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Abstract
The discharge flow rate beneath sheet plies is an essential parameter in designing these water retaining structures. This 
paper presents a unified framework for modeling and predicting discharge flow rate using an evolutionary-based polynomial 
regression technique. EPR (Evolutionary Polynomial Regression) is a data-driven method based on evolutionary comput-
ing to search for polynomial structures representing a system. The input parameters in the modeling procedure included the 
sheet pile height, upstream water head, and the hydraulic conductivity anisotropy ratio. Due to ever-increasing demand for 
water, a widely held view on predicting and controlling the available water behind reservoirs, dams, barrages, and weirs 
is of vital importance. To this end, the sheer novelty of the current study has been worn off through the development of a 
comprehensive model to predict the flow rate considering the most effective variables in the seepage issue. To the best of 
our knowledge, the research conducted in the literature has yet to cover the whole seepage problem using a comprehensive 
database extracted by numerical methods; thus, a comprehensive finite-element-based artificial database including 1000 data 
lines was created using the Scaled Boundary Finite Element Method (SBFEM) by simulating seepage beneath sheet plies 
covering a considerably wide range of seepage-related real-world values. The database was then employed to develop and 
validate the EPR flow rate prediction model. Data were divided into training (used for creating the models) and testing (for 
validating the developed models) data based on a statistical process. The procedure for preparing the data and developing and 
validating the models is presented in detail in this paper. The main advantage of the proposed models over a conventional and 
neural network and most GP (Genetic Programming)-based constitutive models is that they provide the optimum structure 
for the material constitutive model representation as well as its parameters, directly from raw experimental (or field) data. 
EPR can learn nonlinear and complex material behavior without any prior assumptions on the constitutive relationships. 
The proposed algorithm captures and transparently presents relationships between contributing parameters in polynomial 
expressions providing the user with a clear insight into the problem. EPR-based model predictions demonstrated an excellent 
agreement with the unseen simulated data used for validating the developed model. A parametric study on the presented 
models was conducted to investigate the effects of the contributing parameters on model predictions and the consistency of 
the parameter relationships with the database. Results of the parametric study showed that the effects of variations in the 
contributing parameters on EPR predictions are in line with the expected behavior. The merits and advantages of the proposed 
technique are discussed in the paper.
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1  Introduction

Desirable safety of the water-retaining structures is iden-
tified as the top priority of geotechnical research atten-
tion which is foundational to broader research in the field. 
The discharge flow rate at the downstream side of a water 
retaining structure, as a seepage output quantity, remains 
the central part of the safe design of the structure. The high 
values of the discharge flow rate can endanger the water 
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retaining structure stability. Use should be made of installed 
vital systems called sheet piles for reducing the values of 
downstream discharge flow rate at a flow region or under the 
foundation of a dam. The seepage beneath the sheet pile fol-
lows a specific differential equation in calculating discharge 
flow rate—similar to most seepage-related problems in geo-
technical engineering. Beyond that, researchers for solving 
the seepage governing equation and computing the flow rate 
discharge have employed various methods. The analytical 
and numerical methods have been performed more broadly.

A variational iteration method with fractional deriva-
tives as an analytical method to solve the nonlinear seepage 
flow into porous media was suggested by He [1]. Handling a 
finite difference method based on boundary-fitted coordinate 
transformation to analyze the steady-state seepage with a 
free surface in the isotropic and homogeneous embanked 
dam was carried out by Jie et al. [2]. In analyzing the two 
and three-dimensional seepage problems using finite differ-
ence methods, so-called boundary polynomial interpola-
tion was adopted by Fukuchi [3]. Relying on two practi-
cal approaches suggested in the literature, Bresciani et al. 
[4] applied a finite volume-based method to find out the 
solutions of groundwater flow through earth dams. Their 
proposed methods merged the most beneficial advantages 
of adaptive and fixed mesh techniques. A coupled finite-
element-based method to model the transient seepage flow 
beneath a concrete dam has been employed by Ouria et al. 
[5]. Kazemzadeh-Parsi and Daneshmand [6] have exerted a 
smoothed fixed grid finite element method to analyze three-
dimensional unconfined seepage of complex geometries, 
heterogeneous, and anisotropic porous media. Rafiezadeh 
and Ataie-Ashtiani [7] developed a coded computer program 
based on the boundary element method to analyze three-
dimensional confined seepage problems under dams. The 
unconfined seepage problems by the natural element method 
have been simulated by Jie et al. [8]. Mesh-free technique 
to analyze the free-surface seepage problem as a moving-
boundary problem has been exercised by Zhang et al. [9]. 
The node locations were arbitrary in this meshless method 
letting the seepage problems with free surface be appropri-
ately analyzed.

