
Vol.:(0123456789)1 3

Engineering with Computers (2024) 40:931–951 
https://doi.org/10.1007/s00366-023-01834-7

ORIGINAL ARTICLE

Higher‑order block‑structured hex meshing of tubular structures

Domagoj Bošnjak1   · Antonio Pepe2 · Richard Schussnig3 · Dieter Schmalstieg2 · Thomas‑Peter Fries1

Received: 17 January 2023 / Accepted: 24 April 2023 / Published online: 16 May 2023 
© The Author(s) 2023

Abstract
Numerical simulations of the cardiovascular system are growing in popularity due to the increasing availability of compu-
tational power, and their proven contribution to the understanding of pathodynamics and validation of medical devices with 
in-silico trials as a potential future breakthrough. Such simulations are performed on volumetric meshes reconstructed from 
patient-specific imaging data. These meshes are most often unstructured, and result in a brutally large amount of elements, 
significantly increasing the computational complexity of the simulations, whilst potentially adversely affecting their accuracy. 
To reduce such complexity, we introduce a new approach for fully automatic generation of higher-order, structured hexahedral 
meshes of tubular structures, with a focus on healthy blood vessels. The structures are modeled as skeleton-based convolution 
surfaces. From the same skeleton, the topology is captured by a block-structure, and the geometry by a higher-order surface 
mesh. Grading may be induced to obtain tailored refinement, thus resolving, e.g., boundary layers. The volumetric meshing is 
then performed via transfinite mappings. The resulting meshes are of arbitrary order, their elements are of good quality, while 
the spatial resolution may be as coarse as needed, greatly reducing computing time. Their suitability for practical applications 
is showcased by a simulation of physiological blood flow modelled by a generalised Newtonian fluid in the human aorta.

Keywords  Mesh generation · Convolution surfaces · Block structure · Higher-order meshes · Transfinite mappings

1  Introduction

Domains with a tubular structure are featured in various 
applications, particularly in biomedically motivated ones, 
such as blood flow and bronchial airflow [1–3]. Such geom-
etries can be reconstructed from medical imaging data for 

different applications, including computational fluid dynam-
ics (CFD) (Fig. 1). The discretization of these domains is 
most often performed through unstructured mesh generation, 
supported by its capabilities to robustly capture complex 
geometries [4, 5]. The lack of control over the number of 
nodes and elements in the mesh, as well as the number of 
elements sharing a given node [6], are among the reasons 
one may prefer structured meshing approaches. The difficul-
ties in structured mesh generation for nontrivial geometries 
are well-known, though they may be alleviated by providing 
sufficient topological and geometrical domain information, 
as well as a priori identification of potential singularities or 
sharp jumps arising in simulations.

A prominent example for special solution features, which 
should be considered in the mesh generation, are bound-
ary layers in computational fluid dynamics [7], where one 
expects very strong velocity gradients. Special treatment 
of boundary layers is vital for any fluid simulation, and it 
should therefore be performed on the mesh level. Hexahe-
dra are the imminently suitable element type in this regard, 
bolstered by the ability to induce anisotropy via mesh grad-
ing [8], with a 2D example in Fig. 2b. Thereby, tailored 
mesh refinement is obtained, inducing thinner elements 
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near the domain boundary, capturing the aforementioned 
phenomenon whilst retaining the number of mesh elements. 
Alternatively, tetrahedra are a common choice, given their 
flexibility and popularity in unstructured mesh generation 
[5], though hex or hex-dominant unstructured approaches 
are also available [9]. Also, meshes may consist of both 
hexahedra and tetrahedra, including prisms and pyramids 
for transition [10].

Automatic structured hexahedral mesh generation is com-
monly performed on specific classes of domains. Herein, we 
restrict ourselves to healthy blood vessels, with the emphasis 
on patient-specific aortas. Such structures naturally admit a 
topological skeleton, i.e., a centerline abstracting the topol-
ogy of the domain. Skeleton-based mesh generation includes 
a wide variety of approaches. One approach might be to con-
sider so-called quad layout extraction [11], which was also 
extended to three dimensions in [12]. An important feature is 
the placement and subdivision of cubes at the junction points 
of the skeleton. Additional mesh optimization is performed 
to guarantee element validity. In [13], a hex mesh generation 
based on filling a triangular surface mesh was presented, 
providing a level of control between surface fitting and mini-
mum mesh quality. Generation of explicit and smooth cylin-
drical maps, i.e., maps between a tubular domain and a cyl-
inder in the polar coordinate system, was performed in [14]. 
A recent skeleton-reliant method for so-called face extrusion 
quad meshes is given in [15]. Semiautomatic approaches 

exist as well, e.g., for vascular modelling based on a block 
structure and a quadrilateral surface mesh [16]. High qual-
ity hexahedral meshing of large vascular structures based 
on a centerline input was performed by Ghaffari et al. [17]. 
A very recent and rather extensive survey of hex and hex-
dominant mesh generation as well as mesh post-processing 
may be found in [18]. Furthermore, skeleton-based meth-
ods often go in the direction of quadrilateral scaffolds, i.e., 
coarse quadrilateral representations of the surface around 
the skeleton, such as scaffolding based on Voronoi diagrams 
[19], also mentioned by the same authors in [20], as well 
as a scaffolding approach in [21], citing a minimal number 
of quads for the given topological regularity. A somewhat 
similar three-dimensional concept is a block-structure, i.e., 
a division of the domain into coarse blocks. As the block 
structure captures the topology of the domain, and the skel-
eton is meant to abstract the very same topology, it was a 
natural choice to merge these two approaches. Relevant 
examples include a method based on a block structure ena-
bling different element types presented in [22], and a sur-
vey of block-structured approaches in [23]. A comparison 
of computational fluid dynamics meshes generated based on 
various block structure generation methods was performed 
as well [24]. The block structure approach additionally ena-
bles the generation of rather coarse, but domain-conforming 
meshes. In particular, this enables applying the geometric 
multigrid method [25], a powerful iterative algorithm, which 

Fig. 1   The overall pipeline: a the CT scan, b the CT scan with segmentation, c the extracted skeleton, d the convolution surface, e the block-
structure, f the higher-order surface mesh on top of the block-structure, g the volumetric mesh, h velocity u obtained via a fluid flow simulation
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however requires the availability of several nested grids with 
varying spatial resolution of the same domain.

