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Abstract
The magnetic polarizability tensor (MPT) is an economical characterisation of a conducting magnetic object, which can assist 
with identifying hidden targets in metal detection. The MPT’s coefficients depend on multiple parameters of interest includ-
ing the object shape, size, electrical conductivity, magnetic permeability, and the frequency of excitation. The computation 
of the coefficients follow from post-processing an eddy current transmission problem solved numerically using high-order 
finite elements. To reduce the computational cost of constructing these characterisations for multiple different parameters, 
we compare three methods by which the MPT can be efficiently calculated for two-dimensional parameter sets, with differ-
ent levels of code invasiveness. We compare, with numerical examples, a neural network regression of MPT eigenvalues 
with a projection-based reduced order model (ROM) and a neural network enhanced ROM (POD–NN) for predicting MPT 
coefficients.

Keywords Finite element method · Magnetic polarizability tensor · Metal detection · Object characterisation · Reduced 
order model · Neural networks

Article Highlights: 

1. Rapid computations of object characterisations with 
varying material parameters to assist with metal detec-
tion.

2. A comparison between novel neural network and projec-
tion enhanced reduced order models for efficient com-
putation.

3. Practical demonstrations of alternative methodologies 
including comparisons of computational cost.

1 Introduction

In recent years, there has been considerable interest in the 
characterisation of hidden conducting permeable objects by 
the magnetic polarizability tensor (MPT) and its applications 
to metal detection. The complex symmetric rank 2 MPT has 
been shown to offer an economical method of characterising 
conducting permeable objects [1–3], explicit formulae for 
calculating its 6 independent complex coefficients based on 
the object size, shape, electrical conductivity, magnetic per-
meability, and frequency of excitation have been derived [1, 
2, 4], computational procedures proposed for its calculation 
[5] and apparatus for its measurement are advanced [6–9].

Key metal detection applications include in the discrimi-
nation between threat and non-threat objects in security 
screening using walk through metal detectors [3], whereby 
the early detection of threat objects (such as knives and 
firearms or components thereof) has the potential to reduce 
the likelihood of attacks and improve public safety. Further 
security applications include distinguishing between metal-
lic clutter (e.g., ring-pulls, coins, shrapnel) and metallic 
components of hidden anti-personnel mines and unexploded 
ordnance [10]. Commercial applications, such as ensuring 
food safety screening, improving identification of metallic 
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objects of significance in archaeological searches, and dis-
criminating between real and counterfeit coinage at auto-
mated checkouts and vending machines are also of interest.

An approach for computing the MPT object character-
isation as a function of exciting frequency, known as the 
MPT spectral signature, based on computing full-order 
model solutions at a small number of snapshot frequencies 
and using a (projected) proper orthogonal decomposition 
(POD) based reduced order model (ROM) [11] to predict 
the solution for other frequencies, has been proposed in 
[5] and implemented in the MPT-Calculator software. 
To compute the full order model solutions, the NGSolve 
high order finite element library [12–15] was used and a 
H(curl) conforming discretisation on unstructured tetrahe-
dral meshes was employed. The resulting characterisations 
have been shown to be in excellent agreement with prac-
tical measurements [9] for a wide range of object shapes. 
The MPT-Calculator tool has subsequently been used 
in combination with exact MPT scalings to generate dic-
tionaries of realistic object characterisations [16], which, in 
turn, have been used for training machine learning classifiers 
for identifying possible threat and non–threat objects [17].

To be able to build larger dictionaries of MPT spectral 
signature object characterisations with increased variability 
in the object’s material parameters, we introduce and com-
pare three alternative novel ROMs in this paper. First, we 
extend the ROM presented in [5] to two parameters, namely 
frequency and permeability. Secondly, building on the 
approaches proposed in [18, 19], a regression-based POD is 
employed, which involves a neural network-based regression 
of information from the truncated singular value decompo-
sition of the snapshot solution matrix to make predictions 
for new problem parameters. A recent extensive discussion 
of neural networks with applications in POD reduced order 
modelling is given in [20], covering artificial neural net-
works, physics informed neural networks, and feed-forward 
neural networks and the differences between them in the 
context of POD which provides further context to our meth-
odology. Third, a neural network regression of the MPT 
eigenvalues is developed to predict MPT eigenvalues for new 
problem parameters. We then compare the accuracy and the 
computational performance of the three approaches. A fur-
ther important aspect we consider is code invasiveness. POD 
approaches require access to the underlying finite element 
implementation, which may not be possible in many cases, 
for example using commercial closed–source software. On 
the other hand, POD-NN requires only access to computed 
solution vectors and a direct regression of the parameters 
requires no access to the underlying code.

This paper is organised as follows: Sect. 2 briefly reviews 
the mathematical formulation of the rank 2 MPT object 
characterisation of an isolated highly conducting magnetic 
object in a non–conducting background for the eddy current 

time–harmonic approximation to the Maxwell system. Sec-
tion 3 recalls the hp finite element approximations to a trans-
mission problem, which is used for calculating full-order 
model solutions, and Sect. 4 describes our proposed ROMs 
to accelerate this computation when evaluating for different 
material properties. This is followed, in Sect. 5, by numeri-
cal examples of the ROM approaches for an object with a 
known analytical solution for its MPT coefficients, and an 
object where there is no known analytical solution. Finally, 
concluding remarks and intended future work are provided 
in Sect. 6.

2  The Eddy Current Model and The Rank 2 
MPT

We briefly recall the problem description from [2, 4, 5]. 
As illustrated in Fig. 1, our interest lies in characterising a 
highly conducting magnetic object, B� set in an unbounded 
region of free space Bc

�
∶= B��ℝ

3 , where the overbar 
denotes the closure. Later, we will also use the overbar to 
denote the complex conjugate, however, it should be clear 
from the context as to which definition applies. We write 
B� = �B + z so that the object can be described by a unit-
sized object B placed at the origin, which is scaled by a size 
parameter 𝛼 ≪ 1 (measured in m) and translated by z . At a 
position x , the material properties are

where � represents the permeability [Hm−1 ] and � represents 
the conductivity [Sm−1 ], the subscript ∗ denotes their values 
inside B� and the subscript 0 their values outside. The free 
space permeability is �0 ∶= 4� × 10−7 Hm−1 and we intro-
duce the relative permeability �r ∶= �∗∕�0 inside the object.

