Skip to main content
Log in

Buckling analysis of functionally graded sandwich thin plates using a meshfree Hermite Radial Point Interpolation Method

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This paper introduces an innovative mesh-free computational approach for simulating problems with geometric nonlinearity, focusing on the buckling analysis of thin plates. Addressing significant deformations, the study formulates governing partial differential equations based on Kirchhoff’s plate theory and discretizes them using the Galerkin method. To tackle the complexities of this problem, which demands higher-order continuity in shape functions and accommodates both Dirichlet and Neumann boundary conditions, the research extends the Hermite-type point interpolation method (HPIM). Despite HPIM’s effectiveness, occasional singularities in the moment matrix require enhancement. This work proposes an improved Hermite-type point interpolation method augmented by radial basis functions (Hermite-RPIM) to ensure a well-conditioned moment matrix. The efficacy of the proposed method is validated through detailed numerical examples, including buckling and post-buckling analysis of sandwich functionally graded material (FGM) plates under various loadings, boundary conditions, and material types. These examples highlight the robustness, reliability, and computational efficiency of the enhanced Hermite-RPIM, establishing its potential as a valuable tool for analyzing geometrically nonlinear problems, especially in thin plate buckling analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256

    MathSciNet  MATH  Google Scholar 

  2. Liu G-R, Gu Y-T (2005) An introduction to meshfree methods and their programming. Springer Science & Business Media

    MATH  Google Scholar 

  3. Liu G-R, Gu Y (2001) A point interpolation method for two-dimensional solids. Int J Numer Methods Eng 50(4):937–951

    MATH  Google Scholar 

  4. Wang J, Liu G (2002) On the optimal shape parameters of radial basis functions used for 2-D meshless methods. Comput Methods Appl Mech Eng 191(23–24):2611–2630

    MathSciNet  MATH  Google Scholar 

  5. Yamanouchi M, Koizumi M, Hirai T, Shiota I (1990) FGM-90. In: Proceedings of the First International Symposium on functionally gradient materials, FGM Forum, Tokyo, Japan

  6. Besisa DH, Ewais EM (2016) Advances in functionally graded ceramics-processing, sintering properties and applications. Adv Funct Graded Mater Struct, pp 1–32

  7. Ram S, Chattopadhyay K, Chakrabarty I (2017) High temperature tensile properties of centrifugally cast in-situ Al-Mg2Si functionally graded composites for automotive cylinder block liners. J Alloy Compd 724:84–97

    Google Scholar 

  8. Lengauer W, Dreyer K (2002) Functionally graded hardmetals. J Alloy Compd 338(2):194–212

    Google Scholar 

  9. Konyashin I, Zaitsev A, Sidorenko D, Levashov E, Konischev S, Sorokin M, Hlawatschek S, Ries B, Mazilkin A, Lauterbach S et al (2017) On the mechanism of obtaining functionally graded hardmetals. Mater Lett 186:142–145

    Google Scholar 

  10. Suk M-J, Choi S-I, Kim J-S, Kim YD, Kwon Y-S (2003) Fabrication of a porous material with a porosity gradient by a pulsed electric current sintering process. Met Mater Int 9:599–603

    MATH  Google Scholar 

  11. Pompe W, Worch H, Epple M, Friess W, Gelinsky M, Greil P, Hempel U, Scharnweber D, Schulte K (2003) Functionally graded materials for biomedical applications. Mater Sci Eng, A 362(2):40–60

    Google Scholar 

  12. Banh-Thien T, Dang-Trung H, Le-Anh L, Ho-Huu V, Nguyen-Thoi T (2017) Buckling analysis of non-uniform thickness nanoplates in an elastic medium using the isogeometric analysis. Compos Struct 162:182–193

    MATH  Google Scholar 

  13. Shen H-S (2016) Functionally graded materials: nonlinear analysis of plates and shells. CRC Press

    MATH  Google Scholar 

  14. Cirakoglu M (2001) Processing and characterization of functionally graded titanium/titanium boride/titanium diboride composites by combustion synthesis/compaction and microwaves, Ph.D. thesis, University of Idaho

  15. Lieu QX, Lee J (2019) A reliability-based optimization approach for material and thickness composition of multidirectional functionally graded plates. Compos B Eng 164:599–611