Most of the aforementioned work is focused on obtaining 
linear (first-order) meshes. Therein, geometric and approxi-
mation errors can be reduced by using more elements to 
discretise the domain, which is known as h-FEM. Instead 
of using more linear elements, one may rather improve the 
order of the elements, known as p-FEM [26]. Better per-
formance is achieved by increasing the polynomial degree 
of the FE shape functions, and thus the number of nodes 
per element, as shown in Fig. 2c. A well-known example 
of a higher-order approach are the so-called Taylor-Hood 
elements [27]. They are particularly popular when solving 
incompressible flow problems, where we seek to deter-
mine pressure and velocity. Therein, elements of order k 
are used for velocity, and of order k − 1 for pressure, noting 
that equal orders lead to instabilities [28]. Many modern 
fluid flow solvers are turning to the higher-order paradigm 
as well [29]. Moreover, structured, higher-order, hexahe-
dral meshes are the standard in isogeometric analysis [30, 
31]. An early work by Zhang et al. offers a NURBS-based 
sweeping method for mesh generation [32]. The generation 
of truncated T-splines, showing desirable properties whilst 
enabling localized refinement, was the focus in [33]. Patient-
specific flow with the focus on higher-order representation 
of realistic motion in a single lumen may be found in [34]. 
A review of patient-specific NURBS construction was given 

in [35]. Finally, the process of going from scanned images 
all the way to applicable geometrical models was covered in 
detail in a recent book [36], and earlier in the review paper 
[37]. Further advantages of higher-order approaches are dis-
cussed extensively in [38], wherein the lack of appropriate 
higher-order mesh generators was particularly emphasized.

The generation of higher-order meshes should be accom-
panied with a suitable shape representation method. Herein, 
we utilise convolution surfaces [39], relying heavily on the 
fact they offer a smooth representation. A more detailed 
overview of the topic of shape modelling, as well as accom-
panying details regarding convolution surfaces, are given 
in Sect. 2.

Finally, we highlight topological restrictions of the 
domains we mesh. The tubular shapes we encounter in 
principle contain only bifurcations, and only rarely trifurca-
tions. However, the algorithm is capable of resolving certain, 
modestly complex n-furcations where n ≤ 6. A particularly 
problematic situation of interest, to an extent already men-
tioned in [17], is the occurrence of multiple bifurcations 
very close to each other. This is only amplified by the poten-
tial large differences in the radii of the vessels. Similar to 
[12], we place cubes at junctions, but the present approach 
differs in the cube schemes, refinement strategies and re-
orientation algorithms. In particular, our tactic for skeleton-
based block structure generation is only locally dependent 
on the skeleton, thus loops (i.e., a skeleton, or parts of it, 

Fig. 2   Demonstration of mesh features: a a structured quad mesh and an unstructured triangle mesh, b an isotropic mesh and an anisotropic 
graded mesh, and c a linear and a higher-order mesh, where both have the same amount of elements
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without any endpoints) do not present particular issues, as 
shown in examples in Sect. 4. The algorithm is furthermore 
capable of resolving loops in the skeleton, which might be 
encountered, e.g., when modelling the entire venal or arterial 
system. This aspect, however, is not of immediate interest 
within the present work.

1.1 � Contribution

In this work, we introduce the following features:

•	 Automatic generation of structured hexahedral meshes of 
arbitrary order, utilising the convolution surfaces for sur-
face representation, as the fact that they are smooth per-
fectly complements the notion of higher-order meshes.

•	 A skeleton-based block structure generation method 
yielding very coarse (valid) meshes, contained in an 
approach that is not limited to existing block structure 
templates, but instead flexible towards new ones.

•	 A block-structured mesh generator that offers straight-
forward parametric control over mesh grading, through 
which the user easily controls the elements representing 
the boundary layers, without introducing new elements 
or affecting the surface representation quality.

Figure 1 showcases the entire pipeline from a CT scan to a 
structured volume mesh, and its application in a numerical 
simulation.

2 � Shape modelling of vascular structures

This section provides an overview of shape modelling tech-
niques to represent vascular structures with an emphasis on 
the method used in our workflow (Fig. 1a–d). The aim is 
to represent vascular structures as smooth and differenti-
able shapes, a common requirement of different numerical 

tasks, like gradient-based optimization, and that guarantees 
the absence of domain discontinuities in numerical simula-
tions. For this, shape acquisition is a preliminary step and 
3D imaging modalities like CTA represent the gold standard 
for acquisition and clinical assessment of deeper vascular 
structures [40]. After image acquisition, 3D reconstruction 
of such structures is done by segmenting the blood vessel 
in the CTA volume (Fig. 1a, b), typically after a windowing 
and denoising step as preprocessing [41]. The segmenta-
tion process generates a binary representation of the vascu-
lar structure inside the CTA grid. Recent reviews provide 
a broad overview of this topic [40, 41]. However, binary 
segmentations provide only a coarse and discrete representa-
tion. For visualisation purposes, it is common to build sur-
face meshes by means of Marching Cubes (MC). However, 
MC is characterized by poor mesh quality [42] and supports 
only unstructured meshing (Fig. 3, left). Shape modelling 
can support the generation of higher quality meshes [43]. 
Distance transforms, which represent shapes as the distance 
from their surface, can be coupled with algorithms like 
Marching Tetrahedra to solve most issues of MC [44], yet 
the computed mesh is unstructured. Template deformations 
are a common technique to represent shapes with tailored 
meshes when topology is constant [45]. For tubular struc-
tures with variable topology, like blood vessels, skeleton-
based representations are a valid alternative for shape rep-
resentation and modelling [46]. Skeletons are generally 1D 
representations of the vascular structures that preserve their 
morphology. They can be combined with radial information 
to describe the cross-sectional shape of a blood vessel. Dif-
ferent cross-sectional priors have been considered, ranging 
from circles, to ellipses, polynomials, and Fourier descrip-
tors [46, 47]. The skeleton provides information about blood 
flow direction and can support the generation of structured 
meshes. Sweeping and NURBS patches can be used to gen-
erate structured meshes from skeletal representations [32]. 
However, it can be challenging to connect different patches 