An asymptotic formula has been established for the per-
turbation in magnetic field (H� −H0)(x) at positions x away 
from B� as � → 0 when the object is placed in a time-varying 
low frequency magnetic background field H0 generated by 

(1)��(x) ∶=

{
�∗ x ∈ B�

�0 x ∈ Bc
�

, ��(x) ∶=

{
�∗ x ∈ B�

0 x ∈ Bc
�

,

J0e2

e3

e1

z

x

Bα, µ∗, σ∗

R3\Bα, µ0, 0

Fig. 1  Illustration of the conducting object B� with position z and an 
arbitrary position vector x both with respect to the orthonormal coor-
dinate system with basis vectors e

1
, e

2
 , and e
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an electric current source placed external to the body [2, 
21]. This assumes that the eddy current approximation of the 
time harmonic Maxwell system has been applied, in which 
displacement currents are neglected, and is appropriate 
given the highly conducting nature of B� and the low angular 
frequencies � of the excitation. The form of this expansion is

with R(x) denoting the residual, which satisfies |R(x)| ≤ C�4 
with C being a constant independent of � . In the above, 
G(x, z) ∶= 1∕(4�|x − z|) is the free space Laplace Green’s 
function and D2

x
G denotes the Hessian of G. The subscripts 

i, j, and k denote the component indices and Einstein sum-
mation convention is assumed. The complex symmetric rank 
2 tensor M = (M)jkej ⊗ ek is the MPT and can be decom-
posed as [1]

where i ∶=
√
−1 , N0(�B,�r) denotes its magnetostatic con-

tribution, R̃(𝛼B,𝜔, 𝜎∗,𝜇r) = N
0(𝛼B,𝜇r) +R(𝛼B,𝜔, 𝜎∗,𝜇r) 

its frequency dependent real part and I(�B,�, �∗,�r) its 
frequency dependent imaginary part. Their coefficients can 
be found from 

In (4), �ij is the Kronecker delta, � ∶= �2�∗�0� , and 
�̃�r(�) = 𝜇r inside B and �̃�r(�) = 1 outside where � is chosen 
to be measured from an origin inside B. The vector field 
�i = �

(0)

i
+ �

(1)

i
= �̃

(0)

i
+ ei × � + �

(1)

i
 is the solution to the 

transmission problem [1]: 

(2)

(
H� −H0

)
(x)i =

(
D

2
x
G(x, z)

)
ij

(M)jk
(
H0(z)

)
k
+ (R(x))i,

(3)M = N
0 +R + iI = R̃ + iI,

(4a)

(
N

0
)
ij
= 𝛼3𝛿ij ∫B

(
1 − 𝜇r

−1
)
d�

+
𝛼3

4 ∫B∪Bc

�̃�−1
r
∇ × �̃

(0)

i
⋅ ∇ × �̃

(0)

j
d�,

(4b)(R)ij = −
𝛼3

4 ∫B∪Bc

�̃�−1
r
∇ × �

(1)

i
⋅ ∇ × �

(1)

j
d�,

(4c)
(I)ij =

𝛼3

4 ∫B

𝜈

(
�
(1)

i
+
(
�̃
(0)

i
+ ei × �

))

⋅

(
�
(1)

j
+
(
�̃
(0)

j
+ ej × �

))
d�.

(5a)∇ × 𝜇r
−1∇ × �i − i𝜈�i = i𝜈ei × � in B,

(5b)∇ ⋅ �i = 0 in Bc = ℝ
3 ⧵ B,

(5c)∇ × ∇ × �i = 0 in Bc,

 where [⋅]Γ denotes the jump over Γ and n is the unit outward 
normal. The above problem can be split to form separate 
problems for �̃(0)

i
 and �(1)

i
 , where the former is independent 

of � and is a real vector field and the latter is a complex 
frequency-dependent vector field. Scaling results are avail-
able that allow the immediate calculation of (M)ij for new 
values of �∗ and � . The goal of this paper is to compare 
ROM approaches for rapidly predicting (M)ij for different �r 
and � [5]. This in turn will aid with creating large dictionar-
ies of object characterisations for training machine learning 
classifiers, which cannot be achieved through the application 
of scaling results.

3  Finite Element Approximation

As described in [5], by truncating the unbounded domain 
sufficiently far from B to create a finite computational 
domain Ω , replacing the far field condition (5f) with 
n × �i = 0 on �Ω , circumventing the Coulomb type gauge 
∇ ⋅ �i = 0 in Ω⧵B with numerical regularisation (by solv-
ing a perturbed problem involving a small regularisation 
parameter � ), and employing a higher order H(curl) con-
forming finite element approximation a discrete finite ele-
ment approximation to the continuous weak forms for the 
�̃
(0)

i
 and �(1)

i
 problems can be established. For both the �̃(0)

i
 

and �(1)

i
 problems, an unstructured mesh of tetrahedral ele-

ments of size h is used to partition Ω and order p elements 
applied leading to a linear system of equations of the form

where for �(1)

i
 , A ∈ ℂ

Ndof×Ndof  is a large sparse complex sym-
metric matrix, q(�) ∈ ℂ

Ndof  is a parameter dependent solu-
tion with � indicating the list of model parameters to be 
varied, and r ∈ ℂ

Ndof is a known forcing vector. The situation 
is similar for the simpler �(0)

i
 that involves real matrices. 