    MATH  Google Scholar 

  16. Banh TT, Lieu QX, Lee J, Kang J, Lee D (2023) A robust dynamic unified multi-material topology optimization method for functionally graded structures. Struct Multidiscip Optim 66(4):75

    MathSciNet  MATH  Google Scholar 

  17. Zhang D-G, Zhou Y-H (2008) A theoretical analysis of FGM thin plates based on physical neutral surface. Comput Mater Sci 44(2):716–720

    MATH  Google Scholar 

  18. Ferreira A, Batra R, Roque C, Qian L, Jorge R (2006) Natural frequencies of functionally graded plates by a meshless method. Compos Struct 75(1–4):593–600

    MATH  Google Scholar 

  19. Birman V, Bert CW (2002) On the choice of shear correction factor in sandwich structures. J Sandw Struct Mater 4(1):83–95

    MATH  Google Scholar 

  20. Nguyen T-K, Sab K, Bonnet G (2007) Shear correction factors for functionally graded plates. Mech Adv Mater Struct 14(8):567–575

    MATH  Google Scholar 

  21. Hosseini-Hashemi S, Fadaee M, Atashipour SR (2011) Study on the free vibration of thick functionally graded rectangular plates according to a new exact closed-form procedure. Compos Struct 93(2):722–735

    MATH  Google Scholar 

  22. Ferreira A, Batra R, Roque C, Qian L, Martins P (2005) Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method. Compos Struct 69(4):449–457

    MATH  Google Scholar 

  23. Garg A, Chalak H (2019) A review on analysis of laminated composite and sandwich structures under hygrothermal conditions. Thin-Walled Struct 142:205–226

    MATH  Google Scholar 

  24. Chaabani H, Mesmoudi S, Boutahar L, El Bikri K (2022) A high-order continuation for bifurcation analysis of functionally graded material sandwich plates. Acta Mech 233(6):2125–2147

    MathSciNet  MATH  Google Scholar 

  25. Chaabani H, Mesmoudi S, Boutahar L, El Bikri K (2023) A high-order finite element continuation for buckling analysis of porous FGM plates. Eng Struct 279:115597

    MATH  Google Scholar 

  26. Mesmoudi S, Hilali Y, Rammane M, Askour O, Bourihane O (2023) Highly efficient mesh-free approach to simulate the non-linear bending analysis of fg porous beams and sandwich beams with fg face sheets. Thin-Walled Struct 185:110614

    MATH  Google Scholar 

  27. Mesmoudi S, Rammane M, Hilali Y, Askour O, Bourihane O (2023) Variable RPIM and HOCM coupling for non-linear buckling and post-buckling analysis of transverse FG sandwich beams. Structures 53:895–907

    MATH  Google Scholar 

  28. Mesmoudi S, Rammane M, Hilali Y, Askour O, Bourihane O (2023) Efficient buckling and post-buckling analysis of porous FG sandwich beams by new RPIM-HOCM mesh-free approach. Eng Struct 296:116951

    MATH  Google Scholar 

  29. Mesmoudi S, Askour O, Rammane M, Bourihane O, Tri A, Braikat B (2022) Spectral Chebyshev method coupled with a high order continuation for nonlinear bending and buckling analysis of functionally graded sandwich beams. Int J Numer Methods Eng 123(24):6111–6126

    MathSciNet  MATH  Google Scholar 

  30. Mesmoudi S, Askour O, Braikat B (2020) Radial point interpolation method and high-order continuation for solving nonlinear transient heat conduction problems. Comptes Rendus Mécanique 348(8–9):745–758

    MATH  Google Scholar 

  31. Rammane M, Elmhaia O, Mesmoudi S, Askour O, Braikat B, Tri A, Damil N (2023) On the use of Hermit-type WLS approximation in a high order continuation method for buckling and wrinkling analysis of von-Kàrmàn plates. Eng Struct 278:115498

    MATH  Google Scholar 

  32. Askour O, Mesmoudi S, Tri A, Braikat B, Zahrouni H, Potier-Ferry M (2020) Method of fundamental solutions and a high order continuation for bifurcation analysis within Föppl-von Karman plate theory. Eng Anal Boundary Elem 120:67–72

