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Abstract. When representing the elements of different
engineering systems as vertices and edges of a mathematical
graph, the well-formedness of the topology of the graph, and
hence the topology of the engineering system, can be
explicitly computed. This enables checking the well-
formedness of the engineering system before investing the
effort needed for a complete analysis. This method is demon-
strated in the paper for the following fields: trusses, dynamic
mass-spring-damper oscillator systems and planetary gear
systems. The approach facilitates achieving rapid design,
correct first time, which is an important aim of modern
design computation.
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1. Introduction

A number of modern studies of requirements for
manufacturing [1,2] have analysed the new require-
ments that follow from global competitive pressures.
A significant observation is that global competition
requires greatly increasing speed when bringing new
products to market. Many companies are attempting
to speed up work processes, including design, by a
factor of ten – from a year to a month, from a
month to three days [3]. This in turn has increased
the pressure that design work be achieved quickly.
One increasingly hears the sentiment that a design
must be ‘right first time’. To achieve an environment
where design is both fast and correct the first time
it is made, it is useful to revisit the computation
methods used for design, to see where improvements
may be made. Systematic analysis of the well-
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formedness of the engineering system being com-
puted, as presented here, is a contribution to such
an improvement in speed, or as it is sometimes
termed, cycle time reduction.

The approach adopted is similar to that used
when evaluating formulae or expressions in any
mathematical system. The work is divided into two
parts. First, the expression or formula is checked to
see if the arrangement of symbols is well-formed.
If it is not a Well-Formed-Formula (WFF), it cannot
be solved. If it is a WFF, the evaluation procedure
can be invoked.

For example, imagine the following string of sym-
bols in an ‘arithmetic’ expression

2 1 23.!4.6 * a = 4,.2 1 3.6.2.1

This syntax of this expression is not a well-formed-
formula and it cannot be evaluated.

A similar situation holds when wanting to com-
pute a solution for a given engineering system. In
order to apply the equations of a computation
method the system must be well-formed, otherwise
the equations will not be applicable. For example,
if a structural truss has insufficient members, or if
they are distributed incorrectly in the structure, it is
in fact a mechanism, the force in some members
will always be zero, and the methods of computing
forces in the members will not be applicable. If a
mechanism has too many elements, or if they are
incorrectly placed in the mechanism, it will in fact
be a structure. Some or all members will then not be
able to move, and the methods used for determining
movement and velocity in a mechanism will not be
applicable. To compute the behavior of an engineer-
ing system, the stages are therefore:

1. Evaluate the well-formedness of the system. For
example, if it is a truss, determine if it is rigid,
and if so whether it is statically determinate or
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indeterminate. If it is not rigid, the analysis stops
at this point; otherwise,

2. Solve the system using an appropriate method.

Many engineering systems are composed of elements
that are connected together. Well known examples
are: electronic circuits where resistors, capacitors
and other components are connected; a structure
where axial force members, beams and plates are
connected; a mechanism where rotating and moving
elements are connected, and so on. The information
as to which elements are connected to which other
elements is known as the ‘topology’ of the system.
The topology does not include geometric information
such as the dimensions of the elements. For a
complete definition of the system one needs both
the topological information and the geometric or
other properties, such as heat flux or temperature,
of the elements and their connections.

The examples shown in this paper are for
determining whether the system has a well formed
topology. If it does not, it cannot be solved. If it
does, there may still be values of geometric or other
variables that create singularities in the solution.
Well-formedness of the topology is a necessary
condition for solubility, but is not sufficient. The
necessity but insufficiency of topological well-
formedness is analogous to a well-known result for
the boundary representation in solid modelling,
where similarly topological well-formedness is a
necessary but insufficient condition. Good modern
boundary representation solid modelers make exten-
sive use of that fact, by separating the computation
of topological consistency from geometric consist-
ency, in modular software. The usual abbreviation
for ‘well formed formula’ is WFF. For ‘well formed
topology’ we will use the abbreviation WFT.

Systematic evaluation of the well-formedness of a
system is conveniently achieved using mathematical
representations which are isomorphic to the system.
Isomorphism is discussed in the next section. The
isomorphic representations used in the Embedded
Knowledge Project [4] which formed the basis of
this paper were matroid theory and graph theory. In
the interests of brevity, the examples in this paper
show only the graph theory representation.

