skeletal structure, which is often provided by
a set of polylines [48] or Bézier curves [20] annotated with
local thickness information along the skeleton. Given an
arbitrary skeleton Γ, a convolution surface can be defined as

This formulation describes the locus of points Pi equally
distant from Γ (Fig. 1d). Due to the linear properties of con-
volution, we can decompose Γ into non-overlapping regions
such that Γ =

⋃
i Γi, which lets us approximate the boundary

surface of an arbitrary volume with a discrete set of primi-
tives Γi (segments, curves, splines, etc.):

(2)f (P) =

N−1�

i=0

bie
−�i‖P−Oi‖22 .

(3)f (P) = ∫
Γ

e−
1

2
‖P−s‖2 ds.

(4)f (P) =
�

i
∫
Γi

e−
1

2
‖P−s‖2 ds.

2.3 � Convolution surface with radius control

For accurate shape reconstruction, it is crucial to have full
control and matching between the radii associated with the
topological skeleton and the reconstructed shape surface. In its
original formulation, the convolution kernel is an exponential
function, as shown in Eq. 4 [48]. To describe tubular structures
using their skeleton and radial thickness, we rely on the con-
volution kernel proposed by Fuentes Suárez et al. [20]. Given
a skeleton represented with polylines, for a single skeleton
segment S defined by points a, b ∈ ℝ, the convolution surface
at x ∈ ℝ is given by

(5)
CK
Γ
(x) = ∫

1

0

K(g(Γ(s), x − Γ(s)))g
(
Γ(s),Γ�(s)

)
ds,

CK
Γ
∶ ℝ

3
→ ℝ,

936	 Engineering with Computers (2024) 40:931–951

1 3

where K denotes the kernel function and Γ denotes the para-
metrization of a skeleton segment [a, b] defined as

We employ the same polynomial kernel function as Fuentes
Suárez et al. [20], which is given by

as well as the same distance function g:

where G is a positive definite symmetric matrix, recovered
from its eigendecomposition G = UDUT. The matrix U is
the frame of the skeletal curve determining the convolution
surface. As the skeleton elements are segments, each seg-
ment defines a constant matrix U. Moreover, D is a constant
diagonal matrix since our focus is on circular cross-sections.
Otherwise, for ellipsoidal cross-sections, D would need to be
modified accordingly. Finally, the total convolution surface
function is obtained as the sum of convolution surface func-
tions of individual segments:

The function CK as well as ∇xC
K are computed through

numerical integration, adopting the Clenshaw–Curtis quad-
rature [58]. An important property of this kernel function is
its finite support, meaning that individual segments in the
skeleton affect only nearby segments. Hence, a more pre-
cise radius control is obtained, as well as reduced aliasing
effects, which are the main reasons for using the framework
from [20] as opposed to the exponential kernel approach
from Oeltze and Preim [48]. Finally, since the convolution
surface function is a sum of independent segment functions,
its implementation is straightforward to parallelize, with an
example shown in Fig. 4.

(6)ΓS(s) = (1 − s)a + sb, Γ ∶ [0, 1] → ℝ
3.

(7)K(x) =

{ 35

16
(1 − x2)3, x ∈ [0, 1],

0, otherwise,
K ∶ ℝ → ℝ,

(8)g(y, x) =
√
x
T G(y) x,

(9)CK(x) =
∑

S∈�

CK
ΓS
(x).

3 � Block‑structured higher‑order mesh
generation

Having described the convolution surfaces employed herein
for the boundary of the domain, the mesh generation process
is described, which is divided into four main steps:

1.	 Topological description of the domain using a block
structure.

2.	 Mesh grading towards the boundary.
3.	 Generation of a higher-order surface mesh through an

iterative procedure combined with the convolution sur-
face level-set approach.

4.	 Volumetric mesh generation from the block structure
and the surface mesh.

Volumetric mesh generation requires information about
the domain topology and geometry. The first step therefore
consists of generating a block structure [59, 60], which
is a coarse subdivision of the domain into blocks, such
that its topology matches the topology of the domain. An
example of a block structure is shown in Fig. 1e. Grad-
ing information is then assigned to the block-structure, to
induce mesh anisotropy refining towards the boundary. To
properly account for geometry information, we then gen-
erate a higher-order surface mesh of the domain. Finally,
the three are combined through the volumetric mesh gen-
erator, with the pipeline illustrated in Fig. 5, as well as in
Fig. 1e–g. In this paper, we utilise hexahedra as blocks and
quadrilaterals as surface mesh elements.

The continuity at the boundary shared by two or more
blocks is C0. One has to distinguish the continuity of the
geometry definition and the resulting (higher-order) hex-
mesh. The geometry definition based on convolution sur-
faces may conceptionally be even C∞ and a high level of
continuity is an important asset for higher-order mesh gener-
ation, further justifying the choice of convolution surfaces in
this work. On the other hand, no matter what the order of the
resulting hex-mesh actually is, one can show that the result-
ing meshed geometry is only C0-continuous, due to the C0

-continuous nature of the classical FEM shape functions. Of
course, for higher orders, the kinks between element faces
are extremely small. It is obvious that higher levels of con-
tinuity may not be achieved in a classical FEM framework
but rather require novel approaches such as isogeometric
analysis, coming with its own set of challenges.

3.1 � Block structure generation

The generation of the block structure (Fig. 5b) is done
automatically, based on a classification of the tubular

Fig. 4   Example of a convolution surface; firstly based on two sepa-
rated segments, followed by two joined segments, to highlight the
smooth blending effect

937Engineering with Computers (2024) 40:931–951	

1 3

structure into a few prototype cases, to be outlined below.
Although we show concrete schemes for our designated
application, the general approach is not limited to tubular
structures. Different domain shapes would only require
devising new schemes, without further changes in the
pipeline. The process may be summarized as:

•	 Generation of blocks around junction points.
•	 Generation of blocks around non-junction points.
•	 Merging neighbouring junctions.
•	 Iterative repositioning of surface nodes.

In the rest of this article, we refer to a skeletal point X ∈ Γ
as a junction point if it has 3 or more neighbours, otherwise
we refer to it as a non-junction point. The latter are dealt with
as follows: a cross-section is generated around each point, as

shown in Fig. 6a. They are then connected to form blocks,
as shown in Fig. 6b. To determine the position of the cross-
section around a skeleton point, three things are sufficient:
the radius at the given point, the plane in which to place the
cross-section, and its orientation inside that plane, i.e., torsion.