Although analytical techniques cannot straightly apply 
to complicated geometries and complex boundary condi-
tions, these methods, however, can provide exact solutions 
to problems [1]. Preparing approximate analysis satisfying 
high accuracy to deal with the more complex issues is con-
ducted by numerical methods. The approaches considered to 
be mesh-based, such as finite difference, finite volume, and 
finite element, are implemented to discretize the whole prob-
lem domains. An essential disadvantage of most mesh-based 
methods is that a domain could be encountered, in cases, 
consisting of singular points and sharp corners, making the 

further progress of numerical-based techniques towards the 
desired solution(s) numerically impossible [9–11].

A newly developed semi-analytical method called Scaled 
Boundary Finite Element Method (SBFEM), proven to be 
capable of solving different types of differential equations, 
was proposed by Song and Wolf [12] to transcend the limits 
of some existing recent approaches. The SBFEM has merged 
important excellences of finite element and boundary ele-
ment methods. Bazyar and Graili [13] analyzed the confined 
seepage problems beneath the dams and the sheet piles in 
steady-state conditions in anisotropic media using SBFEM. 
What was conducted in another part of Bazyar and Graili 
[13] study was a successful attempt to solve unconfined flow 
problems using an unknown free surface through the dam 
body. The SBFEM for analyzing the transient seepage prob-
lems in bounded and unconfined domains was extended by 
Bazyar and Talebi [14]. The proposed method was capable 
of solving the seepage problem for heterogeneous and ani-
sotropic porous media without extra endeavor. Reliability 
analysis of seepage in several numerical problems through 
stochastic SBFEM was handled by Johari and Heydari [15]. 
Su et al. [16] utilized drainage substructure and nodal virtual 
flux method to simulate drainage holes and analyze com-
plex seepage fields. The advantages of the SBFEM outweigh 
other methods. Hence, it seems to be a practical method to 
analyze the seepage beneath sheet plies and to acquire the 
discharge flow rate.

Despite the efficiencies of the SBFEM in obtaining the 
discharge flow rate, a separate analysis will be needed for 
discharge flow rate computing in every single condition. 
Furthermore, the user must be fully acquainted with the 
analysis procedure to be able to effectively and efficiently 
analyze the seepage problem beneath the sheet piles and 
subsequently acquire the discharge flow rate. To overcome 
this downside, prediction models have been developed that 
directly relate quantities such as discharge flow rate to their 
contributing parameters which removed the need for tedi-
ous use of any analytical, numerical, or laboratory meth-
ods to calculate the discharge flow rate as part of solution 
procedures. Data-driven approaches, regression methods, 
artificial intelligence, and other soft computing techniques 
have been recently attracted several researchers to generate 
prediction equations for the complicated behavior of various 
systems. Artificial Neural Networks (ANN) [17, 18], Adap-
tive Neuro-Fuzzy Inference System (ANFIS) [19, 20], Ant 
Colony Optimization (ACO) [21], Evolutionary Polynomial 
Regression (EPR) [22], Genetic Algorithm (GA) [23–25], 
Genetic Programming (GP) [26–28], Genetic-Based Neural 
Network (GBNN) [29, 30], and Gene Expression Program-
ming (GEP) [31–34] can be mentioned as the most conven-
tional soft computing and heretofore outstanding contribu-
tions in various civil engineering problems.
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In this contribution, an Evolutionary Polynomial Regres-
sion (EPR) model is developed to predict discharge flow 
rate under sheet piles. The EPR models developed in this 
study were produced based on a large database comprising 
1000 lines of artificial data retrieved from using the SBFEM 
method simulating real-world conditions of seepage under 
sheet piles to provide a powerful, representative, and com-
prehensive model that could be applied to the situations 
similar to the conditions underlain in the comprehensive 
model development database used.