Fig. 3   Example of unstructured surface meshes of an Iliac bifurca-
tion, representing the terminal part of the human aorta. From the left: 
Mesh explicitly generated using the Marching Cubes (MC) algorithm 
on the binary segmentation. Voxel artifacts are evident. The following 
mesh is generated using MC on a discrete distance function generated 

from the binary volume. Voxel artifacts are less evident. Eventually, 
a level set of the convolution surface (CS) is generated from the skel-
eton of the Iliac bifurcation. The CS also provides the normal vectors 
for algorithms like Poisson reconstruction at different resolutions. No 
voxel artifacts are evident
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[43]. Alternatively, implicit modelling techniques can be 
used to reconstruct the cross-sectional shape and interpo-
late between two cross sections by means of blending [46] or 
convolution surfaces [48] (Fig. 3). Implicit models represent 
a shape by means of level sets:

In computational engineering, implicit descriptions of geom-
etries and interfaces became popular under the label level-
set method [49–51]. One may also incorporate (physical) 
concepts for the change or transport of the involved level-
sets. Herein, we employ convolution surfaces for the implicit 
description of the geometry. The algorithm proposed herein 
also extends straightforwardly to other level-set representa-
tions, e.g, those based on signed distances.

2.1 � Topological skeletons

After acquisition and segmentation, the topological skel-
eton provides the means to both model shape and structure 
(Fig. 1c). 3D shapes are typically represented either explic-
itly as surface meshes or implicitly as level sets. The lat-
ter also guarantee a degree of shape continuity, but neither 
representation provides information on shape topology. A 
way to analyze topology is to build the medial axis trans-
form (MAT) of a given shape Σ [52]. The MAT is defined 
as the set of all spheres (Ci, ri) that are maximally inscribed 
in Σ. The MAT is sensitive to noise as even small perturba-
tions can change the size, number, or origin of the maxi-
mally inscribed spheres. For tubular structures, the MAT is 
approximated as the set of segments [48]

where the number and length of the segments define the 
level of MAT approximation (Fig. 1c). While preserving the 
general shape, such shape representation allows easy iden-
tification of critical points such as bifurcations by analyzing 
the recurrence of a sphere origin Ci in the set. Bifurcation 
points are characterized by more than two occurrences, 
whereas an end point is characterized by a single occurrence. 
Different methods have been suggested to regress a shape to 
medial segments and build a topological skeleton [53], with 
mesh contraction being one of the most common ones [54].

2.2 � Convolution surfaces

The MAT representation implicitly holds shape and topology 
information. While it is common to reconstruct shapes as the 
union of the medial axis spheres [55], implicit representations 

(1)f (x, y, z) − C = 0.

Γ =
{
Si = (Ci,Cj, ri, rj) ∶ (Ci, ri), (Cj, rj) ∈ MAT ∧ i, j = 0,… ,N − 1

}
,

of the medial spheres can guarantee smoothness and differenti-
ability (Fig. 1d) [48, 56]. Particular examples of implicit rep-
resentations include metaballs [57], and convolution surfaces 
[48]. Metaballs are defined as the convolution of N spherical 
Gaussian functions over an Euclidean distance metric, cen-
tered in Oi [57]:

The chosen level C (Eq. 1) determines a geometric locus in 
the convolution domain. Convolution surfaces extend the 
concept of metaballs by replacing the sparse set of center 
points with a skeletal structure, which is often provided by 
a set of polylines [48] or Bézier curves [20] annotated with 
local thickness information along the skeleton. Given an 
arbitrary skeleton Γ, a convolution surface can be defined as

This formulation describes the locus of points Pi equally 
distant from Γ (Fig. 1d). Due to the linear properties of con-
volution, we can decompose Γ into non-overlapping regions 
such that Γ =

⋃
i Γi, which lets us approximate the boundary 

surface of an arbitrary volume with a discrete set of primi-
tives Γi (segments, curves, splines, etc.):

(2)f (P) =

N−1�

i=0

bie
−�i‖P−Oi‖22 .

(3)f (P) = ∫
Γ

e−
1

2
‖P−s‖2 ds.

(4)f (P) =
�

i
∫
Γi

e−
1

2
‖P−s‖2 ds.

2.3 � Convolution surface with radius control

For accurate shape reconstruction, it is crucial to have full 
control and matching between the radii associated with the 
topological skeleton and the reconstructed shape surface. In its 
original formulation, the convolution kernel is an exponential 
function, as shown in Eq. 4 [48]. To describe tubular structures 
using their skeleton and radial thickness, we rely on the con-
volution kernel proposed by Fuentes Suárez et al. [20]. Given 
a skeleton represented with polylines, for a single skeleton 
segment S defined by points a, b ∈ ℝ, the convolution surface 
at x ∈ ℝ is given by

(5)
CK
Γ
(x) = ∫

1

0

K(g(Γ(s), x − Γ(s)))g
(
Γ(s),Γ�(s)

)
ds,

CK
Γ
∶ ℝ

3
→ ℝ,
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where K denotes the kernel function and Γ denotes the para-
metrization of a skeleton segment [a, b] defined as

We employ the same polynomial kernel function as Fuentes 
Suárez et al. [20], which is given by

as well as the same distance function g:

where G is a positive definite symmetric matrix, recovered 
from its eigendecomposition G = UDUT. The matrix U is 
the frame of the skeletal curve determining the convolution 
surface. As the skeleton elements are segments, each seg-
ment defines a constant matrix U. Moreover, D is a constant 
diagonal matrix since our focus is on circular cross-sections. 
Otherwise, for ellipsoidal cross-sections, D would need to be 
modified accordingly. Finally, the total convolution surface 
function is obtained as the sum of convolution surface func-
tions of individual segments:

The function CK as well as ∇xC
K are computed through 

numerical integration, adopting the Clenshaw–Curtis quad-
rature [58]. An important property of this kernel function is 
its finite support, meaning that individual segments in the 
skeleton affect only nearby segments. Hence, a more pre-
cise radius control is obtained, as well as reduced aliasing 
effects, which are the main reasons for using the framework 
from [20] as opposed to the exponential kernel approach 
from Oeltze and Preim [48]. Finally, since the convolution 
surface function is a sum of independent segment functions, 
its implementation is straightforward to parallelize, with an 
example shown in Fig. 4.

(6)ΓS(s) = (1 − s)a + sb, Γ ∶ [0, 1] → ℝ
3.