Once the solution to (6) has been established, the discrete 
approximation to �(1)

i
 is recovered using

(5d)
[
�i × n

]
Γ
= 0 on Γ ∶= �B,

(5e)
[
�̃�−1
r
∇ × �i × n

]
Γ
= −2

[
�̃�−1
r

]
Γ
ei × n on Γ,

(5f)�i(�) = O
(|�|−1) as |�| → ∞,

(6)Aq(�) = r,

(7)�
(1,hp)

i
(�, �) =

Ndof∑
u=1

q(1)
u
(�)Nu(�),
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where Nu(�) is a typical H(curl) conforming basis func-
tion and Ndof  is the number of degrees of freedom in the 
finite element approximation. A similar approximation also 
applies for �̃(0,hp)

i
 . The approximate computation of (M)ij 

then follows by replacing �(1)

i
 with �(1,hp)

i
 , �̃(0)

i
 with �̃(0,hp)

i
 , 

and Bc with Ω⧵B in (4).

4  Reduced Order Approaches

The repeated solution of equation (6) for different model 
parameters � is computationally expensive. In [5], a projec-
tion based POD approach was developed (called PODP) in 
which the solution of (6) for new q(�) is replaced by solv-
ing a smaller projected linear system of equations of size 
M ×M where M ≪ Ndof  . The reduced system was obtained 
by extracting the modal behaviour from a small number 
of solution snapshots and using Galerkin projection. The 
implementation in [5] was limited to the case where � = [�] 
and we consider the extension to � = [�,�r].

As alternatives to this approach, we also consider two 
other approaches that are less intrusive to the software 
as they do not need direct access to (decompositions of) 
both A and r . In the first of these alternatives, we employ 
a technique equivalent to POD-NN used by Hesthaven and 
Ubbiali [19], which is built by performing a neural network 
regression, leading to an approximation to q(�) for new � . 
The approximate �̃(0)

i
 and �(1)

i
 then are obtained from (7) 

and the MPT coefficients are obtained as before by a simple 
post-processing. In the second of the alternatives, we con-
sider a direct neural network regression of the MPT coeffi-
cients to predict the MPT coefficients for new � . PODP and 
POD–NN share the same off-line stage and have different 
on-line stages as described below:

4.1  Off–line stage

In the off-line stage, snapshot solutions q(0)
i
(�n) = q

(0)

i
(�r,n) 

and q(1)
i
(�n) , corresponding to the finite element solu-

tion coefficients for �̃(0,hp)

i
(𝜇r,n) and �(1,hp)

i
(�n) , are first 

obtained for a small number of sets of snapshot parameters 
�n = [�n,�r,n] , n = 1,… ,N , by solving systems of the form 
(6). Based on previous experience in [5], we choose the 
snapshot parameters �n to be logarithmically spaced over 
a two dimensional grid. In addition, the solution snapshots 
q
(0)

i

(
�r,n

)
 were post-processed by applying a post-processing 

Poisson projection [15]:

which improves the gauging of �̃(0,hp)

i
 without changing 

∇ × �̃
(0,hp)

i
 . The matrices D(0)

i
∈ ℝ

Ndof×N and D(1)

i
∈ ℂ

Ndof×N , 

(8)�̃
(0,hp)

i
→ ∇Δ−1div

(
�̃
(0,hp)

i

)
,

i = 1, 2, 3 , are then defined as a concatenation of q(0)
i
(�n) or 

q
(1)

i
(�n) as

For the on-line stages of the PODP and POD–NN 
approaches, discussed in Sects. 4.2 and 4.3 respectively, the 
off-line stage continues with a singular value decomposi-
tion (SVD) applied to each D(s)

i
 in order to extract modal 

information

where we omit the dependence of i and (s) on the SVD 
matrices and their truncated counterparts for simplicity of 
presentation. In the above, H is the Hermitian and in the 
approximation M < N corresponds to the level of truncation, 
which is determined by prescribing a tolerance TOL on the 
ordered relative singular values contained in the diagonal 
elements of � . This truncation, results in a truncated matrix 
U

M ∈ ℂ
Ndof×M containing the first M columns of the uni-

tary matrix U , a square matrix �M ∈ ℝ
M×M containing the 

truncated singular values on the diagonal and, VM ∈ ℂ
N×M , 

which is obtained by taking the first M columns of the uni-
tary matrix V . Using (10), we recover an approximation to 
q
(s)

i
(�n) as follows:

where 
((

V
M
)H)

∶,n
 refers to the nth column of 

(
V

M
)H . Note 

that in the case of s = 0 , the matrices UM and VM are real 
and so H can be replaced with transpose.

4.2  PODP ‑ Projection based ROM

Following the PODP approach described by Wilson and 
Ledger in [5], we briefly describe how it can be extended to 
multiple parameters.

On–line stage In the on-line stage, we solve a small linear 
system (equation (24) [5]) of the form

o f  s i z e  M ×M  f o r  pM(�) ∈ ℂ
M  w h e r e 

A
M(�) ∶=

(
U

M
)H

A(�)UM , and rM ∶=
(
U

M
)H

r(�) (with 
reduction to real matrices for s = 0 ). Once pM(�) is obtained, 
we use the approximation q(s)

i
≈ U

M
pM(�) [5]. By repeating 

this for s = 0, 1 , i = 1, 2, 3 and combining with (7), allows 
us approximate �̃(0,hp)

i
 and �(1,hp)

i
 and, hence, the approximate 

(MPODP)ij for new �.

(9)D
(s)

i
∶=

[
q
(s)

i

(
�1

)
, q

(s)

i

(
�2

)
, q

(s)

i

(
�3

)
,… , q

(s)

i

(
�N

)]
.

(10)D
(s)

i
= ���

H ≈ U
M
�
M
(
V

M
)H

,

(11)q
(s)

i

(
�n

)
≈ U

M
�
M
((

V
M
)H)

∶,n
,

(12)A
M(�)pM(�) = r

M(�),
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4.2.1  Error Estimation

A detailed proof of an error estimate Δ(�)ij , which provides 
the upper bound

on the MPT coefficients obtained by the PODP approxima-
tion with respect to (M(�))ij obtained using the full-order 
finite element solve for � = [�] is established in [5]. This 
naturally extends to the case where � = [�,�r] using

and, in this case, �LB is the lower bound on a stability con-
stant obtained by taking the smallest eigenvalue from an 
eigenvalue problem [11, pg 56] for the smallest frequency 
and inverse permeability of interest. Y (hp) is as defined in [5] 
and corresponds to the set of H(curl) conforming functions 
in the discretisation.

