
Vol.:(0123456789)1 3

Engineering with Computers (2023) 39:4013–4024 
https://doi.org/10.1007/s00366-023-01845-4

ORIGINAL ARTICLE

Explicit consistency conditions for fully symmetric cubature 
on the tetrahedron

Weizhu Wang1  · Stefanos‑Aldo Papanicolopulos1 

Received: 5 October 2022 / Accepted: 11 May 2023 / Published online: 21 June 2023 
© The Author(s) 2023

Abstract
A novel fully symmetric basis is derived for the S

4
-invariant polynomial space, by using symmetric polynomials and invariant 

theory. This new basis enables deriving explicitly the consistency conditions for non-overdeterminedness of moment equa-
tions in the case of fully symmetric cubature rules on the tetrahedron. Solving the corresponding linear integer programming 
problem, optimal and quasi-optimal rule structures are derived. Explicit formulas to calculate the estimated lower bounds 
in the number of integration points are also given. Additionally, the new basis is of practical interest in calculating specific 
cubature rules, since it allows decomposing the moment equations into a series of successively independent smaller subsys-
tems, which can be exploited in designing more efficient solution methods. Solving the moment equations analytically we 
obtain several interesting new results.

Keywords Numerical integration · Cubature rules · Tetrahedra · Consistency conditions · Quasi-optimal rules

1 Introduction

Cubature, i.e. multivariate numerical integration, numeri-
cally approximates definite integrals over multi-dimensional 
domains [1–3]. This is of interest across a wide range of 
applications in science and engineering; for example, cuba-
ture is fundamental to the calculation of element stiffness 
matrices in the finite element method.

The most common numerical integration method, and 
the one considered in this paper, is Gaussian-type cubature, 
which approximates the integral through a weighted sum 
of evaluations of the integrand at specific points. Any such 
set of points and corresponding weights constitutes a cuba-
ture rule. Collections of cubature rules have been published 
[4–6], but newer results are still being obtained. Indeed, the-
oretical results (e.g. [7]) indicate that many rules improving 
on existing ones are still to be calculated.

The construction of cubature rules is a challenging task 
because it usually requires solving a strongly nonlinear sys-
tem of equations called the moment equations. Much of the 
relevant literature, therefore, focuses on developing better 
methods to solve the moment equations and obtain cubature 
rules with specific characteristics (e.g. integration domain 
or degree of accuracy), for example on the triangle [8–13] 
and the tetrahedron [8, 11, 14–17].

Invariance of cubature rules with respect to given trans-
formations, i.e. symmetry, is often sought in practical appli-
cations. Full symmetry for the triangle and the tetrahedron, 
for example, where the rule is invariant with respect to any 
permutation of the vertices, allows for numerical integration 
that is independent of the ordering of the vertices. Invariance 
can also significantly simplify the moment equations, allow-
ing them to be solved. For this reason, most known rules on 
the triangle and tetrahedron are fully symmetric.

Symmetry defines orbits of integration points that are invar-
iant under the chosen transformations. Different types of orbits 
exist for a given symmetry, thus a rule structure is introduced 
which indicates the number of orbits of each type. The search 
for better rules of a given degree is greatly aided by the calcu-
lation of consistency conditions [18, 19], which indicate which 
rule structures are expected to generate solvable moment equa-
tions, and can, therefore, also be used to estimate the optimal 
(in terms of number of points) rule structure.
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Consistency conditions for fully symmetric rules on the trian-
gle [20] are widely known and used. For the tetrahedron, a method 
to derive consistency conditions, and the resulting optimal con-
sistent rule structures, were obtained by Maeztu and Sainz de la 
Maza [7]. This method however is provided without a detailed 
implementation and does not lead to explicit expressions for the 
consistency conditions. This is probably the reason why consist-
ency conditions are not used in recent papers where new rules are 
obtained on the tetrahedron [8, 11, 14, 15], except for [17].

In this paper, we derive for the first time explicit expressions 
for the consistency conditions for fully symmetric cubature rules 
on the tetrahedron. Significantly extending the method in [10], 
we introduce symmetric polynomials to rigorously generate a 
new fully-symmetric basis for the polynomial space so that the 
structure of the moment equations can be easily analyzed to obtain 
consistency conditions. These in turn are used to generate optimal 
and quasi-optimal rule structures. We also calculate several new 
cubature rules, including results that show the limitations in the 
current approach to generating consistency conditions. While the 
exposition focuses on fully symmetric rules on the tetrahedron, 
the proposed approach is general and can form the basis of similar 
results for different domain types and/or symmetries.

The rest of the paper is separated into five sections: Sect. 2 
presents concisely several essential mathematical concepts. 
Section 3 shows the transformation and decomposition lead-
ing to the new basis for symmetric polynomials. In Sect. 4, 
consistency conditions are derived based on the new basis. 
An algorithm to calculate consistent rule structure is also pre-
sented and explicit formulas to estimate optimal rule structures 
are given. In Sect. 5, moment equations are solved analytically 
using Gröbner bases and several interesting results are pre-
sented. Finally, Sect. 6 summarises the main results obtained 
in this paper and mentions possible future research directions.