The radius of the cross-section is the input radius at the
given skeleton point X. The plane is determined based on the
neighbouring points of X. Assuming X is a non-junction point,
it can have either one or two neighbours in the skeleton. For a
point X with neighbours Y1 and Y2, we denote the angle deter-
mined by those three points, with X being the central point, as
∠Y1XY2, i.e., the angle between XY1 and XY2. We choose the
plane that divides the angle in half, meaning that for any point
P in the plane it holds that

(P ≠ X) ⟹ (∠PXY1 = ∠PXY2),

Fig. 5   Meshing pipeline demonstrated on the example of an aorta: a the skeleton where the point size indicates the relative radius at the given
point, b the coarse block structure, c the higher-order surface mesh, and d the full volumetric mesh

Fig. 6   a An example of a
cross-section formed around
a single non-junction point of
the skeleton, b five hexahedral
blocks formed between two
non-junction points (or two
cross-sections) of the skeleton

938	 Engineering with Computers (2024) 40:931–951

1 3

as illustrated in Fig. 7a, b. If X has only one neighbour Y, the
plane is chosen to be perpendicular to the segment XY , as
shown in Fig. 7c. Finally, the torsion of the cross-section is
chosen to minimize the torsion with its neighbours. In case
of a domain with no junctions, one torsion is set randomly,
but due to the tubular shape this does not negatively impact
the final mesh. Otherwise, at least one junction scheme has
already been generated, and the torsion is propagated from
there onwards.

We now consider a junction point X of the skeleton,
with neighbours Y1, Y2 and Y3. Instead of a cross-section, a
structured cube is generated around X, as shown in Fig. 8a,
consisting of seven hexahedral elements. The distance from
X to the centers of the cube sides is the input radius at X.
When connecting the cube with the cross-sections associated
with non-junction points, the cube sides must be modified to
yield conformal hexahedral blocks. The scheme is presented
in Fig. 8b. It is worth noting, that subdividing the cube to
accommodate a connection with a non-junction point affects
only one of the original 7 hexahedra forming the cube,
namely the hexahedron containing that very face. Thus, the
junction cube refinement is not dependent on the order of
the subdivisions. As each neighbouring point is assigned to
one side of the cube, we seek to orient the cube based on an
appropriate heuristic. It is oriented to maximize the angle
formed by the segment connecting X to a given neighbour

Yi, and the segment connecting X to that side of the cube,
which we seek to connect with the cross-section around Yi.
Ideally, the branch cross-section is facing the side of the
cube perpendicularly. Additional weights may be added to
favour neighbours with a larger radius.

Due to the properties of convolution surfaces, we observe
smooth blending between connecting objects, which fits
well with the notion of anatomically motivated shapes [48].
Specifically, the smaller the angle between two branches at
a junction, the stronger the effect from the smooth blend-
ing between them. To resolve this issue we subdivide the
branch blocks into multiple parts, and connect them at the
subdivision closest to the junction point, as shown in Fig. 9.
The exact location is determined based on the convolution
surface function.

In case of two junction cubes which are too close to
each other or overlap, we merge them together and perform
corrections to their inside schemes so as to account for
the change caused by the merge. The overlap is shown in
Fig. 10a, and the correction in Fig. 10b, c. Otherwise, blocks
are formed between them in the same manner as between
two cross-sections, see Fig. 6.

After all of the blocks have been generated, the sur-
face nodes of the block structure are corrected using an
iterative process. A node x = (x1, x2, x3) ∈ ℝ

3 is reposi-
tioned to the surface through an iterative procedure of

Fig. 7   Determining the plane
for the cross-section depending
on the number of neighbours of
a non-junction skeleton point;
a the plane determined by
halving the angle between two
segments, b the same situation
in top-view and c the plane
perpendicular to the segment

Fig. 8   a The scheme of a cube
around a junction point, consist-
ing of seven hexahedra. Each
side that needs to be connected
to a cross-section (see Fig. 6a)
is equipped with a port, shown
in b and c 

939Engineering with Computers (2024) 40:931–951	

1 3

finding a null-point, as described in Algorithm 1. The
surface is represented as a level set {x ∈ ℝ

3 ∶ f (x) = C},
where f ∶ ℝ

3
↦ ℝ is the convolution surface function

and C ∈ ℝ the chosen iso-value. However, within the
presented framework, the block structure does not need
to be aligned perfectly to the surface in the first step,

since the convolution surface function and Algorithm 1
are afterwards used to rectify initial positioning errors.
Herein lies another advantage of the convolution surface:
the fact that the function defining the surface is smooth
allows utilising its gradient.

Algorithm 1 Iterative process of repositioning a point x to the surface
determined by f(x) = C.

Input: x ∈ R3, f : R3 → R, iso value C ∈ R, tolerance ε > 0
F (x) = f(x)− C;
while |F (x)| > ε do
x ← x− F (x)·∇F (x)

‖∇F (x)‖2

Fig. 9   The procedure of
modifying the standard junc-
tion scheme shown in a to
accommodate for a small
angle between two branches;
b the branches are subdivided
depending on their length, and
c connected depending on the
location of the convolution
surface blending

Fig. 10   The resolution of two
junction cubes which are over-
lapping; a the overlap in side
view, b the merge in side view,
and c the merge in 3D view

940	 Engineering with Computers (2024) 40:931–951

1 3

3.2 � Mesh grading

High-quality meshes for use in CFD must enable resolution
of boundary layers, for which mesh grading is particularly
useful [24, 38]. The goal is to obtain a tailored refinement
of the mesh, with “thinner” elements near the boundary, as
opposed to a standard uniform refinement. An example of a
graded mesh compared to a uniformly refined mesh is shown
in Fig. 2b. Most importantly, for the same number of ele-
ments, properly graded meshes lead to much better accuracy
than uniform meshes.

An established approach to refining a hexahedron starts
with subdividing each edge into n equal parts, to obtain uni-
form sub-hexahedra after refinement. To modify the uniform
subdivision, a different scaling of the edges is introduced,
thus resulting in a non-uniform refinement of the hexahe-
dron. Here we use two types of scaling functions: quadratic
and cubic. Assume that every edge is locally equipped with
a coordinate t which linearly varies between −1 and 1 along
the edge. For an input scaling parameter m ∈ ⟨−1, 1⟩ the
quadratic scaling transforms a value x ∈ ℝ with the function

(10)fm(t) = m
t2

2
+ t +

m

2
,

and the cubic scaling with the function

We demonstrate the effects of the scaling using a
simple discretisation of the interval [−1, 1] into 20
subintervals, with the values of the input parameter
m ∈ {−0.9,−0.8,… , 0.8, 0.9}, as well as the two extreme
values close to −1 and 1, respectively, as shown in Fig. 11.
For m = 0 no scaling occurs, in both aforementioned cases.
Quadratic scaling moves the points closer to the left or the
right edge of the interval, depending on whether the input
parameter m is positive or negative. Cubic scaling is sym-
metric, where negative values of m imply a denser subdivi-
sion towards the edges of the interval, and positive values of
m imply a denser subdivision towards the middle. Figure 12b
shows which edges in the block structure are selected for
grading, as well as an example of an ungraded and a graded
mesh, in Fig. 12c, d.