Similarly to [5], to efficiently compute r̂i(�) and r̂j(�) , we 
build a discrete analogue of the residual by first constructing

once for all � where M0 is the real symmetric mass matrix 
for the lowest order basis functions. To obtain W(i) for 
� = [�,�r] , we consider the splittings

where 

 and r(1) is similarly constructed by taking out the factor � 
from r . Then, using U(M,i) to denote UM for the ith direction 
and �(1,hp)

i
 , and similarly for �(M,i) , we can determine W(i) as

where Pp

0
 is the projection from order p to order 0 H(curl) 

conforming basis functions. It then follows that an efficient 
evaluation of the contributions to the error estimate are given 
by

(13)
|||(M(�)PODP)ij − (M(�))ij

||| ≤ Δ(�)ij,

(14)
Δ(�)ij =

𝛼3

8𝛼LB

�‖r̂i(�)‖2Y (hp) + ‖r̂j(�)‖2Y (hp)

+ ‖r̂i(�) − r̂j(�)‖2Y (hp)

�
,

(15)G
(i,j) =

(
W

(i)
)H

M
−1
0
W

(j),

(16)A = B
(0) + �−1

r
B
(1) + �C

(1), r = �r(1),

(17a)

(
B
(0)
)
ij
= ∫Ω�B

∇ × Ni ⋅ ∇ × Nj d� + �∫Ω�B

Ni ⋅ Nj d�,

(17b)
(
B
(1)
)
ij
= ∫B

∇ × Ni ⋅ ∇ × Nj d�,

(17c)
(
C

(1)
)
ij
= −i∫B

�2�∗�0Ni ⋅ Nj d�,

(18)W
(i) ∶= P

p

0

(
r
(1), B(0)

U
(M,i), B(1)

U
(M,i), C(1)

U
(M,i)

)
,

for each parameter vector, � , by updating

In (18), r(1) depends on �r , which means that, in our imple-
mentation, we construct the matrices iteratively, however, 
it is also possible to formulate an alternative construction 
of W(i) and w(i)(�) from (5), provided that the �̃(0)

i
 and �(1)

i
 

problems are not split. The MPT coefficients in this case can 
be computed using the alternative (but equivalent) formula-
tion in [2].

4.3  POD–NN ‑ Neural Network Enhanced ROM

We follow an approach that is equivalent to the POD–NN 
approach described in [18, 19].

On–line stage In POD-NN, the approximate solution for 
new parameters � is taken as

and the mth component of R , Rm

(
�, cm

)
 , is a prescribed 

function (e.g. a polynomial or some other smoothly varying 
differentiable function) whose coefficients c are found from 
solving the minimisation problem

Due to their superior interpolation properties, a neu-
ral network is used for this regression and, hence, the 
name POD–NN. Our implementation differs from [19] in 
that we train the network based on columns of �M(VM)H 
rather than columns of (UM)HD , but note that by (10) 
�
M(VM)H ≈ (UM)HD and so the two approaches are 

equivalent.
For the specific details of the implementation, which 

involves training individual networks for each direction 
i = 1, 2, 3 and s = 0, 1 , we refer to [18]. Combining with (7), 
allows us approximate �̃(0,hp)

i
 and �(1,hp)

i
 and, hence, the approx-

imate (M(�)POD−NN)ij for new �.

(19)‖r̂i(�)‖2Y (hp) =
�
w

(i)(�)
�H

G
(i,i)

�
w

(i)(�)
�
,

(20)

‖r̂i(�) − r̂j(�)‖2Y (hp) =‖r̂i(�)‖2Y (hp) + ‖r̂j(�)‖2Y (hp)

−2Re
��

w
(i)(�)

�H
G

(i,j)
�
w

(j)(�)
��

,

(21)w
(i)(�) =

⎡⎢⎢⎢⎣

�

−p(M,i)(�)

−�−1
r
p(M,i)(�)

−�p(M,i)(�)

⎤⎥⎥⎥⎦
.

(22)q
(s)

i
(�) ≈ U

M
R

(
�, c

(
�
M
(
V

M
)H))

,

(23)minc
1

N

N∑
n=1

|||
(
�
M(VM)H

)
∶,n

− R
(
�n, c

)|||
2
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4.4  NNR ‑ Neural Network Regression of MPT 
coefficients

As a final alternative, we consider a neural network regres-
sion technique for predicting (M(�)NNR)ij for new parame-
ters � . This is the least invasive of the techniques considered 
as the prediction can be obtained by curve-fitting. However, 
it lacks the physical insights that are gained from using the 
modal information in the other POD-based approaches and 
so we expect it to be less accurate for the same parameter 
snapshots. To fix ideas, let (M(�n))ij = yr,n + iyi,n and intro-
duce the dictionaries of ordered pairs 

 By splitting each of the dictionaries into training and testing 
parts using a 15% reserve such that Ntrain < N , we then apply 
feed-forward networks [22] that are trained to minimise the 
functionals

(24a)Dr ∶=
{(

�1, yr,1
)
,
(
�2, yr,2

)
,… ,

(
�N , yr,N

)}
,

(24b)Di ∶=
{(

�1, yi,1
)
,
(
�2, yi,2

)
,… ,

(
�N , yi,N

)}
.

for the model parameters mr and mi in order to predict 
(M(�)NNR)ij = ỹr(�,mr) + iỹi(�,mi) . This can equiva-
lently be used to directly build a regression of the MPT 
eigenvalues.

Fig. 2 shows a flowchart summarising the 3 different 
methods for computing the MPT coefficients with associ-
ated equation numbers.