2  Theoretical background

2.1  Barycentric coordinates

Consider a tetrahedron defined by four vertices with Carte-
sian coordinates (x|� , y|� , z|�) where � = 1… 4 . A point with 
Cartesian coordinates (x, y, z) can be described, in relation to 
the tetrahedron, by the barycentric coordinates (L1, L2, L3, L4) 
such that 

(1a)x = L1x|1 + L2x|2 + L3x|3 + L4x|4

(1b)y = L1y|1 + L2y|2 + L3y|3 + L4y|4

(1c)z = L1z|1 + L2z|2 + L3z|3 + L4z|4

(1d)1 = L1 + L2 + L3 + L4

 Barycentric coordinates are not independent, as seen 
by Eq. (1d). Although their use increases the number of 
unknowns, it greatly simplifies the calculations when consid-
ering symmetry. Barycentric coordinates can also be defined 
without the normalisation (1d); when such a normalisation 
is adopted, as in this paper, the resulting coordinates are also 
called volume coordinates.

A polynomial of degree d in the Cartesian coordinates 
can be expressed as a homogeneous polynomial in the bar-
ycentric coordinates, i.e. as a linear combination of monomi-
als Li

1
L
j

2
Lk
3
L
d−i−j−k

4
.

2.2  Symmetric polynomials

A symmetric polynomial is a multivariate polynomial invari-
ant under any permutation of its variables [21]. Considering 
n variables v1, v2,… , vn , we define the elementary symmet-
ric polynomials ṽk as the sum of all products of k distinct 
variables vi , with negative sign when k is odd, that is

with ṽ0 = 1 . The summation in (2) is taken over all ordered 
sets of k distinct indices in the range 1… n . Any symmetric 
polynomial in the variables vi can be uniquely expressed as 
a polynomial in the elementary symmetric polynomials ṽk . 
The values of vi can be calculated from ṽk as the solutions 
for v of the polynomial equation

2.3  Solution of a polynomial system

Consider a generic system of m polynomial equations with 
n variables v1, v2,… , vn and real coefficients. The system 
is called overdetermined if m > n and underdetermined if 
m < n.

A solution of a polynomial system is a tuple of (possibly 
complex) values (v1, v2,… , vn) that satisfy all equations in 
the system. A system is called inconsistent if it has no solu-
tion, and consistent if it has at least one solution. A con-
sistent system is zero-dimensional if it has a finite number 
of solutions and positive-dimensional if it has an infinite 
number of solutions. For more details on polynomial system 
solving see [22].

Numerical methods, such as Newton’s method, can 
obtain numerical approximations to individual solutions 
but cannot systematically obtain all solutions. Indeed, 
for positive-dimensional systems there is no clear answer 

(2)ṽk = (−1)k
∑

1≤i1<i2<⋯<ik≤n
vi1vi2 ⋯ vik

(3)
n∑

j=0

ṽn−jv
j = 0.
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to what is the complete solution. Using algebraic geom-
etry, algebraic solutions to a system can be obtained 
by expressing the system in a form that is exact and 
easy to solve numerically, such as Gröbner bases or, 
for zero-dimensional systems, the rational univariate 
representation.

2.4  Cubature rules, moment equations 
and consistency conditions

For a function f over a domain Ω ⊂ ℝ
n with n-volume V, 

consider the scaled integral

A cubature formula (or cubature rule) is an approximation 
of the integral I as

where f (xi) is the value of the function f at the point xi ∈ ℝ
n , 

wi is the corresponding weight, and nK is the number of inte-
gration points. Only cubature rules of (polynomial) degree 
d are considered here, for which Eq. (5) is exact for all poly-
nomials of degree equal or less than d and not exact for at 
least one polynomial of degree d + 1 . The accuracy of the 
approximation (5) is not considered in this paper, details can 
be found in [1].

Let ℙn
d
 denote the vector space of all polynomials in n 

independent variables of degree at most d, and B be a basis 
of this vector space. The cubature rule Q is of degree at 
least d if and only if it is exact for any element of B, that is

Equation (6) is a polynomial system of dim(ℙn
d
) equations in 

(n + 1)nK unknowns, where dim(ℙn
d
) is the dimension of ℙn

d
 . 

These so-called moment equations can be solved to obtain 
the coordinates of the integration points and their associated 
weights, which define the cubature rule.

The consistency conditions are assumed conditions 
on the number of integration points for a given rule and 
degree, based on the (not necessarily true) assumption that 
the system of moment equations, and any of its subsys-
tems, will be consistent if and only if it is not overdeter-
mined. These are, therefore, consistency conditions for 
non-overdeterminedness of the moment equations; for con-
ciseness, and following previous works, throughout this 
paper we use the simpler term “consistency conditions”.

(4)I(f ) =
1

V ∫Ω

fdΩ.

(5)Q(f ) =

nK∑

i=1

wif (xi) ≈ I(f ),

(6)Q(f ) = I(f ) ∀f ∈ B.

2.5  Quality of cubature rules

A quality is assigned to each cubature rule, using two let-
ters. The first letter refers to the integration weights. It 
is P if all weights are positive, N if at least one weight is 
negative but all weights are real, and C if there is at least 
one complex weight. The second letter refers to the posi-
tion of the integration points with respect to the integra-
tion domain. It is I if all points are inside the integration 
domain, B if there is at least one point on the boundary 
of the domain and the remaining are inside, O if at least 
one point is located outside the integration space but all 
points have real coordinates, and C if at least one point 
has complex coordinates. The possible qualities, in the 
usually assumed order of preference, are: PI, NI, PB, NB, 
PO, NO, PC, NC, CC.