3.3 � Higher‑order surface mesh generation

Next, the convolution surface defined in Sect. 2, is converted
(discretised) to a coarse, (very) high-order surface mesh,

(11)fm(t) = t − m
t3 − t

2
.

Fig. 11   The two examples of scaling the interval [−1, 1] uniformly discretised into 20 subintervals, by a quadratic and b cubic scaling. The uni-
form discretisation is achieved for m = 0, in both scaling cases

Fig. 12   a Shows the block structure, and b highlights its edges
which are selected for grading (blue), with indicated edge endings
(magenta). As grading is not necessarily symmetrical, edges for grad-

ing need to be properly oriented. The ungraded mesh is shown in c,
and a quadratically graded mesh, with m = 0.9, in d (colour figure
online)

941Engineering with Computers (2024) 40:931–951	

1 3

which is then used to drive the resulting volumetric mesh
of any desired order. This is illustrated in Fig. 1f. Each ele-
ment of the surface mesh is associated to the outer faces of
the building blocks. The pipeline of the higher-order surface
mesh generation consists of the following steps:

•	 Generation of higher-order surface edges.
•	 Repositioning the inner edge nodes to the surface.
•	 Generation of higher-order surface faces from the edges.
•	 Repositioning the inner face nodes to the surface.

A surface edge, i.e., a segment XY lying on the surface of
the block structure, may be viewed as a linear 1D finite ele-
ment embedded in a three-dimensional space. As such, it
can be converted to a higher-order 1D element, as illustrated
in Fig. 13b. The end points of the higher-order edge are
the same as the end points of the original segment it was
obtained from, i.e., the end points are already on the domain
surface. Therefore, only the inner nodes of the edge need to
be repositioned, whilst keeping the edge a valid element.
This is again performed using Algorithm 1, and illustrated
step-by-step in Fig. 13.

From the newly generated edges we obtain the faces
through so-called transfinite mappings, which will be out-
lined in detail in Sect. 3.4. A face on the surface of the block
structure may analogously be viewed as a two-dimensional
element embedded in a three-dimensional space. The end
points of the face are the nodes of the edges that form it, thus
they already lie on the surface. Consequently, we reposition
the inner nodes only, applying Algorithm 1 once again as
illustrated in Fig. 14.

As individual edges and, afterwards, individual faces get
processed independently, the accompanying computations
are performed in parallel. After we have the topology infor-
mation in the form of a coarse block structure, mesh grading
assignment, and the geometry information embedded in the
higher-order surface mesh, we turn to the final volumetric
meshing step.

3.4 � Volumetric mesh generation

The main goal is now to generate a volumetric mesh based
on the topology, geometry and grading information outlined
above, as illustrated in Fig. 1g. The desired number of ele-
ments per building block nel and their order p are user-
defined. This specifies the number of nodes on every edge
of the building block structure nedge = nel ⋅ p + 1 and,

Fig. 13   The procedure of gener-
ating higher-order edges on the
surface of the block structure: a
a segment lying on the surface
is treated as a 1D finite element,
b then converted to a sixth order
element followed by c iterative
inner node repositioning to the
convolution surface. d The final
result after all edges have been
processed is shown

Fig. 14   The procedure of generating higher-order faces on the surface
of the block structure: a a surface face is treated as a 2D finite ele-
ment, formed based on the four edges; in case the inner nodes are not
perfectly aligned on the surface they get repositioned. b The final sur-
face after all of the nodes have been repositioned

942	 Engineering with Computers (2024) 40:931–951

1 3

thereby, also on every face, nface = n2
edge

, and block interior,
nblock = n3

edge
. To place the nblock nodes inside every block,

we need the concept of so-called transfinite maps.

3.4.1 � Transfinite maps in quads

The rationale of transfinite maps is first outlined based on
generic quadrilateral faces, later for hexahedral blocks. The
approach chosen here is well-documented in [61–63] and is
often called blending-function method. The starting point
is a quadrilateral reference element as seen in Fig. 15a with
associated (r, s)-coordinate system and vertex numbering;
(b) shows the numbering of the edges. The corresponding
(bi-linear) shape functions Ni(r) of this reference element are

One may then equip every edge with a ramp function Ri(r)
being 1 along its edge

Next, let there be some point r = (r, s)T naturally related
to each edge as seen in Fig. 15c. At these edge positions
and the vertices, coordinate data xe

i
∈ ℝ

3 and xv
i
∈ ℝ

3 with
i = 1,… , 4 is given, respectively. These coordinates may, of
course, also be interpreted in a Cartesian (x, y, z)-coordinate
system as seen in Fig. 15d. The transfinite map according
to the blending-function method defines the position x(r)
as follows:

N1(r) =
1

4
(1 − r) ⋅ (1 − s), N2(r) =

1

4
(1 + r) ⋅ (1 − s),

N3(r) =
1

4
(1 + r) ⋅ (1 + s), N4(r) =

1

4
(1 − r) ⋅ (1 + s).

R1 = N1 + N2, R2 = N2 + N3,

R3 = N3 + N4, R4 = N4 + N1.

(12)x(r) =

4∑

i=1

Ri(r) ⋅ x
e
i
−

4∑

i=1

Ni(r) ⋅ x
v
i
.

Interpreting this map x(r) for any point r reveals that this
equation defines the smooth surface between 4 edge curves
forming a closed contour in the three-dimensional space ℝ3,
see the black contour line in Fig. 15d and the resulting yel-
low surface.

Although this assessment mostly serves the purpose
to pave the road to transfinite maps in hexahedra, it
is also noted that the map in Eq. (12) is concretely
used within the presented framework to generate start
guesses for the face nodes of higher-order surface
elements for the geometry definition as discussed in
Sect. 3.3, see also Fig. 16.