2 � Evolutionary polynomial regression (EPR)

Evolutionary Polynomial Regression (EPR) is a data-driven 
method based on evolutionary computing to search poly-
nomial structures representing a system. A general EPR 
expression may be presented as:

where y is the estimated vector of the output of the process; 
aj is model parameters; F is a function constructed by the 
EPR process; X is the matrix of input variables; f is a func-
tion defined by the user, and n is the number of terms of the 
target expression. The general functional structure is con-
structed from elementary functions by EPR using a Genetic 
Algorithm (GA) strategy. The GA is employed to select the 
useful input vectors from X to be combined. The building 
blocks (elements) of the structure of F are defined by the 
user based on an understanding of the physical process. 
While the selection of feasible structures to be combined is 
made through an evolutionary process, the parameters aj are 
estimated by the least square method (Fig. 1).

In this technique, the combination of the genetic algo-
rithm to find feasible structures and the least square method 
to find the appropriate model parameters for those struc-
tures implies some advantages. In particular, the GA allows 
a global exploration of the error surface relevant to specifi-
cally defined objective functions. Using such objective func-
tions some criteria can be selected to be satisfied through 
the search process. These criteria can be set to (a) avoid the 
overfitting of models, (b) push the models towards simpler 
structures, and (c) avoid unnecessary terms representative 
of the noise in data. EPR avoids over-fitting by penalizing 
the number of inputs involved in structures (model com-
plexity); controlling the constant values whose term may 
describe noise when the related constant is close to zero, 
and controlling the variance of EPR terms with respect to 
noise variance in data which is estimated by model residuals 
[35]. A useful feature of EPR is the high level of interactivity 
between the user and the methodology. The user physical 

(1)y =

n
∑

j=1

F
(

X, f (X), aj
)

+ a0

insight can be used to make hypotheses on the elements of 
the target function and on its structure [Eq. (1)]. Selecting 
an appropriate objective function, assuming pre-selected ele-
ments in Eq. (1) based on engineering judgment and work-
ing with dimensional information enable refinement of final 
models [22].

Before starting the evolutionary procedure, a number 
of constraints can be implemented to control the structure 
of the models to be constructed, in terms of length of the 
equations, type of functions used, number of terms, range 
of exponents, number of generations etc. It can be seen that 
there is great potential in achieving different models for a 
particular problem which enables the user to gain additional 
information. By starting to apply the EPR procedure, the 
evolutionary process starts from a constant mean of output 
values. By increasing the number of evolutions, it gradu-
ally picks up the different participating parameters to form 
equations representing the constitutive relationships. Each 
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Fig. 1   Typical flow diagram for the EPR procedure
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model is trained using the training data and tested using the 
testing data [22, 35].

3 � Data preparation using SBFEM

The EPR models developed in this study were produced 
based on an extensive database including 1000 lines of syn-
thetic data retrieved from the SBFEM method simulating 
possible scenarios under various boundary and real-world 
conditions of seepage under sheet piles using a robust, 
representative, and comprehensive model. Figure 2 shows 
the geometry and the boundary conditions of the problem 
domain divided into non-uniform subdomains. The sheet 
pile is considered in the middle of the modeling domain. A 
20.0 m by 40.0 m horizontal saturated soil layer is modeled 
as the domain of the problem.

The preciseness and versatility of the model used 
to produce the data based on which this research was 

conducted are clarified by comparing the results of 
SBFEM with those of FEM. For this purpose, an FEM 
code was developed. The domain discretization used for 
both models is shown in Fig. 3. The domain is discretized 
into 450 subdomains for SBFEM. The scaling centers 
related to corresponding subdomains, are located exactly 
at the geometry center. The contour of potential lines for 
the results of SBFEM and FEM is demonstrated in Fig. 4. 
The results indicated great compatibility between the 
results of SBFEM and FEM, a strong testimony for the 
accuracy and the reliability of the generated artificial data 
used in this study.
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Fig. 2   Geometry of the model

Fig. 3   Domain discretization of 
a SBFEM, b FEM
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4 � Developing the EPR model

In pattern recognition procedures in general, for instance 
neural network, fuzzy logic, or genetic programming, the 
model construction is normally based on adaptive learning 
over several cases. The performance of the developed model 
is then evaluated using a validation data set which has not 
been used/participated in the model development process. 
In evolutionary-based modeling, how the data are divided 
into training and validation sets has a significant effect on 
the results [36, 37].