2.6  Invariant cubature rules

Let G be a finite group of transformations g ∶ ℝ
n
→ ℝ

n . 
A function f (x) is invariant with respect to G if it does 
not change under any transformation of the group, that is 
f (g(x)) = f (x) ∀g ∈ G [23]. The G-orbit of a point x ∈ ℝ

n , 
denoted by G(x) , is the set {g(x) ∶ g ∈ G} . The point x is 
called a generator of G(x).

A cubature rule is invariant with respect to the group G if 
the region Ω is G-invariant (i.e. g(Ω) = Ω ∀g ∈ G ), the set of 
integration points is a union of G-orbits, and all points in the 
same orbit have the same weight. Using Sobolev’s theorem 
(see [2] and references therein), invariant cubature rules can 
be obtained by solving the moment equations

where BG is a basis of the vector space ℙn
d
(G) ⊂ ℙ

n
d
 of all 

G-invariant polynomials of degree d in n variables.

3  Bases for cubature on the tetrahedron

3.1  Asymmetric basis

In three dimensions, a basis of ℙ3
d
 is the set of monomials 

xiyjzk with total degree i + j + k ≤ d , which has dimension

In this case, there are four unknowns for every integration 
point (three coordinates and one weight) so the consistency 
condition is

(7)Q(f ) = I(f ) ∀f ∈ BG

(8)masym =
(d + 3)(d + 2)(d + 1)

6
.
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This consistency condition is obtained for any domain in ℝ3 , 
for asymmetric rules (i.e. for rules that are not necessarily 
invariant). We know that there exist rules that do not follow 
this consistency condition: for degree d = 9 , Eq. (9) yields 
nK ≥ 55 , but there are, for example, known cubature rules 
with 52 points on the cube [19] and with 53 points on the 
tetrahedron [24].

For tetrahedra, a convenient alternative basis is the set 
of monomials Li

1
L
j

2
Lk
3
L
d−i−j−k

4
 of total degree d. The use of 

barycentric coordinates simplifies the expression of the inte-
gration point coordinates in a way independent of a specific 
tetrahedron. Even more importantly, barycentric coordinates 
simplify expressing invariant rules, as any symmetry of the 
tetrahedron can be expressed as invariance with respect to 
specific permutations of the vertices, or of the barycentric 
coordinates.

3.2  Fully symmetric basis

We consider here fully symmetric rules on tetrahedra, which 
are invariant with respect to the action of the symmetric 
group S4 (the group of all permutations of four elements). 
For given degree d, the S4-invariant polynomials are the 
symmetric polynomials in the four barycentric coordinates. 
A basis of these polynomials are the products L̃t

1
L̃i
2
L̃
j

3
L̃k
4
 with 

t + 2i + 3j + 4k = d , where the elementary symmetric poly-
nomials in the barycentric coordinates are given by Eq. (2) 
as 

Due to Eq. (10a), the S4-invariant basis is actually the 
products L̃i

2
L̃
j

3
L̃k
4
 with 2i + 3j + 4k ≤ d . The number of 

elements in the basis, and, therefore, also the number of 

(9)4nK ≥ masym.

(10a)L̃1 = −(L1 + L2 + L3 + L4) = −1

(10b)L̃2 = L1L2 + L1L3 + L1L4 + L2L3 + L2L4 + L3L4

(10c)L̃3 = −(L1L2L3 + L1L3L4 + L1L2L4 + L2L3L4)

(10d)L̃4 = L1L2L3L4.

moment equations me , is the number of non-negative integer 
solutions to 2i + 3j + 4k ≤ d , given by [25]

where ⌊x⌉ denotes the nearest integer to x. Comparing 
Eqs. (11) and (8) shows that the fully symmetric case has 
significantly fewer moment equations than the asymmetric 
case (a ratio of 1/24 as d → ∞).

The symmetric group S4 generates five different types 
of orbits, depending on the number of repeated barycentric 
coordinates in the generator. These orbit types, numbered 
from 0 to 4, are shown in Table 1.

Table 1 also shows the number of points for each orbit 
type, and the number of variables introduced at the moment 
equations for each orbit of a given type (this is equal to the 
number of variables defining the generator, plus one vari-
able which is the weight, common to all points in the orbit).

The orbit structure of a rule is the list [n0, n1, n2, n3, n4] , 
where ni is the number of orbits of type i. The total number 
of points nK for a rule with orbit structure [n0, n1, n2, n3, n4] 
is:

while the number of unknowns is

Equations (11) and (13) can be used to derive a consistency 
condition for fully symmetric rules. A more precise set of 
consistency conditions can however be obtained by adopting 
a different basis that has as many elements as possible that 
are zero for as many orbit types as possible.

3.3  A simpler fully symmetric basis

Substituting L for the generic variable v in Eq. (3), and using 
Eq. (10a), gives

Studying the multiplicity of the roots of (14), considered 
as a quartic function in L, gives the relation between L̃2 , L̃3 

(11)

me =

⌊
(d + 4)3 + 3(d + 4)2 − 9(d + 4)

(
(d + 4) mod 2

)

144

⌉

(12)nK = n0 + 4n1 + 6n2 + 12n3 + 24n4,

(13)ne = n0 + 2n1 + 2n2 + 3n3 + 4n4.