3.4.2 � Transfinite maps in hexas

We follow a similar outline as above and start with a
hexahedral reference element as shown in Fig. 17a with
local (r, s, t)-coordinate system and vertex numbering,
(b) shows the numbering of the edges and faces. The
(tri-linear) shape functions Ni(r) in the hexahedron are

Fig. 15   Transfinite maps in quads: a local coordinate system (r, s) and vertex numbering, b edge numbering, c data points required to generate
x(r), d interpreting the data in a Cartesian coordinate system (x, y, z)

Fig. 16   a Transfinite maps based on 4 higher-order edge elements
(p = 6) yield the black stars as start guesses for the inner face nodes.
b These are then moved to the exact geometry via Algorithm 1 to
generate the final higher-order surface element for the geometry defi-
nition

943Engineering with Computers (2024) 40:931–951	

1 3

Every edge is associated with a ramp function Re
i
(r)

and every face with a ramp function Rf
i
(r)

It is easily verified that edge ramp functions Re
i
(r) are unity

along their corresponding edges and face ramp functions
Rf
i
(r) on their corresponding faces.
For some point r = (r, s, t)T, there is a related position on

every edge and face according to Fig. 17c. At these face and
edge positions and the vertices, coordinate data xf

i
∈ ℝ

3,

N1(r) =
1

4
(1 − r) ⋅ (1 − s) ⋅ (1 − t),

N2(r) =
1

4
(1 + r) ⋅ (1 − s) ⋅ (1 − t),

N3(r) =
1

4
(1 + r) ⋅ (1 + s) ⋅ (1 − t),

N4(r) =
1

4
(1 − r) ⋅ (1 + s) ⋅ (1 − t),

N5(r) =
1

4
(1 − r) ⋅ (1 − s) ⋅ (1 + t),

N6(r) =
1

4
(1 + r) ⋅ (1 − s) ⋅ (1 + t),

N7(r) =
1

4
(1 + r) ⋅ (1 + s) ⋅ (1 + t),

N8(r) =
1

4
(1 − r) ⋅ (1 + s) ⋅ (1 + t).

Re
1
= N1 + N2, Re

2
= N2 + N3,

Re
3
= N3 + N4, Re

4
= N4 + N1,

Re
5
= N5 + N6, Re

6
= N6 + N7,

Re
7
= N7 + N8, Re

8
= N8 + N5,

Re
9
= N1 + N5, Re

10
= N2 + N6,

Re
11

= N3 + N7, Re
12

= N4 + N8,

Rf
1
= N1 + N4 + N5 + N8, Rf

2
= N2 + N3 + N6 + N7,

Rf
3
= N1 + N2 + N5 + N6, Rf

4
= N3 + N4 + N7 + N8,

Rf
5
= N1 + N2 + N3 + N4, Rf

6
= N5 + N6 + N7 + N8.

i = 1,… , 6, xe
j
∈ ℝ

3, j = 1,… , 12, and xv
k
∈ ℝ

3, k = 1,… , 8,
is given, respectively. The interpretation of these coordinates
in a Cartesian (x, y, z)-coordinate system is shown in
Fig. 15d. The transfinite map according to the blending-
function method for hexahedra defines the position x(r) as
follows:

3.4.3 � Mesh generation in a building block

With the transfinite maps defined above, the generation of
a sub-mesh in every hexahedral building block may now
be described as follows. Recall, that some of the faces of
the building block may be equipped with a (very) high-
order surface element defining the true geometry. Other-
wise, the face is merely the bi-linear surface element from
the building block itself. In any case, it is easily possible
to map nface = n2

edge
 nodes to every surface element result-

ing in the coordinates xf
i
. Simple compatibility require-

ments between the faces automatically yield the edge coor-
dinates xe

i
 and vertex coordinates xv

i
. Based on the

transfinite map (13), every node inside the building block
may now be generated, so that finally the coordinates of
all nblock = n3

edge
 nodes are specified.

The situation is exemplified in Fig. 18: (a) shows six
higher-order surface elements with order p = 4. The aim
is to generate 5 × 5 × 5 = 125 elements with order p = 2 in
this building block. This gives nedge = 5 ⋅ 2 + 1 = 11 nodes
per building block edge, nface = 112 = 121 nodes per face
and nblock = 113 = 1331 nodes for the whole sub-mesh in
this building block. Figure 18b shows the nface nodes per
face (blue crosses) resulting from a simple finite element
map based on the higher-order faces (black dots). The

(13)x(r) =

6∑

i=1

Rf
i
(r) ⋅ xf

i
−

12∑

i=1

Re
i
(r) ⋅ xe

i
+

8∑

i=1

Ni(r) ⋅ x
v
i
.

Fig. 17   Transfinite maps in hexas: a local coordinate system (r, s, t) and vertex numbering, b edge and face numbering, c data points required to
generate x(r), d interpreting the data in a Cartesian coordinate system (x, y, z)

944	 Engineering with Computers (2024) 40:931–951

1 3

position of the final nblock nodes of this building block is
plotted in Fig. 18c.

Finally, the nblock generated nodes must be associated
with elements which is achieved by setting up a proper
connectivity matrix. This, however, is a standard task
in the finite element method [10, 61, 64] and not further
outlined herein. Continuing the example from before, the

final resulting sub-mesh is seen in Fig. 18d. Connecting all
sub-meshes from the individual building blocks yields the
desired volumetric mesh of the whole (tubular) geometry,
to be used for FEM simulations and visualisations.

4 � Experiments and results

4.1 � Mesh examples

Here we demonstrate several meshes obtained with our
method, followed by examples of simulations performed
on them. First, we showcase several synthetic examples,
i.e., meshes generated based on manually constructed
skeletons. The radius information of the skeleton points
is shown in the form of relative point sizes, as in Fig. 5.
Meshes are generated with different refinement levels and
mesh orders.

Fig. 18   The generation of a higher-order sub-mesh in a building
block: a the higher-order surface elements (p = 4) for the geometry
definition, b placing nface nodes on each face, c placing nblock nodes

inside the building block via transfinite maps, d the resulting sub-
mesh ( 5 × 5 × 5 elements with order p = 2 ) (colour figure online)

Fig. 19   Four examples of synthetic meshes, together with their skeletons, where the (relative) radius information is encoded in the size of the
points. Further information relating to the meshes may be found in Table 1

Table 1   Information about the skeletons and meshes shown in Fig. 19

Mesh example (a) (b) (c) (d)

Skeleton info
Num. of points 26 24 21 19
Num. of segments 25 25 22 21
Mesh info
Mesh order 2 1 4 3
Num. of nodes 1275 4988 10,735 32,338
Num. of elements 125 4428 154 1136

945Engineering with Computers (2024) 40:931–951	

1 3

Particular situations of interest that occur in the syn-
thetic meshes are neighbouring bifurcations in Fig. 19b,
non-planar bifurcations in Fig. 19c and a six-furcation in
Fig. 19d. The skeletons in the synthetic examples contain
loops. Regarding this, the junction cubes are generated
first, and not globally subdivided. More specifically, inde-
pendent parts of the cube (each corresponding to one outer
face of the cube) may be subdivided if a branch is coming
into the aforementioned face, without affecting the other
parts of the cube, as shown in Fig. 8b. Thus, the order of
these subdivisions has no effect on the final configura-
tion—the junction cube is the same in the end. Adding
to this, the cross-sections around non-junction points are
fully symmetric. Hence, no particular issues are encoun-
tered when the skeleton contains loops. Though they are

not of immediate interest for this application, unless one
wants to model the entire arterial and venal system, we
encountered no issues in modeling them.