The developed model could be applied to situations simi-
lar to the conditions underlain in the comprehensive model 
development database. Three input parameters with biggest 
influence on the seepage results are selected, including sheet 
pile height (D), upstream water level (H), and hydraulic 
conductivity anisotropy ratio of deposit materials (K). The 
output parameter is considered as the normalized flow rate 
QNor. The seepage problem is an elastic problem and based 
on seepage equations the only soil parameter that is involved 
in solving the problem is the infiltration coefficient. From 
the geometrical point of view, upstream water level (H) and 
Sheet pile height (D) are the most influencing parameters, 
and the modelling dimensions will have little effect on the 
results. Results from previous studies [40] emphasize that 
the sheet pile height has greater effect on the total seepage 
discharge compared to any other location-related parameter 
that may affect seepage. The parameter ranges in this study 
are considered to fall within the expected range for small to 
medium sheet piles [41] that are most used in the industry. 
However, the EPR model has the capability to be retrained 
if different ranges of parameters were the subject of interest 
or in case any complementary data becomes available to 
make sure the model stays relevant and applicable to the 
considered newly emerging scenarios. Table 1 states the 
range of parameters for the input and output parameters in 
this research.

The training of the EPR resulted in the development of 
few equations. Of these, some equations did not include the 
effect of all contributing parameters. Among the remain-
ing equations, the most appropriate and efficient one based 

on the model performance (fitness) and complexity was 
selected as the final model. Equation 2 presents the devel-
oped EPR model:

The D, H, and K are the cutoff depth, the upstream/upper 
head of water, and the anisotropy ratio (kx/ky) of a soil 
deposit, respectively. Figure 5 shows the normalized flow 
rate predicted by EPR against the data used to develop the 
EPR model (training data).

In this study, the data set was split into several random 
combinations of training and validation sets until a robust 
representation of the whole population was achieved for 
both training and validation sets. Statistical analysis was 
performed on the input and output parameters of the ran-
domly selected training and validation sets to choose the 
most robust representation. This was to ensure that the sta-
tistical properties of the selected data in each of the subsets 
(training or testing) are as close as possible to the other, and 
the training and testing subsets represent the same statisti-
cal population. Of the 1000 available data sets, 80% were 
used to train EPR. The remaining 200 (20%) was chosen to 
validate the developed model, meaning that these sets were 
unseen to EPR during the model development processes. 
The ratio on which the data are divided into training and 
testing subsets is chosen to stay consistent and comparable 
with the traditional approach in machine learning research 

(2)
Qnor = −1.24D3H + 2.47D2H − 1.64DH − 0.17DK

+ 0.23HK + .44H + 0.14K + 0.02

Table 1   Parameters involved in the developed EPR model

Parameters Range

Input parameters
 Sheet pile's height (D) 0.25–10 m
 Upstream water level (H) 1–5 m
 Anisotropy ratio of deposit materials (K) 0.2–1

Output parameter
 Normalized flow rate QNor 1.42⨯10–6–8.54⨯10–5
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Fig. 5   Predicted vs. SBFEM-based data used to train EPR model
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[22, 36]; however, there is no limitation in EPR approach 
in choosing any ratio and depending on the data availabil-
ity and application this could change. Many possibilities 
emerged, enabling the desired combination of the training 
and testing data. Therefore, minimum, maximum, mean, and 
standard deviation were calculated for all the contributing 
parameters for the training and testing data sets for possible 
cases. The one point in which the standard deviation and 
mean values were the closest for the training and testing data 
was chosen for training and testing stages in the EPR model 
development process. In this way, the most statistically con-
sistent combination was used to construct and validate the 
EPR model.