(14)L4 − L3 + L̃2L
2 + L̃3L + L̃4 = 0.

Table 1  Types of orbits Orbit type Generator Condition Points Variables

0 (1/4, 1/4, 1/4, 1/4) – 1 1
1 (� , � , � , 1 − 3�) � ≠ 1∕4 4 2
2 (� , � , 1∕2 − � , 1∕2 − �) � ≠ 1∕4 6 2
3 (� , � , � , 1 − 2� − �) � ≠ � , 3� + � ≠ 1 , � + � ≠ 1∕2 12 3
4 (� , � , � , 1 − � − � − �) All coordinates distinct 24 4
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and L̃4 for each orbit type. This study is greatly simplified 
by considering the depressed quartic, therefore we use the 
transformation

so that the elementary symmetric polynomials are 

 and Eq. (3) becomes

The discriminant of (17) with respect to l is

We, therefore, have the following cases [26]:

• Type-0 orbit (four equal roots, all zero) for ̃l2 = l̃3 = l̃4 = 0

• Type-1 orbit (three equal roots) for 8l̃3
2
+ 27l̃2

3
= 0 and 

l̃2
2
+ 12l̃4 = 0 , with l̃2 ≠ 0

• Type-2 orbit (two pairs of equal roots) for l̃3 = 0 and 
l̃2
2
− 4l̃4 = 0 , with l̃2 ≠ 0

• Type-3 orbit (only one pair of equal roots) for Δ = 0 but 
none of the previous cases holding

• Type-4 orbit (four distinct roots) for Δ ≠ 0.

Note that the conditions given for orbits of types 0, 1 and 2 
ensure that Δ = 0 . Further simplification is achieved by intro-
ducing the quantities

resulting in the following simpler conditions

• Type-0 orbit for p = q = r = 0

• Type-1 orbit for p3 − q2 = 0 and r = 0 , with p ≠ 0

• Type-2 orbit for q = 0 and p2 − r = 0 , with p ≠ 0

• Type-3 orbit for Δ = 0 but none of the previous cases hold-
ing

• Type-4 orbit for Δ ≠ 0

where now

(15)l
�
= L

�
− 1∕4 with � = 1⋯ 4

(16a)l̃1 = −(l1 + l2 + l3 + l4) = 0

(16b)l̃2 = l1l2 + l1l3 + l1l4 + l2l3 + l2l4 + l3l4

(16c)l̃3 = −(l1l2l3 + l1l3l4 + l1l2l4 + l2l3l4)

(16d)l̃4 = l1l2l3l4

(17)l4 + l̃2l
2 + l̃3l + l̃4 = 0.

(18)Δ = −27l̃4
3
− 4l̃2(l̃

2
2
− 36l̃4)l̃

2
3
+ 16l̃4(l̃

2
2
− 4l̃4)

2.

(19)p = −
2l̃2

3
, q = −l̃3, r =

l̃2
2
+ 12l̃4

9
,

We, therefore, consider the fully symmetric monomial basis 
piqjrk with weighted degree 2i + 3j + 4k ≤ d . This basis is 
simpler than the previous ones, as it is easier to express the 
conditions holding on orbits of types 0 to 3.

3.4  Fully symmetric basis for consistency conditions

As already mentioned, a more precise set of consistency 
conditions can be obtained by adopting a basis that has as 
many elements as possible that are zero for as many orbit 
types as possible. We create such a basis starting from the 
monomial basis piqjrk and then splitting and transforming 
(by taking linear combinations with constant coefficients) 
groups of elements. This process is summarised in Fig. 1 
and explained in the following.

Orbits of types 0 to 3 are identified by the condition 
Δ = 0 . Equation (20) shows that Δ is of degree 3 in r, so we 
split piqjrk , by degree of r, into

where i, j, k can take different values for each term. To sim-
plify notation, here and in the following we implicitly con-
sider that i, j, k ≥ 0 and that the monomials and polynomials 
shown are of total weighted degree up to d. The reason for 
swapping the last two terms will be seen shortly.

The terms piqjrkr3 can easily be transformed, by taking 
linear combinations with the other terms, into elements 
piqjrkΔ , which are zero for orbit types 0 to 3. The remaining 
terms, of degree less than 3 in r, cannot be linearly combined 
to give a polynomial with a factor Δ , and will, therefore, not 
be zero for type-3 orbits.

(20)Δ = 27
(
−q4 + 2p(p2 − 3r)q2 − (p2 − 4r)(p2 − r)2

)
.

(21)[piqjrk] → [piqjrkr3, piqjr2, piqj, piqjr]

piqjrk piqjrkr3 piqjrk∆

piqjr2 piqjr(p2 − r)

piqj piqjq2 piqj(p3 − pr − q2)

piq

pi pip2 pi(p2 − r)

p

1

piqjr piqjqr

pir

Fig. 1  Diagram showing the derivation of the fully symmetric basis 
for consistency conditions
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To proceed further, we use algebraic geometry [27] to 
obtain that any polynomial in p, q, r that is zero for orbit 
types 0 to 2 will be the sum of polynomials with factors 
p3 − pr − q2 , r(p2 − r) , or qr (as these three polynomials 
generate the radical of the product of the ideals generated 
by the polynomials that have to be zero for each orbit type 
from 0 to 2).