Furthermore, we highlight two patient-specific exam-
ples; an aorta and a coronary artery. To ease reproduc-
ibility, we performed our experiments on a publicly avail-
able CTA imaging and segmentation of the human aortic
tree from the AVT dataset [65] as a representative tubular
structure. The binary segmentation is first triangulated
using Marching Cubes and the 1D vascular skeletons are
generated by mesh contraction [54]. To limit the number
of skeletal points, they are resampled at a minimum dis-
tance and radial information is computed as the distance
between the skeletal point and the surface mesh.

Fig. 20   An example of a patient-specific aorta: a the skeleton with radius information, b the block structure (320 blocks), c a coarse third-order
mesh with 320 elements, d a refined first-order(linear) mesh with 69,120 elements, and e a refined second-order mesh with 69,120 elements

Fig. 21   An example of a patient-specific coronary artery: a the skel-
eton with radius information, b the block structure (432 blocks),
c a coarse second-order mesh with 432 elements, d a refined first-

order(linear) mesh with 93,312 elements, and e a refined second-
order mesh with 93,312 elements

946	 Engineering with Computers (2024) 40:931–951

1 3

We show the skeleton and the block structure, together
with several meshes, for an aorta in Fig. 20, and a coro-
nary artery in Fig. 21. Additionally, we show histograms
of element-wise values of the scaled Jacobian [16] metric
in Fig. 22. The values may be in the range ⟨−∞, 1], where
a negative value indicates an invalid element (hence an
unusable mesh), and a value of 1 indicates an ideal ele-
ment. The scaled Jacobian is computed on the meshes with

increased refinement levels, as they are more suitable can-
didates for simulations.

Aside from the scaled Jacobian metric, another commonly
utilised mesh quality metric is the equiangular skewness qual-
ity [16], defined as (for an element in the mesh)

(14)Selem = max

{
�max − �ideal

180◦ − �ideal

,
�ideal − �min

�ideal

}
.

Fig. 22   Histograms of the values of the scaled Jacobian metric for the meshes of the aorta in Fig. 20d, e, followed by equivalent histograms for
the meshes of the coronary artery given in Fig. 21d, e. Negative values indicate an invalid element, and a value of 1 indicates an ideal element

Fig. 23   Histograms of the values of the equiangular skewness quality metric for the linear mesh of the aorta in Fig. 20d, and the linear mesh of
the coronary artery given in Fig. 21d. Values closer to zero are desired

947Engineering with Computers (2024) 40:931–951	

1 3

Here, �max and �min denote the maximum and the minimum
angle formed by edges of the element, respectively. It meas-
ures how far each element is from an ideal element, in the
sense of angles between the edges of the element. In this
regard, an ideal hexahedron is the one in which all of the
aforementioned angles are exactly 90◦ , as it is the case in
standard cubes or bricks. This is why �ideal = 90◦. Unlike the
Scaled Jacobian metric, values closer to zero are desirable,
since an ideal element would satisfy �max = �min = �ideal and
thus Selem = 0 . The values of the equiangular skewness are
shown in Fig. 23.

4.2 � Benchmarking higher‑order accuracy

To demonstrate the higher-order accuracy of the proposed
meshing technique and to reinforce the potential advantages
of higher-order finite elements, we solve a Poisson equation
with Dirichlet boundary conditions

on a domain Ω. The skeleton with the radius information
is constructed manually, leading to a convolution surface
description of the domain. We then generate meshes ranging
from order 1 to 5. The corresponding approximation errors
are measured with respect to the energy norm,

The exact solution, and by extension the exact energy, are
unknown. To evaluate the error with respect to energy, a ref-
erence value is thus required. Hence, we compute an overkill

(15)−Δu = f in Ω,

(16)u = 0 on �Ω,

(17)E ∶= ∫
Ω

∇u ⋅ ∇u dx.

solution, i.e., we allow for significantly more degrees of
freedom in a single simulation to diminish approximation
errors. Performing a convergence study, we then proceed in
computing energy norms for orders 1 to 5 under grid refine-
ment, computing approximation errors taking the overkill
solution’s value as reference. The mesh, the reference solu-
tion of the Poisson problem (15)–(16), and the convergence
study in the energy error are shown in Fig. 24.

4.3 � Practical application in aortic blood flow

In a final example, we showcase the applicability of the pro-
posed scheme in the context of cardiovascular flow, that is,
pulsatile blood flow through the reconstructed arterial tree.
Here, we choose a computational domain starting from the
aortic root down to the common iliac arteries involving the
aortic arch with the brachiocephalic trunk, left common
carotid and left subclavian arteries as depicted in Fig. 5.
Having such a spatial discretisation at hand, we can directly
apply solvers for incompressible flow of generalised New-
tonian fluids [66, 67]. Considering five cardiac cycles, we
prescribe the volumetric flow rate at the aortic root adapting
the temporal scale from [1], and recover realistic outlet pres-
sures via lumped parameter models. All involved parameters
and models are chosen in the physiological range, but are
omitted here for the sake of brevity, referring the interested
reader to [3, 68].

As the snapshots of the fluid velocity and pressure at the
fifth cycle’s peak systole shown in Fig. 25 suggest, the hexa-
hedral mesh constructed from medical image data via the
proposed method is indeed capable of resolving the flow
field properly. Here, we use a total of 40,000 hexahedral
(trilinear) elements to accurately capture circulatory flow
fields while showcasing applicability in the lower-order case,
which is of high practical relevance as well. Note, however,

Fig. 24   a The mesh of the domain, followed by b the values of the solution. c The convergence study for different p-FEM orders and refinement
levels, where the error is measured with respect to the energy defined in Eq. 17

948	 Engineering with Computers (2024) 40:931–951

1 3

that the discretisation order and selecting the number of ele-
ments is left entirely to the user, whom we provide with
maximum freedom since coarse meshes involving merely
320 elements still resolving the current complex topology
(but not the physical solution) can be constructed. Thus, one
may use rather fine, but tailored pure hexahedral meshes for
lower-order methods, or employ higher-order discretisations
with much lower element counts, whereas the desired geom-
etry is resolved accurately in both scenarios.