(7)K(x) =

{ 35

16
(1 − x2)3, x ∈ [0, 1],

0, otherwise,
K ∶ ℝ → ℝ,

(8)g(y, x) =
√
x
T G(y) x,

(9)CK(x) =
∑

S∈�

CK
ΓS
(x).

3 � Block‑structured higher‑order mesh 
generation

Having described the convolution surfaces employed herein 
for the boundary of the domain, the mesh generation process 
is described, which is divided into four main steps: 

1.	 Topological description of the domain using a block 
structure.

2.	 Mesh grading towards the boundary.
3.	 Generation of a higher-order surface mesh through an 

iterative procedure combined with the convolution sur-
face level-set approach.

4.	 Volumetric mesh generation from the block structure 
and the surface mesh.

Volumetric mesh generation requires information about 
the domain topology and geometry. The first step therefore 
consists of generating a block structure [59, 60], which 
is a coarse subdivision of the domain into blocks, such 
that its topology matches the topology of the domain. An 
example of a block structure is shown in Fig. 1e. Grad-
ing information is then assigned to the block-structure, to 
induce mesh anisotropy refining towards the boundary. To 
properly account for geometry information, we then gen-
erate a higher-order surface mesh of the domain. Finally, 
the three are combined through the volumetric mesh gen-
erator, with the pipeline illustrated in Fig. 5, as well as in 
Fig. 1e–g. In this paper, we utilise hexahedra as blocks and 
quadrilaterals as surface mesh elements.

The continuity at the boundary shared by two or more 
blocks is C0. One has to distinguish the continuity of the 
geometry definition and the resulting (higher-order) hex-
mesh. The geometry definition based on convolution sur-
faces may conceptionally be even C∞ and a high level of 
continuity is an important asset for higher-order mesh gener-
ation, further justifying the choice of convolution surfaces in 
this work. On the other hand, no matter what the order of the 
resulting hex-mesh actually is, one can show that the result-
ing meshed geometry is only C0-continuous, due to the C0

-continuous nature of the classical FEM shape functions. Of 
course, for higher orders, the kinks between element faces 
are extremely small. It is obvious that higher levels of con-
tinuity may not be achieved in a classical FEM framework 
but rather require novel approaches such as isogeometric 
analysis, coming with its own set of challenges.

3.1 � Block structure generation

The generation of the block structure (Fig. 5b) is done 
automatically, based on a classification of the tubular 

Fig. 4   Example of a convolution surface; firstly based on two sepa-
rated segments, followed by two joined segments, to highlight the 
smooth blending effect
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structure into a few prototype cases, to be outlined below. 
Although we show concrete schemes for our designated 
application, the general approach is not limited to tubular 
structures. Different domain shapes would only require 
devising new schemes, without further changes in the 
pipeline. The process may be summarized as:

•	 Generation of blocks around junction points.
•	 Generation of blocks around non-junction points.
•	 Merging neighbouring junctions.
•	 Iterative repositioning of surface nodes.

In the rest of this article, we refer to a skeletal point X ∈ Γ 
as a junction point if it has 3 or more neighbours, otherwise 
we refer to it as a non-junction point. The latter are dealt with 
as follows: a cross-section is generated around each point, as 

shown in Fig. 6a. They are then connected to form blocks, 
as shown in Fig. 6b. To determine the position of the cross-
section around a skeleton point, three things are sufficient: 
the radius at the given point, the plane in which to place the 
cross-section, and its orientation inside that plane, i.e., torsion.

The radius of the cross-section is the input radius at the 
given skeleton point X. The plane is determined based on the 
neighbouring points of X. Assuming X is a non-junction point, 
it can have either one or two neighbours in the skeleton. For a 
point X with neighbours Y1 and Y2, we denote the angle deter-
mined by those three points, with X being the central point, as 
∠Y1XY2, i.e., the angle between XY1 and XY2. We choose the 
plane that divides the angle in half, meaning that for any point 
P in the plane it holds that

(P ≠ X) ⟹ (∠PXY1 = ∠PXY2),

Fig. 5   Meshing pipeline demonstrated on the example of an aorta: a the skeleton where the point size indicates the relative radius at the given 
point, b the coarse block structure, c the higher-order surface mesh, and d the full volumetric mesh

Fig. 6   a An example of a 
cross-section formed around 
a single non-junction point of 
the skeleton, b five hexahedral 
blocks formed between two 
non-junction points (or two 
cross-sections) of the skeleton
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as illustrated in Fig. 7a, b. If X has only one neighbour Y,  the 
plane is chosen to be perpendicular to the segment XY , as 
shown in Fig. 7c. Finally, the torsion of the cross-section is 
chosen to minimize the torsion with its neighbours. In case 
of a domain with no junctions, one torsion is set randomly, 
but due to the tubular shape this does not negatively impact 
the final mesh. Otherwise, at least one junction scheme has 
already been generated, and the torsion is propagated from 
there onwards.

We now consider a junction point X of the skeleton, 
with neighbours Y1, Y2 and Y3. Instead of a cross-section, a 
structured cube is generated around X,  as shown in Fig. 8a, 
consisting of seven hexahedral elements. The distance from 
X to the centers of the cube sides is the input radius at X. 
When connecting the cube with the cross-sections associated 
with non-junction points, the cube sides must be modified to 
yield conformal hexahedral blocks. The scheme is presented 
in Fig. 8b. It is worth noting, that subdividing the cube to 
accommodate a connection with a non-junction point affects 
only one of the original 7 hexahedra forming the cube, 
namely the hexahedron containing that very face. Thus, the 
junction cube refinement is not dependent on the order of 
the subdivisions. As each neighbouring point is assigned to 
one side of the cube, we seek to orient the cube based on an 
appropriate heuristic. It is oriented to maximize the angle 
formed by the segment connecting X to a given neighbour 

Yi, and the segment connecting X to that side of the cube, 
which we seek to connect with the cross-section around Yi. 
Ideally, the branch cross-section is facing the side of the 
cube perpendicularly. Additional weights may be added to 
favour neighbours with a larger radius.

Due to the properties of convolution surfaces, we observe 
smooth blending between connecting objects, which fits 
well with the notion of anatomically motivated shapes [48]. 
Specifically, the smaller the angle between two branches at 
a junction, the stronger the effect from the smooth blend-
ing between them. To resolve this issue we subdivide the 
branch blocks into multiple parts, and connect them at the 
subdivision closest to the junction point, as shown in Fig. 9. 
The exact location is determined based on the convolution 
surface function.