The terms piqjr2 in (21), taken in linear combination with 
the terms piqjr , give terms piqjr(p2 − r) . This leaves from 
(21) the terms piqj and piqjr , which are split as

The first term on the r.h.s. of (22), taken in linear combina-
tion with the second, fourth and fifth terms, yields terms 
piqj(p3 − pr − q2) , while the fourth term is already in the 
form piqj(qr) , completing the set of terms that are zero for 
orbit types 0 to 2.

The third term on the r.h.s. of (22) can be further split as

where the terms pip2 , taken in linear combination with the 
terms pir , yields the terms pi(p2 − r) which are zero for orbit 
types 0 and 2.

Collecting all the resulting terms yields a new fully sym-
metric basis, summarised in Table 2, which no longer con-
tains only monomial terms. The way in which the new basis 
is derived from the monomial basis in p, q, r ensures that the 
resulting basis is indeed a basis of the same vector space of 
polynomials. Additionally, this basis maximises the number 
of elements that are zero for different orbit types, since no 
linear combination of elements that are zero for fewer orbit 
types can give a polynomial that is zero for more orbit types.

(22)[piqj, piqjr] → [piqjq2, piq, pi, piqjqr, pir]

(23)[pi] → [pip2, p, 1],

4  Consistency conditions and (quasi‑)
optimal rules

In the previous section, we obtained a new fully symmet-
ric basis for the vector space of S4-invariant polynomials, 
which has as many elements as possible that are zero for 
as many orbit types as possible. This allows for deriving 
the consistency conditions, and, therefore, also the esti-
mated lower bounds on the number of integration points 
for cubature rules in tetrahedra.

4.1  Number of basis elements equations

The last column of Table 2 gives the number of basis ele-
ments for each element type. This is the number of non-
negative integer solutions, for the indices appearing in the 
weighted degree, for which the weighted degree is less 
or equal to the degree d. Specifically, mp3(d) is given by 
eq. (11), extended to also cover negative values of d

where the Iverson brackets [[…]] are defined as [28]

Similarly, mp2(d) is the number of non-negative integer solu-
tions of 2i + 3j ≤ d , given by [29]

and mp1(d) is the number of non-negative integer solutions 
of 2i ≤ d , that is

where ⌊x⌋ is the largest integer that is smaller or equal to x. 
Finally, mp0(d) is simply given by

Table  2 shows that  the basis elements can 
be grouped by the orbit types for which they 
are  not  necessar i ly  zero,  giving s ix  groups: 
{4}, {3, 4}, {2, 3, 4}, {1, 3, 4}, {1, 2, 3, 4}, {0, 1, 2, 3, 4} , hav-
ing respectively m4,m3,m2,m1,m12,m0 elements. From 
Table 2 and Eq.  (24), the number of basis elements in 
each group is computed as 

(24a)

mp3(d) =

⌊
(d + 4)3 + 3(d + 4)2 − 9(d + 4)

(
(d + 4) mod 2

)

144

⌉

[[d ≥ 0]]

(24b)[[S]] =

{
0 if S is false

1 if S is true

(24c)mp2(d) =

⌊
(d + 3)2

12

⌉
[[d ≥ 0]]

(24d)mp1(d) =
⌊
d + 2

2

⌋
[[d ≥ 0]]

(24e)mp0(d) = [[d ≥ 0]]

Table 2  Fully symmetric basis for consistency conditions

The column “orbit types” lists the orbit types for which the elements 
are not necessarily zero

Elements Orbit types Weighted degree Number of 
elements

piqjrkΔ 4 2i + 3j + 4k + 12 mp3(d − 12) m
4

p
i
q
j
r(p2 − r) 3, 4 2i + 3j + 8 mp2(d − 8) ⎫

⎪
⎬
⎪⎭

m
3p

i
q
j
qr 3, 4 2i + 3j + 7 mp2(d − 7)

piqj(p3 − pr − q2) 3, 4 2i + 3j + 6 mp2(d − 6)

pi(p2 − r) 1, 3, 4 2i + 4 mp1(d − 4)
}
m

1

piq 1, 3, 4 2i + 3 mp1(d − 3)

pir 2, 3, 4 2i + 4 mp1(d − 4) m
2

p 1, 2, 3, 4 2 mp0(d − 2) m
12

1 0, 1, 2, 3, 4 0 1 m
0
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 Table 3 lists the number of basis elements in each element 
group, and the total number of elements, for degrees d ≤ 20.