5 � Conclusions and future work

Within this work, we presented a pipeline for block-struc-
tured generation of higher-order hexahedral meshes of tubu-
lar structures, starting from patient-specific CT scans, for
use in fluid simulations. The focus of the paper lies on the
generation of CFD-compliant higher-order meshes, resem-
bling the domain with a spatial resolution as coarse or fine

Fig. 25   Physiological blood flow through the aorta using 40,000
trilinear elements: velocity vectors (left) and pressure fields includ-
ing element edges (right) in aortic arch region (top) and at the iliac

bifurcation (bottom) at peak systole as indicated by vertical line in the
temporal inflow scale

949Engineering with Computers (2024) 40:931–951	

1 3

as required by the user. Future and ongoing work is centered
around devising new block structure generation schemes and
improving mesh quality, as well as resolving solid domains.
These adaptations would pave the way for the application
of the constructed meshes with an FSI framework, such as
[3, 68].

The geometry is described by convolution surfaces,
whose capabilities far encompass tubular structures. As
the examples shown in the paper cover the healthy aorta,
a next step could then involve pathological cases such as
aneurysms, coarctations or aortic dissection. As mentioned,
with modifications of the block structure, the entire pipeline
could be straightforwardly expanded, e.g., to networks found
in the respiratory system or in capillaries. Hence, a natural
extension of this work consists of meshing structures that
have no tubular-prior assumptions.

Acknowledgements  The authors gratefully acknowledge Graz Uni-
versity of Technology, Austria for the financial support of the LEAD-
project: Mechanics, Modelling and Simulation of Aortic Dissec-
tion. Moreover, the article was supported by the TU Graz Open Access
Publishing Fund.

Funding  Open access funding provided by Graz University of
Technology.

Declarations 

Conflict of interest  The authors declare that they have no known com-
peting financial interests or personal relationships that could have ap-
peared to influence the work reported in this paper.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Bäumler K, Vedula V, Sailer AM, Seo J, Chiu P, Mistelbauer
G, Chan FP, Fischbein MP, Marsden AL, Fleischmann D (2020)
Fluid–structure interaction simulations of patient-specific aortic
dissection. Biomech Model Mechanobiol 19(5):1607–1628

	 2.	 Schussnig R, Rolf-Pissarczyk M, Holzapfel G, Fries TP (2021)
Fluid–structure interaction simulations of aortic dissection. Proc
Appl Math Mech 20:e202000125

	 3.	 Schussnig R, Pacheco DRQ, Kaltenbacher M, Fries T-P (2022)
Semi-implicit fluid–structure interaction in biomedical applica-
tions. Comput Methods Appl Mech Eng 400:115489

	 4.	 Owen S (2000) A survey of unstructured mesh generation technol-
ogy. In: Proceedings of international meshing roundtable confer-
ence 3

	 5.	 Si H (2015) TetGen, a Delaunay-based quality tetrahedral mesh
generator. ACM Trans Math Softw 41(2):11

	 6.	 Tu J, Yeoh GH, Liu C (2012) Computational fluid dynamics: a
practical approach. Elsevier, Amsterdam

	 7.	 Herbert T (1988) Secondary instability of boundary layers. Annu
Rev Fluid Mech 20(1):487–526

	 8.	 Carey G, Dinh H (1985) Grading functions and mesh redistribu-
tion. SIAM J Numer Anal 22(5):1028–1040

	 9.	 Ray N, Sokolov D, Reberol M, Ledoux F, Lévy B (2018) Hex-
dominant meshing: mind the gap! Comput Aided Des 102:94–
103. https://​doi.​org/​10.​1016/j.​cad.​2018.​04.​012

	10.	 Zienkiewicz OC, Taylor RL (2000) The finite element method:
the basis, vol 1. Butterworth-Heinemann, Oxford

	11.	 Usai F, Livesu M, Puppo E, Tarini M, Scateni R (2016) Extraction
of the quad layout of a triangle mesh guided by its curve skeleton.
ACM Trans Graph 35(1):6

	12.	 Livesu M, Muntoni A, Puppo E, Scateni R (2016) Skeleton-driven
adaptive hexahedral meshing of tubular shapes. Comput Graph
Forum 35(7):237–246

	13.	 Lin H, Jin S, Liao H, Jian Q (2015) Quality guaranteed all-hex
mesh generation by a constrained volume iterative fitting algo-
rithm. Comput Aided Des 67–68:107–117

	14.	 Livesu M, Attene M, Patané G, Spagnuolo M (2017) Explicit
cylindrical maps for general tubular shapes. Comput Aided Des
90:27–36

	15.	 Pandey K, Bærentzen JA, Singh K (2022) Face extrusion quad
meshes. In: ACM SIGGRAPH 2022 conference proceedings. SIG-
GRAPH’22 10:1–9

	16.	 De Santis G, De Beule M, Van Canneyt K, Segers P, Verdonck
P, Verhegghe B (2011) Full-hexahedral structured meshing for
image-based computational vascular modeling. Med Eng Phys
33:1318–1325. https://​doi.​org/​10.​1016/j.​meden​gphy.​2011.​06.​007

	17.	 Ghaffari M, Tangen K, Alaraj A, Du X, Charbel F, Linninger A
(2017) Large-scale subject-specific cerebral arterial tree mod-
eling using automated parametric mesh generation for blood
flow simulation. Comput Biol Med. https://​doi.​org/​10.​1016/j.​
compb​iomed.​2017.​10.​028

	18.	 Pietroni N, Campen M, Sheffer A, Cherchi G, Bommes D, Gao
X, Scateni R, Ledoux F, Remacle J, Livesu M (2022) Hex-
mesh generation and processing: a survey. ACM Trans Graph
42(2):16

	19.	 Fuentes Suárez A, Hubert E (2018) Scaffolding skeletons using
spherical Voronoi diagrams: feasibility, regularity and symme-
try. Comput Aided Des 102:83–93. Proceeding of SPM 2018
Symposium

	20.	 Fuentes Suárez AJ, Hubert E, Zanni C (2019) Anisotropic con-
volution surfaces. Comput Graph 82:106–116. https://​doi.​org/​
10.​1016/j.​cag.​2019.​05.​018