2. Isomorphic Representations

A mathematical representation is isomorphic to an
engineering system if every element in the engineer-
ing system corresponds to an element in the math-
ematical representation, andvice versa. A mathemat-

ical graph is composed of vertices connected by
elements, and this is a mathematical representation
that is conveniently used as a representation of an
engineering system.

The usual practice for analysing an engineering
system is to choose variables which represent the
behavior of the system – for instance, forces or
deflections in a structure, or velocities or movements
in a mechanism, or temperatures or heat fluxes in
a heat transfer problem, and so on. The behavior of
the system is then described by a set of equations
written in terms of material properties and the
chosen behavioural variables. These equations
express the behaviour of the system, but are not
isomorphic to the elements of the system itself.
If the engineering system is not well-formed, the
mathematical manipulations lead to impossible situ-
ations, such as a division by zero, and then one
knows there had been a problem in the definition
of the engineering system.

The approach suggested here is to choose explicit
variables for the system which are isomorphic to
the system elements, then to evaluate the well-
formedness by using mathematical properties embed-
ded in that representation. For most engineering
systems, a necessary condition for well-formedness
is that the topology of the system is well-formed.
By using an isomorphic representation one can
check the well-formedness of the topology and be
sure of its validity before proceeding further with
the analysis. The full analysis can be achieved
directly from the isomorphic representation, but the
methods for this are not presented in this paper.
Some information on analysis methods based on
graph theory is available elsewhere [5,6]; papers
giving further details of analysis methods are in
preparation.

Application of theorems and algorithms published
in the literature of graph theory over the past few
decades make graph theory even more useful than
before for dealing with physical engineering sys-
tems. The use of graph theory in engineering has
been known for decades, since the work of Kirch-
hōff in 1847, who applied graph theory to electrical
circuits. Graph theory has since been applied to
many fields of engineering. In 1962, Kron [7,8]
used graph theory to analyse elastic networks. He
used the analogy between electrical networks and
elastic systems and developed the method called
‘diakoptics’. Fenves and Branin [9] published a
method based on graphs and networks for the formu-
lation of structural analysis. Since then, other works
have been reported, for example Lind [10], Kaveh
[11], Preiss and Shai [6], and many others. Work
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published at Waterloo University [12] shows that
graph theory is useful for solving dynamic systems.
Graph theory is being applied in many other fields,
such as the design and analysis of integrated
microelectronic circuits, machine theory and oper-
ations research, where the main use is to analyse or
find a solution to a specific engineering problem.
The approach reported in this paper is different. We
present an approach whose purpose is to check the
validity of the engineering system before commenc-
ing the analysis. Graph theoretic analysis can usually
be performed in much less time than solving for
the full behaviour of the system, and if a topological
inconsistency is found before progressing to full
analysis, time and effort can be saved. This is thus a
process of checking well-formedness of engineering
systems. Matroid theory, which can be thought of
as a generalisation of graph theory, contributes to
some of the algorithms used. When computation is
performed on the isomorphic graph representations,
using the methods and algorithms embedded in the
graph theory representation and derived from
matroid theory, the computational effort is reduced.

In a graph there are only two types of elements:
vertices and edges. The first question, therefore,
when choosing the representation, is to decide which
type of element in the engineering system should
be associated with vertices or with edges. Table 1
shows the relationship between the vertices and
edges of a graph, and the elements of three engineer-
ing systems; structural trusses, dynamic mass-spring-
damper systems, and planetary gear systems. The
table shows, for each such engineering system, the
names of the elements, the connectivity between
them, and the correspondence, which is unique, of
these to the elements of a graph.

Table 1.

Engineering system Truss Dynamic mass Planetary gears

The engineering elements Rods. Masses. Gear wheels.
External Forces. Springs. Rotation links
Supports. Dampers.

External forces.

Connections between the Pinned-joints connect between Pinned-joints Gear connections.
engineering elements the rods and connect rods to Turning connections.

supports.

Correspondence between Rod –. edge. Dynamic element –. edge. Links —. vertices.
the engineering elements Pinned-joint–. vertex. Pinned-joint –. vertex. Gear and turning connections
and the graph elements –. edges.