4.2  Consistency conditions

Every element inside the basis must satisfy Eq. (6), therefore 
each element group represents a subsystem of the moment 
equations. For each of these groups, consistency requires 
that the number of unknowns across all orbits in the group 
must be greater or equal to the number of equations that only 
involve the orbits of the group. Applying this to each group 
we get the consistency conditions 

(25a)m4 = mp3(d − 12)

(25b)m3 =

⌊(
d

2
− 2

)2
⌋
[[d ≥ 6]]

(25c)m2 =
⌊
d

2
− 1

⌋
[[d ≥ 4]]

(25d)m1 = (d − 2)[[d ≥ 2]]

(25e)m12 = [[d ≥ 2]]

(25f)m0 = 1
An additional condition is that there can be at most one 

orbit of type 0, i.e. n0 ∈ {0, 1} . This means, since m0 = 1 , 
that Eq. (26b) can be omitted as it is implied by Eq. (26a). 
The consistency conditions can then be written. as 

(26a)
n0 + 2n1 + 2n2 + 3n3 + 4n4 ≥ m4

+ m3 + m2 + m1 + m12 + m0

(26b)2n1 + 2n2 + 3n3 + 4n4 ≥ m4 + m3 + m2 + m1 + m12

(26c)2n1 + 3n3 + 4n4 ≥ m4 + m3 + m1

(26d)2n2 + 3n3 + 4n4 ≥ m4 + m3 + m2

(26e)3n3 + 4n4 ≥ m4 + m3

(26f)4n4 ≥ m4

(27a)n0 ∈ {0, 1}

(27b)
n0 + 2n1 + 2n2 + 3n3 + 4n4 ≥ m4

+ m3 + m2 + m1 + m12 + m0

(27c)2n1 + 3n3 + 4n4 ≥ m4 + m3 + m1

Table 3  Number of basis 
elements for each orbit group

Degree m
0

m
12

m
1

m
2

m
3

m
4

m
e

0 1 0 0 0 0 0 1
1 1 0 0 0 0 0 1
2 1 1 0 0 0 0 2
3 1 1 1 0 0 0 3
4 1 1 2 1 0 0 5
5 1 1 3 1 0 0 6
6 1 1 4 2 1 0 9
7 1 1 5 2 2 0 11
8 1 1 6 3 4 0 15
9 1 1 7 3 6 0 18
10 1 1 8 4 9 0 23
11 1 1 9 4 12 0 27
12 1 1 10 5 16 1 34
13 1 1 11 5 20 1 39
14 1 1 12 6 25 2 47
15 1 1 13 6 30 3 54
16 1 1 14 7 36 5 64
17 1 1 15 7 42 6 72
18 1 1 16 8 49 9 84
19 1 1 17 8 56 11 94
20 1 1 18 9 64 15 108
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4.3  Consistent rule structures

For a given degree d, a rule structure [n0, n1, n2, n3, n4] is 
consistent if it satisfies the consistency conditions (27). 
Consistent rule structures with a given maximum number 
of points can be easily calculated using Algorithm 1.

Algorithm 1 Pseudo code for consistent rule structures
d ← cubature rule degree
nm
K ← desired maximum number of integration points

for n4 ←
⌈
m4
4

⌉
to

⌊
nm
K

24

⌋
do

for n3 ← max
{⌈

m4+m3−4n4
3

⌉
, 0
}
to

⌊
nm
K−24n4

12

⌋
do

for n2 ← max
{⌈

m4+m3+m2−4n4−3n3
2

⌉
, 0
}
to⌊

nm
K−24n4−12n3

6

⌋
do

for n1 ← max
{⌈

m4+m3+m1−4n4−3n3
2

⌉
, 0
}
to⌊

nm
K−24n4−12n3−6n2

4

⌋
do

for n0 ← max{me − 4n4 − 3n3 − 2n2 − 2n1, 0} to
min{nm

K − 24n4 − 12n3 − 6n2 − 4n1, 1} do
save [n0, n1, n2, n3, n4]

end for
end for

end for
end for

end for

A consistent rule structure is optimal for a given degree if 
there are no other consistent structures for the same degree 
with fewer points. Finding optimal consistent rule structures 
is in general an integer linear programming problem [19], 
but we propose here a simpler approach. Considering the 
consistency conditions (27) in reverse order, we estimate an 
optimal consistent rule structure as 

(27d)2n2 + 3n3 + 4n4 ≥ m4 + m3 + m2

(27e)3n3 + 4n4 ≥ m4 + m3

(27f)4n4 ≥ m4

(28a)n∗
4
=
⌈m4

4

⌉

(28b)n∗
3
=

⌈
m4 + m3 − 4n∗

4

3

⌉

(28c)n∗
2
=

⌈
m4 + m3 + m2 − 3n∗

3
− 4n∗

4

2

⌉

(28d)n∗
1
=

⌊
me − 2n∗

2
− 3n∗

3
− 4n∗

4

2

⌋

 Algorithm 1, with a maximum number of points equal to 
the number of points of rule structure (28), shows that this 
rule is optimal, and is unique (at least up to an unrealistically 
high degree d = 200).

Table 4 shows the optimal consistent rule structures for 
degree d ≤ 20 , and the corresponding number of points. 
This number of points represents an estimate of the lower 
bound for the number of integration points.

It is, however, important to remember that consistency 
conditions only provide an estimate for which cubature rule 
structures will yield actual cubature rules, since the satisfac-
tion of the consistency conditions does not guarantee that the 
system of moment equations is indeed consistent, and, there-
fore, a cubature rule with a given structure actually exists.