4.5  Software

Our practical implementations1 build on the MPT-Calcu-
lator software initially developed by Wilson and Ledger 
[5], which uses the NGSolve library (version 6.2.2204) for 
the finite element computations [12–15]. For our neural-
network computations, we use the Scikit-Learn library 

(25)

min
mr

1
Ntrain

Ntrain
∑

n=1
|yr,n − ỹr(�n,mr)|2,

min
mi

1
Ntrain

Ntrain
∑

n=1
|yi,n − ỹi(�n,mi)|2

Fig. 2  Flowchart summarising 
the PODP, POD–NN, and NNR 
methods for quickly computing 
the MPT coefficients

Mesh, Settings

Solve θ
(0)
i (µr,n) (5)

postprocess θ(0)
i (8)

for i = 1, 2, 3

Solve θ
(1)
i (ωn, µr,n) (5)

Assign D(s)
i,n := q(s)

i (ωn) (9)
for ωn, n = 1, 2 · · ·N , i = 1, 2, 3for µr,n, n = 1, 2 · · ·N

Perform TSVD
D(s)

i ≈ UMΣM VM
)H (10)

Model Selection

Solve AM
i (ω)pM

i (ω) = r(ω) (12)

PODP

Obtain q
(s)
i (ω) ≈ UMpM

i (ω)

Compute
(R)ij , (I)ij , and N (0)

)
ij

(4)

Find c minimising
1
N

∑N
n=1

∣
∣
∣ ΣM (V M )H

)
:,n −R (ωn, c)

∣
∣
∣
2

(23)

POD–NN

Obtain
q
(s)
i (ω) ≈ UMR(ω, c(Σ(V M )H)) (22)

Compute
(R)ij , (I)ij , and N (0)

)
ij

(4)

For n snapshots obtain
(R)ij , (I)ij , and N (0)

)
ij

(4)

NNR

Build Dr and Di (24)

Obtain mr and mi minimising
1

NtrainΣNtrain

n=1 |yr,n − ỹr(ωn,mr)|2 (25)
1

NtrainΣNtrain

n=1 |yi,n − ỹi(ωn,mi)|2 (25)

Obtain (M(ω)NNR)ij =
ỹr(ω,mr) + iỹi(ω,mi)

1 The github repository https:// github. com/ MPT- Calcu lator/ MPT- 
Calcu lator is publicly available.

https://github.com/MPT-Calculator/MPT-Calculator
https://github.com/MPT-Calculator/MPT-Calculator
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(version 1.1.2) and consider the tanh and sigmoid activation 
functions. Prior to training, we scale the training data so 
that it has mean 0 and standard deviation 1. We use a quasi-
Newton type limited memory Broyden-Fletcher-Goldfarb-
Shanno (LBFGS) method [23–25] to determine the model 
parameters mr and mi . To determine the hyperparameters, 
for the feed-forward network we employ a grid-based search. 
We consider � = 1, 2 , and 3 hidden layers, each with either 
t = 2, 4, 8, 16, 32 , or 64 neurons and either the tanh or logis-
tic activation functions.

5  Numerical Examples

In this section, we first compare the PODP, POD–NN and 
NNR approaches for the MPT characterisation of a conduct-
ing permeable sphere for different � and �r and then show 
the predictive capability of the approach for a geometry that 
does not have an analytical solution.

5.1  Conducing Permeable Sphere

This subsection discusses the case where B� is a conduct-
ing permeable sphere with radius � = 0.01 m, conductivity 
�∗ = 106 S/m, relative permeability 1 ≤ �r ≤ 50 and excit-
ing frequency 101 ≤ � ≤ 105 rad/s. An analytical solution 
is available for (M)ij for this geometry [26] in the form 
(M)ij = m(�B,�, �∗,�r)�ij , which shows that M is a multi-
ple of identity in this case and, hence, �̃(0)

1
= �̃

(0)

2
= �̃

(0)

3
 and 

�
(1)

1
= �

(1)

2
= �

(1)

3
 for the continuous problem.

To compute snapshot solutions for this geometry, we 
consider B to be a unit radius sphere centred at the origin 
and set up a finite computational domain Ω in the form of a 
sphere of radius 200 units. The domain is discretised by a 
quasi-uniform tetrahedral mesh of element size 0.2 units and 
57 698 elements as illustrated in Fig. 3. The curved surface 
of Γ is approximated by 5th order polynomials.

5.1.1  Full Order Model Solutions

Before considering the accuracy of the reduced order 
model approaches, we first consider the accuracy of the 

full-order model for computing (Mhp)ij using different uni-
form polynomial orders p = 0, 1, 2, 3, 4 for �̃(0,hp)

i
 and �(1,hp)

i
 . 

In Fig. 4, we show the convergence of the first eigenvalues 
𝜆1(R̃

hp
) and �1(I

hp) obtained using the full order model 
to 𝜆1(R̃) and �1(I) for 10 ≤ � ≤ 105 rad/s and �r = 1, 20 . 
We observe a rapid convergence of eigenvalues to the 
exact solution. The convergence of the other eigenvalues 
is similar.

While the solutions obtained from p-refinement are accu-
rate, for each choice of parameters � = [�,�r] a precon-
ditioned conjugate gradient solver is applied to solve (6), 
which requires repeated matrix–vector products involving 
the sparse matrix A with nz non-zero entries. Repeated solu-
tion of the linear system (6) for a large number of evaluation 
parameters is expensive.

5.1.2  Reduced Order Model Solutions

Off–line stage
Unless otherwise stated, we consider N = 162 snapshot 

full order model solutions using the aforementioned discreti-
sation and uniform order p = 2 elements. This is then evalu-
ated over a K = 322 grid of evaluation parameters. This was 
identified by considering the minimum number of snapshots 
for which the PODP, POD–NN and NNR all gave reliable 
results with a relative root mean squared error (rRMSE) 
e ≤ 10−2 where e is

D e n o t i n g  zhp(�) ∶= 𝜆1(R̃(�)hp) + i𝜆1(I(�)
hp)  a n d 

zAPP(�) ∶= 𝜆1(R̃(�)APP) + i𝜆1(I(�)
APP) for k = 1, 2,⋯ ,K 

evaluations parameters, where APP is used to denote either 
PODP, POD–NN or NNR.