In case of two junction cubes which are too close to 
each other or overlap, we merge them together and perform 
corrections to their inside schemes so as to account for 
the change caused by the merge. The overlap is shown in 
Fig. 10a, and the correction in Fig. 10b, c. Otherwise, blocks 
are formed between them in the same manner as between 
two cross-sections, see Fig. 6.

After all of the blocks have been generated, the sur-
face nodes of the block structure are corrected using an 
iterative process. A node x = (x1, x2, x3) ∈ ℝ

3 is reposi-
tioned to the surface through an iterative procedure of 

Fig. 7   Determining the plane 
for the cross-section depending 
on the number of neighbours of 
a non-junction skeleton point; 
a the plane determined by 
halving the angle between two 
segments, b the same situation 
in top-view and c the plane 
perpendicular to the segment

Fig. 8   a The scheme of a cube 
around a junction point, consist-
ing of seven hexahedra. Each 
side that needs to be connected 
to a cross-section (see Fig. 6a) 
is equipped with a port, shown 
in b and c 
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finding a null-point, as described in Algorithm 1. The 
surface is represented as a level set {x ∈ ℝ

3 ∶ f (x) = C}, 
where f ∶ ℝ

3
↦ ℝ is the convolution surface function 

and C ∈ ℝ the chosen iso-value. However, within the 
presented framework, the block structure does not need 
to be aligned perfectly to the surface in the first step, 

since the convolution surface function and Algorithm 1 
are afterwards used to rectify initial positioning errors. 
Herein lies another advantage of the convolution surface: 
the fact that the function defining the surface is smooth 
allows utilising its gradient.

Algorithm 1 Iterative process of repositioning a point x to the surface
determined by f(x) = C.

Input: x ∈ R3, f : R3 → R, iso value C ∈ R, tolerance ε > 0
F (x) = f(x)− C;
while |F (x)| > ε do
x ← x− F (x)·∇F (x)

‖∇F (x)‖2

Fig. 9   The procedure of 
modifying the standard junc-
tion scheme shown in a to 
accommodate for a small 
angle between two branches; 
b the branches are subdivided 
depending on their length, and 
c connected depending on the 
location of the convolution 
surface blending

Fig. 10   The resolution of two 
junction cubes which are over-
lapping; a the overlap in side 
view, b the merge in side view, 
and c the merge in 3D view
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3.2 � Mesh grading

High-quality meshes for use in CFD must enable resolution 
of boundary layers, for which mesh grading is particularly 
useful [24, 38]. The goal is to obtain a tailored refinement 
of the mesh, with “thinner” elements near the boundary, as 
opposed to a standard uniform refinement. An example of a 
graded mesh compared to a uniformly refined mesh is shown 
in Fig. 2b. Most importantly, for the same number of ele-
ments, properly graded meshes lead to much better accuracy 
than uniform meshes.

An established approach to refining a hexahedron starts 
with subdividing each edge into n equal parts, to obtain uni-
form sub-hexahedra after refinement. To modify the uniform 
subdivision, a different scaling of the edges is introduced, 
thus resulting in a non-uniform refinement of the hexahe-
dron. Here we use two types of scaling functions: quadratic 
and cubic. Assume that every edge is locally equipped with 
a coordinate t which linearly varies between −1 and 1 along 
the edge. For an input scaling parameter m ∈ ⟨−1, 1⟩ the 
quadratic scaling transforms a value x ∈ ℝ with the function

(10)fm(t) = m
t2

2
+ t +

m

2
,

and the cubic scaling with the function

We demonstrate the effects of the scaling using a 
simple discretisation of the interval [−1, 1] into 20 
subintervals, with the values of the input parameter 
m ∈ {−0.9,−0.8,… , 0.8, 0.9}, as well as the two extreme 
values close to −1 and 1,  respectively, as shown in Fig. 11. 
For m = 0 no scaling occurs, in both aforementioned cases. 
Quadratic scaling moves the points closer to the left or the 
right edge of the interval, depending on whether the input 
parameter m is positive or negative. Cubic scaling is sym-
metric, where negative values of m imply a denser subdivi-
sion towards the edges of the interval, and positive values of 
m imply a denser subdivision towards the middle. Figure 12b 
shows which edges in the block structure are selected for 
grading, as well as an example of an ungraded and a graded 
mesh, in Fig. 12c, d.

3.3 � Higher‑order surface mesh generation

Next, the convolution surface defined in Sect. 2, is converted 
(discretised) to a coarse, (very) high-order surface mesh, 

(11)fm(t) = t − m
t3 − t

2
.

Fig. 11   The two examples of scaling the interval [−1, 1] uniformly discretised into 20 subintervals, by a quadratic and b cubic scaling. The uni-
form discretisation is achieved for m = 0, in both scaling cases

Fig. 12   a Shows the block structure, and b highlights its edges 
which are selected for grading (blue), with indicated edge endings 
(magenta). As grading is not necessarily symmetrical, edges for grad-

ing need to be properly oriented. The ungraded mesh is shown in c, 
and a quadratically graded mesh, with m = 0.9, in d (colour figure 
online)
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which is then used to drive the resulting volumetric mesh 
of any desired order. This is illustrated in Fig. 1f. Each ele-
ment of the surface mesh is associated to the outer faces of 
the building blocks. The pipeline of the higher-order surface 
mesh generation consists of the following steps:

•	 Generation of higher-order surface edges.
•	 Repositioning the inner edge nodes to the surface.
•	 Generation of higher-order surface faces from the edges.
•	 Repositioning the inner face nodes to the surface.

A surface edge, i.e., a segment XY  lying on the surface of 
the block structure, may be viewed as a linear 1D finite ele-
ment embedded in a three-dimensional space. As such, it 
can be converted to a higher-order 1D element, as illustrated 
in Fig. 13b. The end points of the higher-order edge are 
the same as the end points of the original segment it was 
obtained from, i.e., the end points are already on the domain 
surface. Therefore, only the inner nodes of the edge need to 
be repositioned, whilst keeping the edge a valid element. 
This is again performed using Algorithm 1, and illustrated 
step-by-step in Fig. 13.