Additionally, in most practical applications only rules of 
quality PI, or at most NI, are considered acceptable. Even 
when rules with the optimal consistent structure exist, there-
fore, the quality of such rules may not be acceptable. It is 
then worth looking for quasi-optimal consistent rule struc-
tures, i.e. structures that follow the consistency conditions 
but have a few more integration points than the optimal ones. 
For a given degree, the search is in practice limited to rules 
that have fewer integration points than any known PI rule. 
Quasi-optimal consistent rule structures are easily computed 
using Algorithm 1.

5  New results for cubature rules

Consistency conditions help limit the search space when 
searching for cubature rules with better quality or a lower 
number of points than existing ones. Additionally, the choice 
of an appropriate basis of the polynomials simplifies the cal-
culations needed to solve the moment equations and derive 
individual rules.

5.1  Summary of new results

Table 5 shows, for degrees up to 20, the (estimated) lowest 
number of integration points as well as the lowest number 
of points achieved in known cubature rules of different qual-
ity. Known results for NI or *O (i.e. PO or NO) quality, and 
for PI quality up to degree 6, are given in [6]. More recent 
results, all of PI quality, are from [8] for degree 8, [11] for 
degrees 7 and 9, and [17] for degrees 12 to 20. Results for 
degrees 10 and 11 are taken from the source code of version 
0.9.7 of the PHG (Parallel Hierarchical Grid) code (http:// 

(28e)n∗
0
= me − 2n∗

1
− 2n∗

2
− 3n∗

3
− 4n∗

4

http://lsec.cc.ac.cn/phg/download.htm
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lsec. cc. ac. cn/ phg/ downl oad. htm) and were obtained using an 
improved version of the code described in [8].1

For degrees 1–6 and 8, rules of PI or NI quality with 
the estimated lower number of points were already given in 
the literature. For other degrees, a gap exists between esti-
mated and an actual lower number, which increases with a 
degree. Using the results obtained in the previous sections 
and extending the approach presented in [10], some new 
results were obtained, indicated with an underline in table 5.

For degrees 7 and 9 we obtain rules with the optimal 
number of points, but only with complex point coordinates. 
While not of practical interest, these results confirm that 
consistency of the moment equations is correctly predicted 
for these rule structures. As the moment equations for both 
cases are zero-dimensional and all solutions are obtained, 
using Gröbner bases, we prove that there are no optimal 
rules of better quality. For degree 9, a new 55-point NI rule 
with structure [1, 3, 1, 3, 0] is also obtained, which improves 
on the 59 points of the existing PI rule (see Table 6).

For degree  10, the optimal consistent rule structure 
given in Table 4 is [0, 5, 2, 3, 0], with 68 points. The corre-
sponding moment equations, using the non-monomial basis 
from Sect. 3.4, have a subsystem for the type-3 orbits with 
9 equations and 9 unknowns which is however inconsist-
ent. There are, therefore, no degree-10 rules with structure 

Table 4  Optimal consistent rule 
structures for tetrahedra

Degree Number of points n
0

n
1

n
2

n
3

n
4

0 1 1 0 0 0 0
1 1 1 0 0 0 0
2 4 0 1 0 0 0
3 5 1 1 0 0 0
4 11 1 1 1 0 0
5 14 0 2 1 0 0
6 24 0 3 0 1 0
7 30 0 3 1 1 0
8 43 1 3 1 2 0
9 52 0 4 2 2 0
10 68 0 5 2 3 0
11 81 1 5 2 4 0
12 117 1 5 2 5 1
13 133 1 6 2 6 1
14 163 1 6 3 8 1
15 190 0 7 3 10 1
16 233 1 7 4 11 2
17 266 0 8 3 14 2
18 318 0 9 3 16 3
19 355 1 9 3 19 3
20 415 1 9 5 21 4

Table 5  Estimated and known lower bounds for number of integra-
tion points in fully symmetric rules on the tetrahedron

Rules of worse quality are not shown if any rules of better qual-
ity with the same or lower number of integration points are known. 
Underlined results are newly obtained in this work

Degree Optimal PI NI *O *C

1 1 1
2 4 4
3 5 8 5
4 11 14 11
5 14 14
6 24 24
7 30 35 31 – 30
8 43 46 43
9 52 59 55 53 52
10 71 79
11 86 96 – 87
12 117 123
13 133 145
14 163 175
15 190 209
16 233 248
17 266 284
18 318 343
19 355 383
20 415 441

1 L. Zhang, personal communication, 14 Sep. 2022.

http://lsec.cc.ac.cn/phg/download.htm
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[∗, ∗, ∗, 3, 0] ; eliminating those from the list of quasi-optimal 
consistent structures results in an optimal consistent struc-
ture [1, 4, 1, 4, 0] with 71 points. Similar calculations show 
that there is no rule of degree 11 with structure [∗, ∗, ∗, 4, 0] , 
so the optimal consistent structure is [0, 5, 1, 5, 0] with 86 
points.