The snapshots are computed for logarithmically spaced 
parameters 𝜔n = 10�̃�n , where �̃�n is drawn from a 16 sample 
linearly spaced distribution between 1 and 5, and 𝜇r,n = b𝜇rn , 
where 𝜇rn is obtained from the linear distribution between 0 
and logb(50) . The base b is chosen to be 501∕5.

Then, once (9) and (10) have been applied, we can extract 
the modal information from the SVD. In the case of D(0)

i
 , 

we obtain the decay of the singular values shown in Fig. 5 
where the improvement in the decay of the singular values 
by including (8) is clear. Although not shown, in the case of 
D

(1)

i
 , the projection (8) is not appropriate, since the projec-

tion would remove the gradients fields needed inside the 
object in this case. Henceforth, we select TOL = 10−6 for the 
truncated SVDs (TSVDs) of D(0)

i
 and D(1)

i
 . This corresponds 

to M = 3 modes per �̃(0)

i
 and M = 20 modes per �(1)

i
.

(26)e =

�∑K

k=1
�zAPP(�k) − zhp(�k)�2�∑K

k=1
�zhp(�k)�2

Fig. 3  Conducting perme-
able sphere with � = 0.01 m, 
�∗ = 106 S/m, 1 ≤ �r ≤ 50 and 
101 ≤ � ≤ 105 rad/s: Surface 
mesh of B using an unstruc-
tured tetrahedral mesh with size 
h = 0.2
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Online stage–PODP
Applying the approach described in Sect. 4.2 leads to 

the results shown in Fig. 6 for 𝜆1(R̃
PODP

) , and �1(I
PODP) for 

the case of 1 ≤ �r ≤ 50 and 101 ≤ � ≤ 105 rad/s. This figure 
shows that the reduced order model is in excellent agreement 
with the full order model solutions at the snapshot values 
and the prediction for other parameters follows the expected 
trends. The behaviour of the other eigenvalues is similar.

In order to certify the PODP method, the approach from 
Sect. 4.2.1 is applied leading to the results for (R̃PODP

± Δ) 
shown in Fig. 7 for the cases where N = 62 and N = 162 . In 
this figure, we observe that the certification reduces to the 

full order model solutions at the snapshot values and shows 
that PODP is highly reliable for a large range of � and �r 
values in both cases. The larger error bounds for large � and 
�r using N = 62 indicates that the solution is less reliable in 
this case, although the comparison with the snapshot values 
shows it is accurate. We emphasise that, despite the effec-
tivity index of the upper bound being large in this region, 
this certification can be computed at only a small additional 
cost during the online stage of the ROM and, hence, stills 
provides useful information to assess our confidence in the 
PODP prediction. The confidence in the prediction can be 
improved by increasing from N = 62 to N = 162 as the figure 

(a) (b)

(c) (d)

Fig. 4  Conducting permeable sphere with � = 0.01 m, �∗ = 106 S/m and 101 ≤ � ≤ 105 rad/s: p–convergence of the full-order model solutions 
showing (a) 𝜆1(R̃

hp
) for �r = 1 , (b) �1(I

hp) for �r = 1 , (c) 𝜆1(R̃
hp
) for �r = 20 , and (d) �1(I

hp) for �r = 20



4069Engineering with Computers (2023) 39:4061–4076 

1 3

shows. Alternatively, we can improve the confidence in the 
prediction, by just adding additional snapshots correspond-
ing to the locations where (Δ)ij is large. Similar behaviour is 
observed for (IPODP ± Δ) and for the other eigenvalues for 
this problem. It was also observed when the PODP approach 
was applied for a single parameter in [5].

Online stage POD–NN
In this section, we consider the results obtained by 

applying the POD–NN described in Sect. 4.3. The neural 

networks used for POD–NN were obtained using a cross-
validated grid search method resulting in a choice of 2 
hidden layers, each with 8 neurons and a tanh activation 
function. We also observed that there was no significant 
change in accuracy when including a L2 regularisation 
term in the training of the network and performance was 
degraded when considering more than N = 162 snapshots. 
Of additional note, the performance of the neural net-
work was found to be stable, satisfying a training toler-
ance of 10−10 over at least 2 ≤ � ≤ 3 layers and 23 ≤ t ≤ 26 
neurons.

For our implementation of POD–NN, a new network is 
trained and evaluated for each direction, s = 0, 1 and i with 
the real and imaginary parts of D(s)

i
 being concatenated 

so that 6 training sets with M ordered pairs (x(m), y(m)) , 
where x(m) ∈ ℝ

2 and y(m) ∈ ℝ
2N , are formed. These train-

ing sets are used to train 6 different networks. Once this 
has been completed, the predictions shown in Fig. 8 for 
𝜆1(R̃

POD−NN
) and �1(I

POD−NN) for the case of 1 ≤ �r ≤ 50 
and 101 ≤ � ≤ 105 rad/s are obtained. Like the PODP case, 
the results show that this ROM is also in excellent agree-
ment with the full-order model solutions at the snapshot 
values and the prediction for other parameters follows the 
expected trends. The behaviour for the other eigenvalues 
is similar.

NNR regression
For simplicity of presentation, and ease of comparison, 

we consider the same neural network architecture that 
was previously used for the POD–NN scheme for NNR. 

Fig. 5  Conducting permeable sphere with � = 0.01 m, �∗ = 106 S/m, 
1 ≤ �r ≤ 50 and 101 ≤ � ≤ 105 rad/s: Comparison of (�M)mm∕(�

M)11 
with and without the application of (8) for D(0)

i

(a) (b)

Fig. 6  Conducting permeable sphere with � = 0.01 m, �∗ = 106 S/m, 
1 ≤ �r ≤ 50 and 101 ≤ � ≤ 105 rad/s: Results for (a) 𝜆1(R̃

PODP
), and 

(b) �1(I
PODP) using N = 162 and K = 322 . Note, (b) has been rotated 

in this, and subsequent, surface plots of the imaginary eigenvalues. In 
this example, the rRMSE is e = 3.0 × 10−7
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Applying the approach from Sect. 4.4 leads to the results 
for 𝜆1(R̃

NNR
) , and �1(I

NNR) for the case of 1 ≤ �r ≤ 50 and 
101 ≤ � ≤ 105 rad/s shown in Fig. 9. As with the PODP 
and POD–NN methods, the NNR method shows good vis-
ual agreement with the snapshot values and the prediction 
follows the expected trends. In addition, evaluating the 

rRMSE between the model and the testing samples gives 
e < 0.01 . The results for the other eigenvalues are similar.