	21.	 Panotopoulou A, Ross E, Welker K, Hubert E, Morin G (2018)
Scaffolding a skeleton, Research in Shape Analysis. Associa-
tion for Women in Mathematics Series, vol 12, pp 17–35

	22.	 Grosland N, Shivanna K, Magnotta V, Kallemeyn N, DeVries N,
Tadepalli S, Lisle C (2009) IA-FEMesh: an open-source, inter-
active, multiblock approach to anatomic finite element model
development. Comput Methods Programs Biomed 94(1):96–107

	23.	 Dubey A et al (2014) A survey of high level frameworks in
block-structured adaptive mesh refinement packages. J Parallel
Distrib Comput 74(12):3217–3227

	24.	 Ali Z, Dhanasekaran PC, Tucker PG, Watson R, Shahpar S
(2017) Optimal multi-block mesh generation for CFD. Int J
Comput Fluid Dyn. https://​doi.​org/​10.​1080/​10618​562.​2017.​
13393​51

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.cad.2018.04.012
https://doi.org/10.1016/j.medengphy.2011.06.007
https://doi.org/10.1016/j.compbiomed.2017.10.028
https://doi.org/10.1016/j.compbiomed.2017.10.028
https://doi.org/10.1016/j.cag.2019.05.018
https://doi.org/10.1016/j.cag.2019.05.018
https://doi.org/10.1080/10618562.2017.1339351
https://doi.org/10.1080/10618562.2017.1339351

950	 Engineering with Computers (2024) 40:931–951

1 3

	25.	 Wesseling P, Oosterlee CW (2001) Geometric multigrid with
applications to computational fluid dynamics. J Comput Appl
Math 128(1):311–334

	26.	 Babuska I, Suri M (1994) The p and h-p versions of the finite
element method, basic principles and properties. SIAM Rev
36(4):578–632

	27.	 Taylor C, Hood P (1973) A numerical solution of the Navier–
Stokes equations using the finite element technique. Comput Flu-
ids 1:73–100. https://​doi.​org/​10.​1016/​0045-​7930(73)​90027-3

	28.	 Gresho PM, Sani RL (2000) Incompressible flow and the finite
element method, vol 1+2. Wiley, Chichester

	29.	 Arndt D, Fehn N, Kanschat G, Kronbichler KKM, Munch P, Wall
W, Witte J (2020) ExaDG: high-order discontinuous Galerkin for
the exascale. In: Software for exascale computing—SPPEXA
2016–2019. Springer, Cham, pp 189–224

	30.	 Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009)
Patient-specific isogeometric fluid–structure interaction analysis
of thoracic aortic blood flow due to implantation of the Jarvik
2000 left ventricular assist device. Comput Methods Appl Mech
Eng 198(45):3534–3550

	31.	 Bazilevs Y, Hsu M, Zhang Y, Wang W, Kvamsdal T, Hentschel S,
Isaksen J (2010) Computational vascular fluid–structure interac-
tion: methodology and application to cerebral aneurysms. Bio-
mech Model Mechanobiol 9:481–498

	32.	 Zhang Y, Bazilevs Y, Goswami S, Bajaj C, Hughes TJR (2007)
Patient-specific vascular NURBS modeling for isogeometric anal-
ysis of blood flow. Comput Methods Appl Mech Eng 196:2943–
2959. https://​doi.​org/​10.​1007/​978-3-​540-​34958-7_5

	33.	 Wei X, Zhang Y, Liu L, Hughes T (2017) Truncated t-splines:
fundamentals and methods. Comput Methods Appl Mech Eng
316:349–372

	34.	 Yu Y, Zhang Y, Takizawa K, Tezduyar T, Sasaki T (2020) Ana-
tomically realistic lumen motion representation in patient-specific
space–time isogeometric flow analysis of coronary arteries with
time-dependent medical-image data. Comput Mech 65:395-404

	35.	 Urick B, Sanders T, Hossain S, Zhang Y, Hughes T (2017) Review
of patient-specific vascular modeling: template-based isogeomet-
ric framework and the case for CAD. Arch Comput Methods Eng
26:1–24

	36.	 Zhang Y (2016) Geometric modeling and mesh generation from
scanned images, Chapman & Hall/CRC Mathematical and Com-
putational Imaging Sciences Series. CRC Press, Taylor & Francis
Group, pp 1–340

	37.	 Zhang Y (2013) Challenges and advances in image-based geomet-
ric modeling and mesh generation, Springer Publisher, pp 1–10

	38.	 Turner M (2017) High-order mesh generation for CFD solvers.
Dissertation. Imperial College London. https://​doi.​org/​10.​25560/​
57956

	39.	 Bloomenthal J, Bajaj C, Blinn J, Cani-Gascuel MP, Rockwood
A, Wyvill B, Wyvill G (1997) Introduction to implicit surfaces.
Morgan Kaufmann, San Francisco

	40.	 Pepe A, Li J, Rolf-Pissarczyk M, Gsaxner C, Chen X, Holzapfel
G, Egger J (2020) Detection, segmentation, simulation and visual-
ization of aortic dissections: a review. Med Image Anal 65:101773

	41.	 Moccia S, De Momi E, El Hadji S, Mattos L (2018) Blood vessel
segmentation algorithms—review of methods, datasets and evalu-
ation metrics. Comput Methods Programs Biomed 158:71–91

	42.	 Li J, Pimentel P, Szengel A, Ehlke M, Lamecker H, Zachow S,
Estacio L, Doenitz C, Ramm H, Shi H et al (2021) Autoimplant
2020-first MICCAI challenge on automatic cranial implant design.
IEEE Trans Med Imaging 40(9):2329–2342

	43.	 Hong Q, Li Q, Wang B, Liu K, Qi Q (2019) High precision
implicit modeling for patient-specific coronary arteries. IEEE
Access 7:72020–72029

	44.	 Shen T, Gao J, Yin K, Liu M-Y, Fidler S (2021) Deep marching
tetrahedra: a hybrid representation for high-resolution 3d shape
synthesis. Adv NeurIPS 34:6087–6101

	45.	 Lamata P, Niederer S, Nordsletten D, Barber DC, Roy I, Hose
DR, Smith N (2011) An accurate, fast and robust method to gen-
erate patient-specific cubic Hermite meshes. Med Image Anal
15(6):801–813

	46.	 Mistelbauer G, Rössl C, Bäumler K, Preim B, Fleischmann D
(2021) Implicit modeling of patient-specific aortic dissections
with elliptic Fourier descriptors. In: Computer graphics forum,
vol 40. Wiley Online Library, pp 423–434