From the newly generated edges we obtain the faces 
through so-called transfinite mappings, which will be out-
lined in detail in Sect. 3.4. A face on the surface of the block 
structure may analogously be viewed as a two-dimensional 
element embedded in a three-dimensional space. The end 
points of the face are the nodes of the edges that form it, thus 
they already lie on the surface. Consequently, we reposition 
the inner nodes only, applying Algorithm 1 once again as 
illustrated in Fig. 14.

As individual edges and, afterwards, individual faces get 
processed independently, the accompanying computations 
are performed in parallel. After we have the topology infor-
mation in the form of a coarse block structure, mesh grading 
assignment, and the geometry information embedded in the 
higher-order surface mesh, we turn to the final volumetric 
meshing step.

3.4 � Volumetric mesh generation

The main goal is now to generate a volumetric mesh based 
on the topology, geometry and grading information outlined 
above, as illustrated in Fig. 1g. The desired number of ele-
ments per building block nel and their order p are user-
defined. This specifies the number of nodes on every edge 
of the building block structure nedge = nel ⋅ p + 1 and, 

Fig. 13   The procedure of gener-
ating higher-order edges on the 
surface of the block structure: a 
a segment lying on the surface 
is treated as a 1D finite element, 
b then converted to a sixth order 
element followed by c iterative 
inner node repositioning to the 
convolution surface. d The final 
result after all edges have been 
processed is shown

Fig. 14   The procedure of generating higher-order faces on the surface 
of the block structure: a a surface face is treated as a 2D finite ele-
ment, formed based on the four edges; in case the inner nodes are not 
perfectly aligned on the surface they get repositioned. b The final sur-
face after all of the nodes have been repositioned
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thereby, also on every face, nface = n2
edge

, and block interior, 
nblock = n3

edge
. To place the nblock nodes inside every block, 

we need the concept of so-called transfinite maps.

3.4.1 � Transfinite maps in quads

The rationale of transfinite maps is first outlined based on 
generic quadrilateral faces, later for hexahedral blocks. The 
approach chosen here is well-documented in [61–63] and is 
often called blending-function method. The starting point 
is a quadrilateral reference element as seen in Fig. 15a with 
associated (r, s)-coordinate system and vertex numbering; 
(b) shows the numbering of the edges. The corresponding 
(bi-linear) shape functions Ni(r) of this reference element are

One may then equip every edge with a ramp function Ri(r) 
being 1 along its edge

Next, let there be some point r = (r, s)T naturally related 
to each edge as seen in Fig. 15c. At these edge positions 
and the vertices, coordinate data xe

i
∈ ℝ

3 and xv
i
∈ ℝ

3 with 
i = 1,… , 4 is given, respectively. These coordinates may, of 
course, also be interpreted in a Cartesian (x, y, z)-coordinate 
system as seen in Fig. 15d. The transfinite map according 
to the blending-function method defines the position x(r) 
as follows:

N1(r) =
1

4
(1 − r) ⋅ (1 − s), N2(r) =

1

4
(1 + r) ⋅ (1 − s),

N3(r) =
1

4
(1 + r) ⋅ (1 + s), N4(r) =

1

4
(1 − r) ⋅ (1 + s).

R1 = N1 + N2, R2 = N2 + N3,

R3 = N3 + N4, R4 = N4 + N1.

(12)x(r) =

4∑

i=1

Ri(r) ⋅ x
e
i
−

4∑

i=1

Ni(r) ⋅ x
v
i
.

Interpreting this map x(r) for any point r reveals that this 
equation defines the smooth surface between 4 edge curves 
forming a closed contour in the three-dimensional space ℝ3, 
see the black contour line in Fig. 15d and the resulting yel-
low surface.

Although this assessment mostly serves the purpose 
to pave the road to transfinite maps in hexahedra, it 
is also noted that the map in Eq.  (12) is concretely 
used within the presented framework to generate start 
guesses for the face nodes of higher-order surface 
elements for the geometry definition as discussed in 
Sect. 3.3, see also Fig. 16.

3.4.2 � Transfinite maps in hexas

We follow a similar outline as above and start with a 
hexahedral reference element as shown in Fig. 17a with 
local (r, s, t)-coordinate system and vertex numbering, 
(b) shows the numbering of the edges and faces. The 
(tri-linear) shape functions Ni(r) in the hexahedron are

Fig. 15   Transfinite maps in quads: a local coordinate system (r, s) and vertex numbering, b edge numbering, c data points required to generate 
x(r), d interpreting the data in a Cartesian coordinate system (x, y, z)

Fig. 16   a Transfinite maps based on 4 higher-order edge elements 
(p = 6) yield the black stars as start guesses for the inner face nodes. 
b These are then moved to the exact geometry via Algorithm  1 to 
generate the final higher-order surface element for the geometry defi-
nition
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Every edge is associated with a ramp function Re
i
(r)

and every face with a ramp function Rf
i
(r)

It is easily verified that edge ramp functions Re
i
(r) are unity 

along their corresponding edges and face ramp functions 
Rf
i
(r) on their corresponding faces.
For some point r = (r, s, t)T, there is a related position on 

every edge and face according to Fig. 17c. At these face and 
edge positions and the vertices, coordinate data xf

i
∈ ℝ

3, 

N1(r) =
1

4
(1 − r) ⋅ (1 − s) ⋅ (1 − t),

N2(r) =
1

4
(1 + r) ⋅ (1 − s) ⋅ (1 − t),

N3(r) =
1

4
(1 + r) ⋅ (1 + s) ⋅ (1 − t),

N4(r) =
1

4
(1 − r) ⋅ (1 + s) ⋅ (1 − t),

N5(r) =
1

4
(1 − r) ⋅ (1 − s) ⋅ (1 + t),

N6(r) =
1

4
(1 + r) ⋅ (1 − s) ⋅ (1 + t),

N7(r) =
1

4
(1 + r) ⋅ (1 + s) ⋅ (1 + t),

N8(r) =
1

4
(1 − r) ⋅ (1 + s) ⋅ (1 + t).