3. Examples

The three engineering systems shown in Table 1 are
usually considered as belonging to different fields.
Although combined analyses can be made, for
instance of the combined effects of static and
dynamic forces in a planetary gear system subject to
inertial accelerations, the fields of structural statics,
machine theory and dynamics are usually considered
separately, with separate analysis techniques. How-
ever, each of these apparently distinct systems can
be represented as a graph that is isomorphic to the
engineering system. Assembling the graph does not
require specialist knowledge, because it is done
algorithmically. Checking the well-formedness of the
topology is then done, also algorithmically, enabling
automation of this computation, and not requiring
specialist human expertise. If the system is not well-
formed it cannot be solved, is usually in practice a
defective system, and the work stops at this point.
If it has a well-formed topology, assembling the
solution equations and solving the system can then
also be done algorithmically on the graph represen-
tation.

In other words, given a truss, we apply a math-
ematically rigorous and complete check to ensure
that it is rigid before applying the solution tech-
niques. So too with the planetary gear and dynamic
systems, and the approach has been applied to other
engineering systems [4]. In all cases checking the
well-formedness of the engineering system is done
on the mathematical representation which is isomor-
phic to the engineering system.

Well-formedness is checked using rules for the
topology, which are rules for the syntax of the
graph. Some rules are universal for graphs in gen-
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eral, and others are specific to the type of engineer-
ing system being dealt with. The topological rules
are embedded in the structure of the graph. Checking
the well-formedness of an engineering system is
therefore a process of checking that there is no
contradiction between the structure of the graph,
which is an isomorphic representation of the engin-
eering system, and the rules and theorems that are
embedded in that representation. Although graph
theory is used also for the next step, analysis of the
engineering system, in the interest of brevity that is
not explained in this paper which is limited to
analysis of the well-formedness of the topology.
Examples of engineering systems dealt with in the
paper and their corresponding graphs are shown
in Fig. 1.

4. Checking the Topological Well-
Formedness of a Truss

The word ‘rigidity’ is used here when referring to
the truss structure without its supports, and the
word ‘stability’ is used for the truss structure with
its supports.

For a stable truss the rigidity matrix contains no
singularity. A singularity can exist if the truss top-
ology is not well-formed, or if it is well-formed but

Fig. 1. Examples of engineering systems and the corresponding graphs discussed in the paper.

exhibits geometric singularities. The well-for-
medness dealt with here is the topological well-
formedness, not geometric well-formedness. As
shown below, the same topological well-formedness
algorithm is applicable to the truss alone, when
dealing with the well-formedness of the structure
alone, or to the truss and the reactions together,
when dealing with the whole structural system.

4.1. The Graph Representation of the Truss

The graph that represents a truss can be obtained
algorithmically by executing the following steps:

1. Assign a vertex to every pinned joint of the truss.
2. Assign an edge to every rod of the truss, its end

vertices corresponding to those pinned joints that
connect the rod to the truss.

3. Create two extra vertices called ‘X’ and ‘Y’ and
connect them with an edge.

4. For every pinned support create two edges con-
necting the vertex corresponding to the support,
with the X and Y vertices.

5. For every mobile support create an edge con-
necting the corresponding vertex with X (or Y)
if the support is mobile on the vertical (or
horizontal) plane, respectively. If the support is
mobile on some inclined plane, create an
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additional vertex and connect it using three edges,
to the vertices named X and Y and to the vertex
corresponding to the support.

Note that edges representing applied loads do not
appear. These edges do not affect the topological
consistency of the graph, and the loads do not affect
the rigidity of the truss or the stability of the truss
on its supports.

Adding the two additional vertices X and Y and
those which correspond to the inclined planes as
described above (steps 3 to 5) enables checking
whether the graph of the truss and its reactions is
well-formed, meaning that the truss and its supports
have a well-formed topology. If one is interested in
the well-formedness of the truss structure itself,
without the reactions, the links for the reactions
(steps 3 to 5) are omitted.

Figure 2(b) shows the graph isomorphic to the
truss of Fig. 2(a). Since pinned-joint ‘a’ is connected
to a fixed support, two edges, one for each coordi-
nate, appear in the graph, and for the mobile support
‘d’ there is only one edge ‘dx’.

Denoting e(G) and v(G) as the number of edges
and vertices respectively in the graphG, trusses are
divided into three groups:

(a) if e(G) , 2v(G)23 then the truss is a priori
not rigid, and the computation stops, else

(b) if e(G) = 2v(G)23 then the truss, if rigid, is
determinate, else

(c) if e(G) . 2v(G)23 then the truss, if rigid, is
indeterminate.