The level of accuracy at each stage of the modelling pro-
cess was evaluated based on the coefficient of determination 
(COD), i.e., the fitness function defined as [22, 35]

where �a is the actual output value; �p is the EPR predicted 
value and N is the number of data points on which the COD 
is computed. If the model fitness is not acceptable or the 
other termination criteria (in terms of maximum number of 
generations and maximum number of terms) are not satis-
fied, the current model should go through another evolution 
to obtain a new model.

As shown in Fig. 6, comparison of the results along with 
the high Coefficient of Determination (COD) values for the 
EPR model (Training COD: 98%–Testing COD: 97%) indi-
cate the excellent performance of the developed model in 
capturing the underlying relationships between the contrib-
uting parameters and flow rate and also in generalizing the 
training to predict seepage behavior under sheet piles under 
unseen conditions.

The proposed EPR model generates a transparent and 
structured representation of the system. One of the main 
advantages of the EPR approach is that there is no need to 
assume a priori form of the relationship between the input 
and output parameters. The explicit and transparent struc-
tures obtained from the proposed EPR method can allow 
physical interpretation of the model predictions giving the 
user additional insight into the relationship between input 
and output parameters by performing sensitivity analyses 
of the developed model for individual contributing param-
eters. In general, EPR-based modeling has several advan-
tages, including that it provides a simple and straightforward 
framework for modeling all materials. It does not require 
any arbitrary choice of the constitutive (mathematical) 
model, yield function, plastic potential function, flow rule, 
etc. As EPR learns the material behavior directly from raw 

(3)COD = 1 −

∑

N

(Ya − Yp)
2

∑

N

�

Ya −
1

N

∑

N

Ya

�2

experimental data, it is the shortest route from experimen-
tal/research-based/artificially generated data to numerical 
modeling.

It should be noted that EPR trains and develops validated 
models using the data provided regardless of the way the 
data has been collected/generated. This study is also not an 
exception and the synthetic data generated along with its 
geometrical as well as any other aspects, which are intrinsi-
cally included in the data, is used by EPR and the presented 
model reflects the data—as a whole—used to train EPR and 
develop and validate the model, precisely as expected by the 
user, in the model outcomes/predictions. However, EPR has 
the capability to be retrained, where more/different data are 
developed, needed, or becomes available to ensure the model 
stays representative, relevant, and comprehensive.

4.1 � Sensitivity analysis

A sensitivity analysis was conducted to investigate the 
effects of individual contributing parameters on the predic-
tions made by the proposed model. The aim was to verify 
the consistency of the behavior predicted by the model and 
the expected behavior for the system from the literature. 
To perform the analysis for every normalized contributing 
parameter, all the parameter values for all parameters—other 
than the one being investigated—were set to their average 
values in the range. The parameter being studied then was 
set to vary between the minimum and maxim parameter val-
ues. A graph was then plotted to show the variations in EPR 
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Fig. 6   Predicted vs. SBFEM-based data used to validate EPR model
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predictions for the flow rate as the parameter in question 
varied in value between its minimum and maximum values. 
Figures 7, 8, and 9 show the sensitivity analysis results for 
sheet pile/cutoff wall length, upstream/upper head, and ani-
sotropy ratio.