5.1.3  Methodology Comparison

Our focus in Sect. 5.1.2 was on a relatively fine off–line 
stage using N = 162 snapshot solutions where it was 
observed that the PODP, POD–NN and NNR approaches 

Fig. 7  Conducting permeable sphere with � = 0.01 m, �∗ = 106 S/m, 1 ≤ �r ≤ 50 and 101 ≤ � ≤ 105 rad/s: Results for (R̃PODP
± Δ)1,1 obtained 

using (a) N = 62 and (b) N = 162

(a) (b)

Fig. 8  Conducting permeable sphere with � = 0.01 m, �∗ = 106 S/m, 1 ≤ �r ≤ 50 and 101 ≤ � ≤ 105 rad/s: Results for (a) 𝜆1(R̃
POD−NN

) , and (b) 
�1(I

POD−NN) using N = 162 and K = 322 . In this example, the rRMSE is e = 2.0 × 10−3
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all produced accurate results for 𝜆1(R̃) and �1(I) when 
evaluated for parameters 1 ≤ �r ≤ 50 and 101 ≤ � ≤ 105 
rad/s. We now wish to examine the performance of each 
method by evaluating the relative error using

We choose to evaluate e over a grid of K = 32 × 32 points 
that are different from the snapshot parameters. The snap-
shots are generated using logarithmically spaced parameters 
corresponding to N = (2)2, (22)2, (23)2, (24)2 = 4, 16, 64, 256 
snapshots and e evaluated at combinations of �r and � cor-
responding to a 32 by 32 grid over the range 101 ≤ � ≤ 105 
rad/s and 1 ≤ �r ≤ 50.

Figure  10 shows e when evaluated for 1 ≤ �r ≤ 50 , 
101 ≤ � ≤ 105 rad/s in a 32 by 32 grid as a function of N for 
the different methods. We can see that the PODP scheme 
performs significantly better than the POD-NN and NNR 
interpolants and, in particular, the PODP scheme leads to 
an approximation that is more than 4 orders of magnitude 
more accurate. Nonetheless, if N ≥ (8)2 snapshots are used, 
POD–NN leads to a solution with error e ≤ 0.01 . The behav-
iour for other combinations of �r and � is similar. During 
the training process, a cross-validated grid search approach 
was used to find optimal hyperparameters. Nevertheless, 
better performance may be obtained by a smaller tolerance, 
performing an optimisation over a wider range of possible 
hyperparameters, or changing the activation function.

Next, we consider a comparison between the computa-
tional time using a sequential methodology for the differ-
ent methods in Fig. 11. We show the wall clock time taken 

to compute the snapshot solutions corresponding to q
(
�n

)
 

and present the timings required to obtain 𝜆1(R̃(�)APP) and 
�1(I(�)

APP) at K = 322 different choices of � corresponding 
to the aforementioned evaluation values of � and �r . These 
timings include the time required to optimise the hyper-
parameters using a cross validated grid-based search con-
sidering � = 1, 2 or 3 layer networks with t = 1, 2, 4, 8, 16 , 

(a) (b)

Fig. 9  Conducting permeable sphere with � = 0.01 m, �∗ = 106 S/m, 1 ≤ �r ≤ 50 and 101 ≤ � ≤ 105 rad/s: Results for (a) 𝜆1(R̃
NNR

) , and (b) 
�1(I

NNR) using N = 162 and K = 322 . In this example, the rRMSE is e = 5.1 × 10−3

Fig. 10  Conducting permeable sphere with � = 0.01 m, �∗ = 106 
S/m, 1 ≤ �r ≤ 50 and 101 ≤ � ≤ 105 rad/s: Results for e obtained for 
a 32 × 32 grid of evaluation parameters over the range 1 ≤ �r ≤ 50 , 
101 ≤ � ≤ 105 rad/s for different N and the PODP, POD–NN, NNR 
methods
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or 64 neurons. We also consider logistic or tanh activation 
functions and a small regularisation term of 0, 10−5 or 10−7 . 
A more expansive set of hyperparameters, a smaller train-
ing tolerance, or a different search strategy may result in a 
significantly increased time.

The figure shows a a significant acceleration in com-
putational time for the NNR method, which is due to the 
need to only compute 𝜆1(R̃(�n)

hp) and �1(I(�n)
hp) for each 

set of snapshot parameters �n , whereas the PODP and 
POD–NN methods require the evaluation of 𝜆1(R̃(�)APP) 
and �1(I(�)APP) at the evaluation points � . In each case, 
the PODP, POD–NN, and NNR methods perform signifi-
cantly faster than the corresponding full order solution for 
these evaluation parameters which takes a wall clock time 
of 45965 s (approximately 13 h). PODP and POD–NN 

both share the same off–line stage and construction of the 
reduced order model. A detailed description for compu-
tational costs associated with POD is provided in [11, pg. 
21-29]. Training the POD–NN and NNR neural networks 
depends heavily on the network architecture and tolerances 
but typically relies on efficient quasi-Newton optimisa-
tions. The LBFGS, which we have used here, is well suited 
to large dimensional problems given its linear computa-
tional cost. See [27, pg. 224-233].

Timings were performed using a 6 core Intel i5 10600 
CPU and 64 GB of RAM where the multiple cores of this 
machine were used computing the snapshots in parallel, 
but not for the timings in Fig. 11. From the figures, we 
see that computing and postprocessing the snapshots con-
stitutes a majority of the computation time and reducing 
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Fig. 11  Conducting permeable sphere with � = 0.01 m, �∗ = 106 S/m, 1 ≤ �r ≤ 50 and 101 ≤ � ≤ 105 rad/s: Comparison of computation times 
for different N for the (a) PODP, (b) POD–NN, and (c) NNR methods
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this cost is a key benefit of the NNR method. Furthermore, 
training (including the optimisation to find the hyperpa-
rameters) and evaluating the ROM and neural networks is 
extremely quick for the relatively shallow neural networks 
considered.