Re
1
= N1 + N2, Re

2
= N2 + N3,

Re
3
= N3 + N4, Re

4
= N4 + N1,

Re
5
= N5 + N6, Re

6
= N6 + N7,

Re
7
= N7 + N8, Re

8
= N8 + N5,

Re
9
= N1 + N5, Re

10
= N2 + N6,

Re
11

= N3 + N7, Re
12

= N4 + N8,

Rf
1
= N1 + N4 + N5 + N8, Rf

2
= N2 + N3 + N6 + N7,

Rf
3
= N1 + N2 + N5 + N6, Rf

4
= N3 + N4 + N7 + N8,

Rf
5
= N1 + N2 + N3 + N4, Rf

6
= N5 + N6 + N7 + N8.

i = 1,… , 6, xe
j
∈ ℝ

3, j = 1,… , 12, and xv
k
∈ ℝ

3, k = 1,… , 8, 
is given, respectively. The interpretation of these coordinates 
in a Cartesian (x, y, z)-coordinate system is shown in 
Fig. 15d. The transfinite map according to the blending-
function method for hexahedra defines the position x(r) as 
follows:

3.4.3 � Mesh generation in a building block

With the transfinite maps defined above, the generation of 
a sub-mesh in every hexahedral building block may now 
be described as follows. Recall, that some of the faces of 
the building block may be equipped with a (very) high-
order surface element defining the true geometry. Other-
wise, the face is merely the bi-linear surface element from 
the building block itself. In any case, it is easily possible 
to map nface = n2

edge
 nodes to every surface element result-

ing in the coordinates xf
i
. Simple compatibility require-

ments between the faces automatically yield the edge coor-
dinates xe

i
 and vertex coordinates xv

i
. Based on the 

transfinite map (13), every node inside the building block 
may now be generated, so that finally the coordinates of 
all nblock = n3

edge
 nodes are specified.

The situation is exemplified in Fig. 18: (a) shows six 
higher-order surface elements with order p = 4. The aim 
is to generate 5 × 5 × 5 = 125 elements with order p = 2 in 
this building block. This gives nedge = 5 ⋅ 2 + 1 = 11 nodes 
per building block edge, nface = 112 = 121 nodes per face 
and nblock = 113 = 1331 nodes for the whole sub-mesh in 
this building block. Figure 18b shows the nface nodes per 
face (blue crosses) resulting from a simple finite element 
map based on the higher-order faces (black dots). The 

(13)x(r) =

6∑

i=1

Rf
i
(r) ⋅ xf

i
−

12∑

i=1

Re
i
(r) ⋅ xe

i
+

8∑

i=1

Ni(r) ⋅ x
v
i
.

Fig. 17   Transfinite maps in hexas: a local coordinate system (r, s, t) and vertex numbering, b edge and face numbering, c data points required to 
generate x(r), d interpreting the data in a Cartesian coordinate system (x, y, z)
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position of the final nblock nodes of this building block is 
plotted in Fig. 18c.

Finally, the nblock generated nodes must be associated 
with elements which is achieved by setting up a proper 
connectivity matrix. This, however, is a standard task 
in the finite element method [10, 61, 64] and not further 
outlined herein. Continuing the example from before, the 

final resulting sub-mesh is seen in Fig. 18d. Connecting all 
sub-meshes from the individual building blocks yields the 
desired volumetric mesh of the whole (tubular) geometry, 
to be used for FEM simulations and visualisations.

4 � Experiments and results

4.1 � Mesh examples

Here we demonstrate several meshes obtained with our 
method, followed by examples of simulations performed 
on them. First, we showcase several synthetic examples, 
i.e., meshes generated based on manually constructed 
skeletons. The radius information of the skeleton points 
is shown in the form of relative point sizes, as in Fig. 5. 
Meshes are generated with different refinement levels and 
mesh orders.

Fig. 18   The generation of a higher-order sub-mesh in a building 
block: a the higher-order surface elements (p = 4) for the geometry 
definition, b placing nface nodes on each face, c placing nblock nodes 

inside the building block via transfinite maps, d the resulting sub-
mesh ( 5 × 5 × 5 elements with order p = 2 ) (colour figure online)

Fig. 19   Four examples of synthetic meshes, together with their skeletons, where the (relative) radius information is encoded in the size of the 
points. Further information relating to the meshes may be found in Table 1

Table 1   Information about the skeletons and meshes shown in Fig. 19

Mesh example (a) (b) (c) (d)

Skeleton info
Num. of points 26 24 21 19
Num. of segments 25 25 22 21
Mesh info
Mesh order 2 1 4 3
Num. of nodes 1275 4988 10,735 32,338
Num. of elements 125 4428 154 1136
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Particular situations of interest that occur in the syn-
thetic meshes are neighbouring bifurcations in Fig. 19b, 
non-planar bifurcations in Fig. 19c and a six-furcation in 
Fig. 19d. The skeletons in the synthetic examples contain 
loops. Regarding this, the junction cubes are generated 
first, and not globally subdivided. More specifically, inde-
pendent parts of the cube (each corresponding to one outer 
face of the cube) may be subdivided if a branch is coming 
into the aforementioned face, without affecting the other 
parts of the cube, as shown in Fig. 8b. Thus, the order of 
these subdivisions has no effect on the final configura-
tion—the junction cube is the same in the end. Adding 
to this, the cross-sections around non-junction points are 
fully symmetric. Hence, no particular issues are encoun-
tered when the skeleton contains loops. Though they are 

not of immediate interest for this application, unless one 
wants to model the entire arterial and venal system, we 
encountered no issues in modeling them.

Furthermore, we highlight two patient-specific exam-
ples; an aorta and a coronary artery. To ease reproduc-
ibility, we performed our experiments on a publicly avail-
able CTA imaging and segmentation of the human aortic 
tree from the AVT dataset [65] as a representative tubular 
structure. The binary segmentation is first triangulated 
using Marching Cubes and the 1D vascular skeletons are 
generated by mesh contraction [54]. To limit the number 
of skeletal points, they are resampled at a minimum dis-
tance and radial information is computed as the distance 
between the skeletal point and the surface mesh.

Fig. 20   An example of a patient-specific aorta: a the skeleton with radius information, b the block structure (320 blocks), c a coarse third-order 
mesh with 320 elements, d a refined first-order(linear) mesh with 69,120 elements, and e a refined second-order mesh with 69,120 elements

Fig. 21   An example of a patient-specific coronary artery: a the skel-
eton with radius information, b the block structure (432 blocks), 
c a coarse second-order mesh with 432 elements, d a refined first-

order(linear) mesh with 93,312 elements, and e a refined second-
order mesh with 93,312 elements
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We show the skeleton and the block structure, together 
with several meshes, for an aorta in Fig. 20, and a coro-
nary artery in Fig. 21. Additionally, we show histograms 
of element-wise values of the scaled Jacobian [16] metric 
in Fig. 22. The values may be in the range ⟨−∞, 1], where 
a negative value indicates an invalid element (hence an 
unusable mesh), and a value of 1 indicates an ideal ele-
ment. The scaled Jacobian is computed on the meshes with 

increased refinement levels, as they are more suitable can-
didates for simulations.