As shown in Fig. 7, given a certain position of the cutoff 
wall, increasing the cutoff depth results in a reduction in the 
seepage discharge, and the flow rate predicted by the EPR 
model decreases. This phenomenon can be understood based 
on Darcy’s theory [38]. Moreover, as the opening between 
the cutoff wall and the impervious floor is reduced, con-
verging flow lines add resistance to the flow, and seepage 
is diminished. As shown in Fig. 8, given a specific posi-
tion of the cutoff wall, increasing the upstream/upper head 
of water results in an increase in the seepage discharge, so 
the flow rate predicted by the EPR model increases. If the 
head (h) is everywhere, there is no water flow through the 
soil. If the head differs in different parts of the soil mass, 
water flows away from points at which the head is high and 
towards points at which the head is lower. The flow rate is 
governed by the hydraulic gradient dependent directly on 
the water head, which is considered the essential term of the 
seepage force per soil volume and acts in the flow direction. 
When the flow is upward in the soil, pore water pressure 
increases, and effective stress decreases. When the flow is 
downward, the pore water pressure drops, and the effective 
stress increases.
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Fig. 7   Sensitivity analysis—effect of changes in sheet pile/cutoff wall 
length on flow rate predictions by the EPR model
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Fig. 8   Sensitivity analysis—effect of changes in upstream/upper head 
of water on flow rate predictions by the EPR model
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Fig. 9   Sensitivity analysis—effect of changes in anisotropy ratio on 
flow rate predictions by the EPR model
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As shown in Fig. 9, given a specific position of the cut-
off wall, increasing the anisotropy ratio of a soil deposit 
results in an increase in the seepage discharge, so the flow 
rate predicted by the EPR model increases. It was found 
that increasing the anisotropy ratio of permeability leads to 
the formation of horizontal flow canals and increasing the 
seepage flow consequently at a constant vertical permeabil-
ity. Variation of permeability coefficient was found to have 
almost no impact on mean discharge flow rate for anisotropic 
fields compared to the isotropic conditions. Hence, it appears 
that the anisotropic properties of the soil alluvium have a 
significant influence on the stress distribution, hydraulic 
conductivity coefficient, and damage zone [39].

5 � Discussion and Conclusion

The current study investigated an EPR model which is devel-
oped to predict discharge flow rate under sheet piles. The 
EPR models developed in this contribution were produced 
based on an extensive database comprising 1000 lines of 
artificial data retrieved from using the SBFEM method simu-
lating real-world seepage conditions under sheet piles. As 
mentioned before, one of the important advantages of this 
method is modeling the singular points directly with high 
accuracy, and this feature can be utilized to model seepage 
beneath the sheet piles as a singular point. The preciseness 
and versatility of the model were clarified by comparing 
the results of SBFEM with those of FEM. The domain was 
discretized into 450 subdomains and 3200 elements for 
SBFEM and FEM, respectively. The contour of potential 
lines for the results of SBFEM and FEM was shown. The 
results indicated great compatibility between the results of 
SBFEM and FEM.

A robust, representative, and comprehensive model that 
could be applied to situations similar to the conditions 
underlain in the complete model development database, was 
developed. It was shown that the EPR model can capture the 
underlying relationships between various parameters directly 
from artificially developed SBFEM data and make predic-
tions of very high precision for unseen scenarios (as veri-
fied by the introduced unseen testing/verification data set). 
The EPR model was tested using data that were not used in 
the training stage of the EPR model development process; 
thus, an unbiased performance indicator was obtained on 
the actual prediction capability of the model. The results 
show the excellent ability of the EPR model in generalizing 
the training to predict flow rates under unseen conditions. 
Ultimately, the validity of the behavior consistency, signi-
fied by the model and the expected system behavior from the 
literature, has been assessed by sensitivity analysis. Accord-
ingly, Qnor predicted by the EPR model decreases when the 
cutoff depth increases at a particular position of the cutoff 

wall. The training of the EPR resulted in the development 
of few equations. Since some equations did not include all 
contributing parameters, the most appropriate and efficient 
one based on the model performance (fitness) and complex-
ity was selected as the final model. After training the desired 
EPR model, its account was verified using 200 sets of valida-
tion data that had not been introduced to EPR during train-
ing. Then, a comparison between COD values for the EPR 
models, including training and testing CODs (i.e., training 
COD: 98%–testing COD: 97%), has been drawn to prove 
the appropriate fitness of the developed model in captur-
ing the underlying relationships between the contributing 
parameters and flow rate and also in generalizing the training 
to predict seepage behavior under sheet piles under unseen 
conditions. This obtained parameter has also increased when 
the upstream/upper head of water and the soil deposit’s ani-
sotropy ratio increased.

The synthetic data used to develop and verify the EPR 
model has been carefully generated to be robust and to repre-
sent real world problems. The developed model verification 
and parametric study suggest that the model predictions are 
in line with expectations and are highly accurate as long as 
the contributing parameters of any problem fall in the ranges 
used to create and verify the model; however, it is advised 
that necessary precautions and verifications to be put in 
place on case-by-case basis and where applying the model 
to real world problems to ensure safety of the structures.
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