From Figs. 10 and 11, we see that the PODP method is 
significantly more accurate than the NNR and POD–NN 
methods, and of a similar computational expense to the 
POD–NN method, however, this is at the expense of sig-
nificant code intervention. For each method, many of 
the calculations are trivially parallelisable and a parallel 
implementation using a machine with multiple cores can 
be used to reduce the computational cost. In the case of 
NNR, which is the least invasive to implement, a paral-
lel implementation of the calculation of 𝜆1(R̃(�n)

hp) and 
�1(I(�n)

hp) at all snapshots �n would reduce the time, but, 
given that the largest contribution to the processing time 
is the computation of the snapshot solutions, which is 
shared across all three methods, additional parallelism is 
less effective than the PODP and POD–NN cases. In the 
case of PODP, which is the most invasive to implement, 
we see it has the smallest growth in computational time for 
this example, with solving the smaller linear system being 
quick and post-processing taking a constant time. How-
ever, if the size M of the ROM needed becomes large, the 
memory usage and computational time of this approach 
may increase significantly. The POD–NN method does not 
require access to A and r and is ideally suited to closed 
code bases.

5.2  Hammer Head Example

A metal claw head hammer is considered as a more complex 
example, modelled as 440A stainless steel �∗ = 1.7 × 106 
S/m [28, pg 894], and the non–dimensional object B is 
chosen to be such that � = 0.001 m. Similarly to the sphere 
example, the object B for this case is surrounded by a large 
non-conducting region [−1000, 1000]3 units and consists of 
51 095 unstructured tetrahedral elements. The maximum 
mesh size inside the object is h = 5 units and the distribution 
of the element on the surface of B is illustrated in Fig. 12. 
In practice, many magnetic materials, such as steel, have 
a non–linear B −H constitutive behaviour and, thus, �r 
depends on H and may vary by several orders of magnitude, 
although, for field strengths involved in metal detection, the 
linear relationship B = �r�0H typically holds. Nonethe-
less, it not always straightforward to find the correct �r for 
the characterisation. Using the ROM with two parameters 
allows us to explore the effects of increased �r at reduced 
computation time.

Given the success of the PODP approach in the previous 
section, we also apply this approach for the hammer-head 
example.

Off–line solutions
By performing a p–convergence study on the mesh of 

51 095 unstructured tetrahedral elements we found that using 
uniform order p = 2 order elements are sufficient to obtain 
converged results for (M)ij at the snapshot parameters. Then, 
using this discretisation, N = 162 full order model solution 
snapshots were generated corresponding to logarithmically 
spaced snapshot parameters, in a similar way as described 
in Sect. 5.1.2. Similarly to Sect. 5.1.2, TOL was set at 10−6 
for both �̃(0) and �(1) problems.

On–line solutions
Applying the approach described in Sect. 4.2 leads to 

the results shown in Fig. 13 for 𝜆1(R̃
PODP

) , and �1(I
PODP) 

for the case of 1 ≤ �r ≤ 50 and 101 ≤ � ≤ 105 rad/s. This 
figure shows that the ROM is in excellent agreement with 
the full-order model solutions at the snapshot values and the 
prediction for other parameters follows the expected trends. 
The behaviour for the other eigenvalues is similar.

Similarly, the estimated error certificates for this object 
shows that the ROM and full-order solutions are in good 
agreement, as illustrated by Fig 14 where (R̃ ± Δ)1,1 and 
(I ± Δ)1,1 are shown. Similar performance is observed for 
the other coefficients.

6  Conclusion

In this article, we discuss alternative approaches to effi-
ciently computing the complex MPT coefficients for differ-
ent objects under a two-dimensional range of material prop-
erties. We have extended the PODP ROM discussed in [5] to 
two dimensions, and compared it with less invasive neural 
network-based regression techniques POD-NN and NNR.

A series of numerical examples are provided for the 
cases of a conducting permeable sphere, and a hammer-
head modelled as 440 stainless steel over a wide frequency 

Fig. 12  Conducting permeable hammer head with � = 0.001 m, 
�∗ = 1.7 × 106 S/m, 1 ≤ �r ≤ 50 and 101 ≤ � ≤ 105 rad/s: Surface 
mesh of B using an unstructured tetrahedral mesh with maximum size 
h = 5
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range and considering a range of permeabilities. Our results 
have shown that the PODP method performs most accu-
rately, however, if such high accuracy is not required, then 
the POD–NN method provides a less intrusive alternative. 
While the on-line stage of POD-NN is quick, the training 
and optmisation of hyper-parameters can add significant 
costs to the off-line stage depending on the optimisation 
strategy and architectures of the neural networks considered. 

Due to the inclusion of a more effective gauging for the �(0) 
problem, we achieve faster decay of the singular values, and 
a more accurate ROM than the one presented in [5].

Future work involves applying the presented approaches 
to generate a large dictionary of MPT spectral signatures 
for different magnetic objects and to improving the meth-
odology for resolving the fields in the thin skin depths 
for objects with very hight �r . In addition, it would be 

(a) (b)

(c) (d)

Fig. 13  Conducting permeable hammer head with � = 0.001 m, �∗ = 1.7 × 106 S/m, 1 ≤ �r ≤ 50 and 101 ≤ � ≤ 105 rad/s: Results for (a) 
𝜆1(R̃

PODP
) , (b) �1(I

PODP) , (c) 𝜆2(R̃
PODP

) , and (d) �2(I
PODP) using N = 162 . The rRMSE for this example is e = 1.96 × 10−6
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of interest, particularly in scrap metal sorting, if the full 
object description allowed by considering changes in �r 
can be applied for the estimation of an object’s material 
properties.
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