4.2. The Theorems Embedded in the Graph
Representation

Most of the published literature on the subject of
rigidity of trusses deals with determinate trusses.
There then exists a fixed relation between the num-
ber of rodse and pinned-jointsv, or in the termin-
ology of the graph,e = 2* v 2 3. Maxwell [13]

Fig. 2. An example of a truss (a) and the graph that represents
it (b).

proved that if the relatione9 # 2*v9 2 3 holds for
every sub-graph ofG, then the corresponding deter-
minate truss is rigid. About 100 years later, Laman
[14] proved that this condition is not only necessary,
but also sufficient.

The connection between the rigidity of determi-
nate and indeterminate trusses is established by the
following theorems. The proof of Theorem 4.2
requires graph theory and matroid theory.

Theorem 4.1 Let G be a graph that corresponds to
an indeterminate truss. ThenG is rigid if and only
if (iff) there exists in G a connected subgraphG9
which includes all the vertices ofG, corresponds to
a determinate truss, and is rigid.

Proof If G9 is a determinate truss and is rigid,
adding edges (rods) does not destroy the property
of rigidity. The inverse connection betweenG and
G9 follows directly from the definition of an indeter-
minate truss. Suppose that inG there arek redundant
rods, G then is said to have a redundancy ofk.
When deleting thosek edges from the graph ofG,
the truss represented byG9 remains determinate.

For a determinate truss, the necessary and suf-
ficient condition for checking whether the truss has
a well-formed topology is shown in Theorem 4.2.

Theorem 4.2 [15] A determinate truss is rigid if
and only if (iff) when doubling each edge in turn
in the corresponding graph, all the edges can be
covered by two edge disjoint spanning trees.

From this theorem one can derive the following
algorithm for checking the well-formedness of the
topology of determinate trusses.

4.3. Method for Checking the Validity of the
Graph of a Statically Determinate Truss

The following algorithm is based on Theorem 4.2.

Algorithm 3.1 Checking the well-formedness of
the graph of a determinate truss

(1) Build the graph corresponding to the truss, as
was explained in Section 4.1.

(2) For every edge in the graph do:
double the edge and search for two edge disjoint
spanning trees by using known algorithms [16].

(3) If step 2 is successful for every edge in the
graph, then the graph has a well-formed top-
ology, otherwise not.

For example, Fig. 3 shows a truss (Fig. 3(a)) and



308 O. Shai and K. Preiss

Fig. 3. Example of a proof that a determinate truss (a) is stable.
(a) The truss, (b) the corresponding graph, (c) two edge disjoint
spanning trees when doubling edge ‘l’.

its corresponding graph (Fig. 3(b)). It can be proved
to be stable, since when doubling each edge in turn,
it has two edge disjoint spanning trees. Figure 3(c)
shows two edge disjoint spanning trees covering the
graph when edge ‘l’ is doubled.

4.4. The Applicability of the Method to
Complex Trusses

This approach enables the use of algorithms and
theorems that have been published over the last few
decades in the computer science literature, reducing
computation complexity. For example, in Section
3.2 which uses Laman theory, computation com-
plexity is reduced from exponential to polynomial.
This can be achieved also by using other theorems
and techniques of graph theory. The Tutte theorem
[17] can be used to determine whether two edge
disjoint spanning trees exist in a graph. This theorem
states that there are two edge disjoint spanning trees
if and only if (iff) for every decomposition of the
vertices ofG into m nonempty classes, there are at
least 2*(m21) edges that connect vertices from
different classes. The truss on Fig. 4 has a partition
into eight classes while there are only 13 edges
between them, which proves that this truss is not
rigid.

Fig. 4. Example of a proof that a determinate truss (a) is not
stable. (a) The truss, (b) the corresponding graph and its partition.

5. Checking the Validity of Dynamic
Systems

A similar process as above for trusses can be applied
to a dynamic mass-spring-damper oscillator system.
In this section, it will be shown that one can find
a contradiction in the topological structure of a
dynamic system with given initial conditions, by
analyzing only the syntax of its graph. Given a
dynamic system with initial conditions, there can be
a solution only if its graph has a well-formed-
topology according to the well-formedness rules
shown below.