5.2  Details on the consistency conditions 
for degree 10

For a degree-10 rule with structure [∗, ∗, ∗, 3, 0] , Table 2 
shows that there are 9 basis elements that only involve type-3 
orbits, namely

Therefore, the corresponding subsystem of the moment 
equations becomes

where

and Ii are the exact integrals (4) evaluated for the elements 
gi , resulting in

The quanti t ies pj, qj, rj  for every orbit  satisfy 
Δj = Δ(pj, qj, rj) = 0 , where the discriminant Δ is given by 
Eq. (20). Therefore, the system (30) is essentially a system 

(29)

[g1,… , g9] = [p3 − pr − q2, qr, p(p3 − pr − q2),

r(p2 − r), q(p3 − pr − q2),

pqr, p2(p3 − pr − q2), q2r, pr(p2 − r)]

(30)Qi = Ii i = 1… 9

(31)Qi = 12

3∑

j=1

wjgi(pj, qj, rj)

(32)

[I
1
,… , I

9
] = [1∕22680, 1∕151200, 19∕4989600,

23∕9979200, 1∕1108800, 13∕19958400,

1∕2620800, 29∕172972800, 17∕74131200]

of 9 equations with nine unknowns, which we, therefore, 
assume to be consistent.

Computing a Gröbner basis for the system, however, 
shows that the system is inconsistent. In this case, there-
fore, the consistency conditions fail to predict the con-
sistency of the moment equations. This is not due to an 
incorrect choice of the non-monomial basis in Sect. 3.4, 
but due to a more complex relationship between the quan-
tities Qi . Indeed, we can calculate that in this case the Qi 
are not independent, but satisfy the equation

Equation (33) is non-linear, and does not hold for n3 > 3 . 
It is, therefore, clear that deriving consistency conditions 
that correctly indicate that there are no degree-10 rules with 
structure [∗, ∗, ∗, 3, 0] requires a different approach to the one 
in this paper (and in general in the literature) which is based 
on linearly independent basis elements.

(33)

Q1Q3Q
2
7
+ Q1Q3Q7Q8 − 5Q1Q3Q7Q9

+ 4Q1Q3Q
2
9
− 4Q1Q4Q

2
7
− 4Q1Q4Q7Q8

+ 20Q1Q4Q7Q9 − 16Q1Q4Q
2
9
− Q1Q

2
5
Q7

+ 8Q1Q5Q6Q7 − 8Q1Q5Q6Q9

− 12Q1Q
2
6
Q7 + 4Q1Q

2
6
Q8 + 12Q1Q

2
6
Q9

+ 4Q2
2
Q2

7
+ 4Q2

2
Q7Q8 − 20Q2

2
Q7Q9

+ 16Q2
2
Q2

9
+ 8Q2Q3Q5Q9 − 8Q2Q3Q6Q7

− 8Q2Q3Q6Q8 + 8Q2Q3Q6Q9

− 8Q2Q4Q5Q7 + 32Q2Q4Q6Q7 − 32Q2Q4Q6Q9

− Q3
3
Q7 − Q3

3
Q8 + 5Q3

3
Q9

+ 4Q2
3
Q4Q7 + 4Q2

3
Q4Q8 − 28Q2

3
Q4Q9

+ Q2
3
Q2

5
− 8Q2

3
Q5Q6 + 16Q2

3
Q2

6

+ 4Q3Q
2
4
Q7 + 32Q3Q

2
4
Q9 + 8Q3Q4Q5Q6

− 32Q3Q4Q
2
6
− 16Q3

4
Q7 + 16Q2

4
Q2

6
= 0

Table 6  Degree 9, 55-point NI 
rule generators and weights

The barycentric coordinates of the generators in terms of � and � are given in Table 1

Orbit type Weight � �

0 − 4.6296861376723131
1 1.2150353004018342 0.23962566193927949
1 − 0.22747436971238236 0.11018941963473842
1 0.012202966891188984 0.049553558692414900
2 0.016884869064330526 0.45159058017363670
3 0.021517480296540043 0.39673341203779513 0.18159662632542559
3 0.10182368310953738 0.13432467380123244 0.65894809355477895
3 0.0041022810075698088 0.011921405727783134 0.71336869297190663
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6  Conclusion

In this paper, we have rigorously developed a new non-
monomial fully symmetric polynomial basis for the tetrahe-
dron. By having as many elements as possible to be zero for 
as many orbit types as possible, this basis directly leads to 
the formulation of consistency conditions. For the first time, 
we are able to obtain explicit formulas for the consistency 
conditions, and thus for determining the optimal consistent 
rule structures. Additionally, an algorithm is presented that 
generates quasi-optimal rule structures.

The new basis is also useful in calculating specific cuba-
ture rules, since it allows decomposing the moment equa-
tions into a series of successively independent smaller sub-
systems, which can be exploited in designing more efficient 
solution methods. Solving the moment equations for specific 
cases, we obtained a new NI rule of degree 9 with 55 points 
(lower than existing rules of PI/NI quality). We also proved 
that there exist rules of degree 7 and 9 with the optimal 
structure but they are not of practical use as their point coor-
dinates are complex numbers.

Finally, we proved that the optimal rule structures esti-
mated by our formulas for degrees 10 and 11 lead to incon-
sistent moment equations. This is not due to an incorrect 
derivation of the consistency conditions but is a result of a 
more complex non-linear relationship between the moment 
equations, which cannot be captured by the usual assump-
tions that are employed to derive consistency conditions.

The quasi-optimal rule structures obtained can be used 
as the starting point for calculating additional cubature 
rules. For higher degrees the large number of equations and 
unknowns necessitates improved solving techniques, pos-
sibly mirroring those already developed for the triangle. 
The overall approach described in this paper can be fur-
ther applied to obtain consistency conditions for different 
domains and types of symmetry.
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