    MathSciNet  MATH  Google Scholar 

  33. Zahari K, Hilali Y, Mesmoudi S, Bourihane O et al (2022) Review and comparison of thin and thick FGM plate theories using a unified buckling formulation. Structures 46:1545–1560

    MATH  Google Scholar 

  34. Sitli Y, Mhada K, Bourihane O, Rhanim H (2021) Buckling and post-buckling analysis of a functionally graded material (FGM) plate by the asymptotic numerical method. Structures 31:1031–1040

    MATH  Google Scholar 

  35. Bourihane O, Mhada K, Sitli Y (2020) New finite element model for the stability analysis of a functionally graded material thin plate under compressive loadings. Acta Mech 231:1587–1601

    MathSciNet  MATH  Google Scholar 

  36. Najafizadeh M, Eslami M (2002) Buckling analysis of circular plates of functionally graded materials under uniform radial compression. Int J Mech Sci 44(12):2479–2493

    MATH  Google Scholar 

  37. Ghiasian S, Kiani Y, Sadighi M, Eslami M (2014) Thermal buckling of shear deformable temperature dependent circular/annular FGM plates. Int J Mech Sci 81:137–148

    MATH  Google Scholar 

  38. Javaheri R, Eslami M (2002) Thermal buckling of functionally graded plates. AIAA J 40(1):162–169

    MATH  Google Scholar 

  39. Belabed Z, Houari MSA, Tounsi A, Mahmoud S, Bég OA (2014) An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates. Compos B Eng 60:274–283

    MATH  Google Scholar 

  40. Wang X, Tan M, Zhou Y (2003) Buckling analyses of anisotropic plates and isotropic skew plates by the new version differential quadrature method. Thin-Walled Struct 41(1):15–29

    MATH  Google Scholar 

  41. Nguyen V-H, Nguyen T-K, Thai H-T, Vo TP (2014) A new inverse trigonometric shear deformation theory for isotropic and functionally graded sandwich plates. Compos B Eng 66:233–246

    MATH  Google Scholar 

  42. Adhikari B, Singh B (2019) Dynamic response of functionally graded plates resting on two-parameter-based elastic foundation model using a quasi-3D theory. Mech Based Des Struct Mach 47(4):399–429

    MATH  Google Scholar 

  43. Shariat BS, Eslami M (2007) Buckling of thick functionally graded plates under mechanical and thermal loads. Compos Struct 78(3):433–439

    MATH  Google Scholar 

  44. Katili I, Batoz J-L, Maknun IJ, Katili AM (2021) On static and free vibration analysis of FGM plates using an efficient quadrilateral finite element based on DSPM. Compos Struct 261:113514

    MATH  Google Scholar 

  45. Hammou A, Hilali Y, Mesmoudi S, Boujmal R, Bourihane O (2024) A mesh-free Hermite-type approach for buckling analysis of functionally graded polygonal thin plates. Math Comput Simul 218:112–132

    MathSciNet  MATH  Google Scholar 

  46. Cochelin B (1994) A path-following technique via an asymptotic-numerical method. Comput Struct 53(5):1181–1192

    MATH  Google Scholar 

  47. Mottaqui H, Braikat B, Damil N (2010) Discussion about parameterization in the asymptotic numerical method: application to nonlinear elastic shells. Comput Methods Appl Mech Eng 199(25–28):1701–1709

    MathSciNet  MATH  Google Scholar 

  48. Timoshenko SP, Gere JM (2012) Theory of elastic stability. Courier Corporation

  49. Javaheri R, Eslami M (2002) Buckling of functionally graded plates under in-plane compressive loading, ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik. Appl Math Mech 82(4):277–283

    MATH  Google Scholar 

  50. Adhikari B, Dash P, Singh B (2020) Buckling analysis of porous fgm sandwich plates under various types nonuniform edge compression based on higher order shear deformation theory. Compos Struct 251:112597

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sokayna baid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

baid, S., Hilali, Y., Mesmoudi, S. et al. Buckling analysis of functionally graded sandwich thin plates using a meshfree Hermite Radial Point Interpolation Method. Engineering with Computers 41, 627–643 (2025). https://doi.org/10.1007/s00366-024-02011-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-024-02011-0

Keywords