	47.	 Vukicevic A et al (2018) Three-dimensional reconstruction and
NURBS-based structured meshing of coronary arteries from
the conventional X-ray angiography projection images. Sci Rep
8:1711. https://​doi.​org/​10.​1038/​s41598-​018-​19440-9

	48.	 Oeltze S, Preim B (2005) Visualization of vasculature with con-
volution surfaces: method, validation and evaluation. IEEE Trans
Med Imaging 24(4):540–548

	49.	 Sethian JA (1996) A fast marching level set method for monotoni-
cally advancing fronts. Proc Natl Acad Sci 93:1591–1595. https://​
doi.​org/​10.​1073/​pnas.​93.4.​1591

	50.	 Osher S, Fedkiw RP (2001) Level set methods: an overview and
some recent results. J Comput Phys 169:463–502. https://​doi.​org/​
10.​1006/​jcph.​2000.​6636

	51.	 Osher S, Fedkiw RP (2003) Level set methods and dynamic
implicit surfaces. Springer, Berlin. https://​doi.​org/​10.​1007/​b98879

	52.	 Lin C, Liu L, Li C, Kobbelt L, Wang B, Xin S, Wang W (2020)
Seg-mat: 3d shape segmentation using medial axis transform.
IEEE Trans Vis Comput Graph 28:2430–2444

	53.	 Tagliasacchi A, Delame T, Spagnuolo M, Amenta N, Telea A
(2016) 3d skeletons: a state-of-the-art report. Comput Graph
Forum 35:573–597

	54.	 Au O, Tai C, Chu H, Cohen-Or D, Lee T (2008) Skeleton extrac-
tion by mesh contraction. ACM Trans Graph 27(3):1–10

	55.	 Rebain D, Angles B, Valentin J, Vining N, Peethambaran J, Izadi
S, Tagliasacchi A (2019) LSMAT least squares medial axis trans-
form. Comput Graph Forum 38:5–18

	56.	 Petrelli L, Pepe A, Disanto A, Gsaxner C, Li J, Jin Y, Buongiorno
D, Brunetti A, Bevilacqua V, Egger J (2022) Geometric modeling
of aortic dissections through convolution surfaces. In: Medical
imaging 2022: imaging informatics for healthcare, research, and
applications, vol 12037. SPIE, pp 198–206

	57.	 Kanamori Y, Szego Z, Nishita T (2008) GPU-based fast ray
casting for a large number of metaballs. Comput Graph Forum
27(2):351–360

	58.	 Clenshaw CW, Curtis AR (1960) A method for numerical integra-
tion on an automatic computer. Numer Math 2:197–205

	59.	 Ali Z, Tyacke J, Tucker PG, Shahpar S (2016) Block topology
generation for structured multi-block meshing with hierarchical
geometry handling. Procedia Eng 163:212–224. https://​doi.​org/​
10.​1016/j.​proeng.​2016.​11.​050

	60.	 Armstrong CG, Fogg HJ, Tierney CM, Robinson TT (2015) Com-
mon themes in multi-block structured quad/hex mesh generation.
Procedia Eng 124:70–82. https://​doi.​org/​10.​1016/j.​proeng.​2015.​
10.​123

	61.	 Šolín P, Segeth K, Dolez̆el I (2003) Higher-order finite element
methods. CRC Press, Boca Raton. https://​doi.​org/​10.​1201/​97802​
03488​041-7

	62.	 Gordon WJ, Hall CA (1973) Transfinite element methods: blend-
ing function interpolation over arbitrary curved element domains.
Numer Math 21:109–129. https://​doi.​org/​10.​1007/​BF014​36298

	63.	 Coons SA (1967) Surfaces for computer-aided design of space
forms. MAC-TR-41, MIT, Cambridge

	64.	 Hughes TJR (1987) The finite element method: linear static and
dynamic finite element analysis. Prentice-Hall, Englewood Cliffs

https://doi.org/10.1016/0045-7930(73)90027-3
https://doi.org/10.1007/978-3-540-34958-7_5
https://doi.org/10.25560/57956
https://doi.org/10.25560/57956
https://doi.org/10.1038/s41598-018-19440-9
https://doi.org/10.1073/pnas.93.4.1591
https://doi.org/10.1073/pnas.93.4.1591
https://doi.org/10.1006/jcph.2000.6636
https://doi.org/10.1006/jcph.2000.6636
https://doi.org/10.1007/b98879
https://doi.org/10.1016/j.proeng.2016.11.050
https://doi.org/10.1016/j.proeng.2016.11.050
https://doi.org/10.1016/j.proeng.2015.10.123
https://doi.org/10.1016/j.proeng.2015.10.123
https://doi.org/10.1201/9780203488041-7
https://doi.org/10.1201/9780203488041-7
https://doi.org/10.1007/BF01436298

951Engineering with Computers (2024) 40:931–951	

1 3

	65.	 Radl L, Jin Y, Pepe A, Li J, Gsaxner C, Zhao F, Egger J (2022)
AVT: multicenter aortic vessel tree CTA dataset collection with
ground truth segmentation masks. Data Br 40:107801

	66.	 Schussnig R, Pacheco DRQ, Fries TP (2021) Robust stabilised
finite element solvers for generalised Newtonian fluid flows. J
Comput Phys 442:110436

	67.	 Pacheco DRQ, Schussnig R, Fries TP (2021) An efficient split-
step framework for non-Newtonian incompressible flow problems
with consistent pressure boundary conditions. Comput Methods
Appl Mech Eng 382:113888

	68.	 Schussnig R, Pacheco DRQ, Fries TP (2022) Efficient split-step
schemes for fluid-structure interaction involving incompressible
generalised Newtonian flows. Comput Struct 260:106718

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Higher-order block-structured hex meshing of tubular structures
	Abstract
	1 Introduction
	1.1 Contribution

	2 Shape modelling of vascular structures
	2.1 Topological skeletons
	2.2 Convolution surfaces
	2.3 Convolution surface with radius control

	3 Block-structured higher-order mesh generation
	3.1 Block structure generation
	3.2 Mesh grading
	3.3 Higher-order surface mesh generation
	3.4 Volumetric mesh generation
	3.4.1 Transfinite maps in quads
	3.4.2 Transfinite maps in hexas
	3.4.3 Mesh generation in a building block

	4 Experiments and results
	4.1 Mesh examples
	4.2 Benchmarking higher-order accuracy
	4.3 Practical application in aortic blood flow

	5 Conclusions and future work
	Acknowledgements
	References