The approach described below is a part of a more
general approach taken in the Embedded Knowledge
Project [18], in which for every edge in the graph
there is a flow and every vertex has a potential. In
dynamic systems the flow in the edge corresponds
to the force in the physical element, and the potential
at the vertex corresponds to the velocity of the joint.

5.1. The Graph Representation of the
Dynamic System

The first step is to build the isomorphic graph
representation of the dynamic system, as in the
above section dealing with trusses. This is achieved
by executing the following steps:

1. Assign a vertex to every junction that can have
an independent velocity. Create an additional ver-
tex corresponding to the inertial reference frame,
called ‘the reference vertex’, denoted by ‘O’ and
labeled with a gray color.

2. Assign an edge to every element of the dynamic
system. If the element is a spring or a damper,
the end vertices of the spring-edge correspond to
the end junctions of the element. If the element
is a mass, one end vertex is always the reference
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vertex ‘O’ and the other corresponds to the junc-
tion of the mass and the other elements of the
dynamic system.

3. For every external force there is a corresponding
directed bold dashed edge from the reference
vertex ‘O’ to the junction where the external
force is applied. Consistent with the notation in
the paper, this flow source edge corresponds to
the flow (or force) in the edge that acts on the
junction. When a plus sign is associated with the
flow, it means that the force acts on the junction
in the direction of the edge; a minus sign means
it acts in the opposite direction.

4. For every imposed external velocity there is a
corresponding directed bold solid edge, where
the potential difference (or relative velocity) is
positive if it is in the direction of the edge,
otherwise it is negative.

With this notation, it is possible to include the initial
conditions in the isomorphic graph representation,
as follows:

5. Every spring with initial tension will be rep-
resented by two parallel edges. Based on the
superposition principle, one edge will represent
the flow source with the value of the initial
tension of the spring, and the other will represent
the flow (force) change in the spring caused by
the changes of the dynamic system. The meaning
of the sign is the same as was explained in step
3 for external forces.

6. Every mass with initial velocity will be rep-
resented by two serial edges. Based on the super-
position principle, one edge represents the source
of potential difference with a value equal to the
initial velocity value of the mass, and the other
represents the change in potential (velocity) with
time in the dynamic system. The meaning of the
sign is the same as was explained in step 4 for
an imposed external velocity.

7. For all the other edges, an arbitrary direction can
be given, but maintaining consistency for the
meaning of the direction, which is that the flow
(force) in the edge is the force that the corre-
sponding dynamic element applies to the junction
which corresponds to the head vertex of the edge.

For example, Fig. 5 shows a dynamic system with
initial conditions. The edgeD(M2) has a plus sign
because the initial velocity of mass M2 is in the
positive direction of thex coordinate. The edge Pk2
has a plus sign, because the initial force in the
spring is compression and the corresponding edge
shows the force (or flow) that the spring k2 applies

Fig. 5. A dynamic system (a) and its corresponding graph (b).

to mass M2, which is in the negative direction of
the x coordinate.

One can see that this representation is easily
applied to other complex dynamic engineering
systems, for example, a multi-dimensional dynamic
system with axial forces. Figure 6 shows a two-
dimensional system, where the displacement of
spring K3 in the ‘x’ direction is negligible relative
to the displacement in the ‘y’ direction.

5.2. The Theorems Embedded in the Graph
Representation

In this representation there are two theorems:

1. Flow law – the vector sum of flows at any cutset
of the graph should be equal to zero.

2. Potential law – the vector sum of potential differ-
ences in any circuit should be equal to zero.
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Fig. 6. A two-dimensional dynamic system (a) and its corre-
sponding graph (b).

5.3. The Method for Checking the Validity of
the Dynamic System with Initial Conditions

In order that Flow Law and Potential Law will be
satisfied, one has to check the following syntax
rules:

I Syntax rule for cut-sets: there should not be a
cut-set of only flow sources (bold dashed edges).

I Syntax rule for circuits: there should not be cir-
cuits consisting only of potential sources (bold
solid edges).

The reason for these restrictions is derived from the
property of a source edge. For example, if there
were a cutset of only flow source edges, the amount
of flow would be independent of the state of the
dynamic system and the sum over a cut-set might
not be equal to zero, in contradiction with the
Flow Law. A similar reason holds for potential
source edges.