Aside from the scaled Jacobian metric, another commonly 
utilised mesh quality metric is the equiangular skewness qual-
ity [16], defined as (for an element in the mesh)

(14)Selem = max

{
�max − �ideal

180◦ − �ideal

,
�ideal − �min

�ideal

}
.

Fig. 22   Histograms of the values of the scaled Jacobian metric for the meshes of the aorta in Fig. 20d, e, followed by equivalent histograms for 
the meshes of the coronary artery given in Fig. 21d, e. Negative values indicate an invalid element, and a value of 1 indicates an ideal element

Fig. 23   Histograms of the values of the equiangular skewness quality metric for the linear mesh of the aorta in Fig. 20d, and the linear mesh of 
the coronary artery given in Fig. 21d. Values closer to zero are desired
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Here, �max and �min denote the maximum and the minimum 
angle formed by edges of the element, respectively. It meas-
ures how far each element is from an ideal element, in the 
sense of angles between the edges of the element. In this 
regard, an ideal hexahedron is the one in which all of the 
aforementioned angles are exactly 90◦ , as it is the case in 
standard cubes or bricks. This is why �ideal = 90◦. Unlike the 
Scaled Jacobian metric, values closer to zero are desirable, 
since an ideal element would satisfy �max = �min = �ideal and 
thus Selem = 0 . The values of the equiangular skewness are 
shown in Fig. 23.

4.2 � Benchmarking higher‑order accuracy

To demonstrate the higher-order accuracy of the proposed 
meshing technique and to reinforce the potential advantages 
of higher-order finite elements, we solve a Poisson equation 
with Dirichlet boundary conditions

on a domain Ω. The skeleton with the radius information 
is constructed manually, leading to a convolution surface 
description of the domain. We then generate meshes ranging 
from order 1 to 5. The corresponding approximation errors 
are measured with respect to the energy norm,

The exact solution, and by extension the exact energy, are 
unknown. To evaluate the error with respect to energy, a ref-
erence value is thus required. Hence, we compute an overkill 

(15)−Δu = f in Ω,

(16)u = 0 on �Ω,

(17)E ∶= ∫
Ω

∇u ⋅ ∇u dx.

solution, i.e., we allow for significantly more degrees of 
freedom in a single simulation to diminish approximation 
errors. Performing a convergence study, we then proceed in 
computing energy norms for orders 1 to 5 under grid refine-
ment, computing approximation errors taking the overkill 
solution’s value as reference. The mesh, the reference solu-
tion of the Poisson problem (15)–(16), and the convergence 
study in the energy error are shown in Fig. 24.

4.3 � Practical application in aortic blood flow

In a final example, we showcase the applicability of the pro-
posed scheme in the context of cardiovascular flow, that is, 
pulsatile blood flow through the reconstructed arterial tree. 
Here, we choose a computational domain starting from the 
aortic root down to the common iliac arteries involving the 
aortic arch with the brachiocephalic trunk, left common 
carotid and left subclavian arteries as depicted in Fig. 5. 
Having such a spatial discretisation at hand, we can directly 
apply solvers for incompressible flow of generalised New-
tonian fluids [66, 67]. Considering five cardiac cycles, we 
prescribe the volumetric flow rate at the aortic root adapting 
the temporal scale from [1], and recover realistic outlet pres-
sures via lumped parameter models. All involved parameters 
and models are chosen in the physiological range, but are 
omitted here for the sake of brevity, referring the interested 
reader to [3, 68].

As the snapshots of the fluid velocity and pressure at the 
fifth cycle’s peak systole shown in Fig. 25 suggest, the hexa-
hedral mesh constructed from medical image data via the 
proposed method is indeed capable of resolving the flow 
field properly. Here, we use a total of 40,000 hexahedral 
(trilinear) elements to accurately capture circulatory flow 
fields while showcasing applicability in the lower-order case, 
which is of high practical relevance as well. Note, however, 

Fig. 24   a The mesh of the domain, followed by b the values of the solution. c The convergence study for different p-FEM orders and refinement 
levels, where the error is measured with respect to the energy defined in Eq. 17
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that the discretisation order and selecting the number of ele-
ments is left entirely to the user, whom we provide with 
maximum freedom since coarse meshes involving merely 
320 elements still resolving the current complex topology 
(but not the physical solution) can be constructed. Thus, one 
may use rather fine, but tailored pure hexahedral meshes for 
lower-order methods, or employ higher-order discretisations 
with much lower element counts, whereas the desired geom-
etry is resolved accurately in both scenarios.

5 � Conclusions and future work

Within this work, we presented a pipeline for block-struc-
tured generation of higher-order hexahedral meshes of tubu-
lar structures, starting from patient-specific CT scans, for 
use in fluid simulations. The focus of the paper lies on the 
generation of CFD-compliant higher-order meshes, resem-
bling the domain with a spatial resolution as coarse or fine 

Fig. 25   Physiological blood flow through the aorta using 40,000 
trilinear elements: velocity vectors (left) and pressure fields includ-
ing element edges (right) in aortic arch region (top) and at the iliac 

bifurcation (bottom) at peak systole as indicated by vertical line in the 
temporal inflow scale
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as required by the user. Future and ongoing work is centered 
around devising new block structure generation schemes and 
improving mesh quality, as well as resolving solid domains. 
These adaptations would pave the way for the application 
of the constructed meshes with an FSI framework, such as 
[3, 68].

The geometry is described by convolution surfaces, 
whose capabilities far encompass tubular structures. As 
the examples shown in the paper cover the healthy aorta, 
a next step could then involve pathological cases such as 
aneurysms, coarctations or aortic dissection. As mentioned, 
with modifications of the block structure, the entire pipeline 
could be straightforwardly expanded, e.g., to networks found 
in the respiratory system or in capillaries. Hence, a natural 
extension of this work consists of meshing structures that 
have no tubular-prior assumptions.
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