An example of a dynamic graph representation
that does not satisfy the syntax rule for cut-sets is
shown in Fig. 7. Figure 7(b) shows that the dynamic
graph representation does not satisfy the syntax rule

Fig. 7. An example of dynamic system with initial conditions
that contradicts the syntax rules of the graph.

for cut-sets, because it has a cut-set with only bold
dashed lines. For such a graph, the initial forces
around junction 3 might possibly not satisfy the
condition of equilibrium of forces.

6. Checking the Validity of a
Planetary Gear System

The same general process explained above is now
invoked for dealing with planetary gear systems.
First, check if the gear system is valid by checking
if the system has a well-formed topology. In the
truss problem, an efficient method was embedded
in the representation for checking the necessary and
sufficient conditions for deciding the validity, or
rigidity, of the determinate truss. For planetary sys-
tems, the necessary conditions follow [19]. These
conditions will now be phrased as rules to check
if the representation has a Well-Formed-Topology
(WFT), following which the embedded theorems in
the particular graph, the spanning tree, are used.

6.1. The Graph Representation of the
Planetary System

The most important property to be emphasized in
this representation is the connection between the
system elements, showing how element ‘i’ is con-
nected to element ‘j’. For this reason, every system
element will be represented by a vertex, and every
connection by an edge. This type of graph is called
a ‘line graph’ [4]. The line graph representation is
suitable for this purpose, and therefore every rotation
rod or gear wheel will be represented by a vertex,
and the connection between a pair of links by an
edge. There are two types of connections, so there
are two types of edges, marked as bold and regular
as explained below.

(a) Bold edge (bold line) – by knowing the ratio
of the connected gear wheels, one can calculate
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the ratio between the angular velocities
(potentials) of the gear wheels, hence in the
terminology of this paper, this edge is a depen-
dent potential source, and for this reason it
appears in the graph as a bold line.

(b) Regular edge (solid line) – an edge which
represents a turning connection. It will be
shown below that the turning edges form a
spanning tree.

Other information about the labeled edges and the
vertices is added to the representation as follows:

(c) Labelled solid line – every solid line (turning
edge) has a label which represents the level,
being the location of the rotating connection.

(d) Reference vertices – the distance between each
pair of connected gear wheels must be constant
all the time, being maintained by a link or
planet carrier. This is called in the literature
[20] a ‘transfer vertex’. In the terminology of
this paper, the name ‘local reference vertex’ is
more suitable. In this representation, all the
turning edges on one side of the local reference
vertex are at the same level, and those on the
opposite side of the local reference vertex are
at a different level.

(e) Labelled bold line – every bold line (gear edge)
has a label which represents the planet carrier
(local reference vertex) that maintains the dis-
tance between the two gear wheels which corre-
spond to the end vertices of the gear edge. In
addition, the bold line has a sign, where the
‘plus’ (or minus) sign means that the trans-
mission of movement between the two gear
wheels is internal (or external).

(f) Labelled gear wheel vertex – every vertex that
corresponds to a gear wheel has a label that
represents its center level.

Note: Fig. 8(a) is a standard representation in
engineering drawing for a gear system.

Fig. 8. A planetary mechanism (a) and its line graph represen-
tation (b).

6.2. Theorems Embedded in the Graph
Representation of the Planetary Gear System

The embedded properties in the graph representation
of this problem, given below, are based on Erdman
[19], who published a set of necessary conditions
which he used for the mechanism synthesis problem.
We use them to deduce whether or not the system
is topologically infeasible.

Proposition 1 There is no circuit formed exclus-
ively by turning edges.

Explanation 1 Suppose in contradiction to the rule
that a circuit of turning edges exists. There would
then be, in the chain, a set of pin-connected links.
A circuit of sizes 1 or 2 is not feasible. A circuit
of size 3 is a triangle which is a locked structure.
In a circuit of size 4 or more the rotatability of the
links would not be proportional. This contradicts the
hypothesis that the system is a kinematic chain.

Proposition 2 All the vertices must be incident to
at least one turning edge.

Explanation 2 Every element (link) which is rep-
resented as a vertex has at least one element which
rotates around it. Between these two elements, there
will be a turning edge in the graph representation.
There are elements, such as a planet carrier, for
which the vertex that represents them is incident to
at least two turning edges.

Proposition 3 The subgraph of the turning edges
forms a connected subgraph.

Explanation 3 Each connected gear pair should
operate with a constant radius or center distance.
This distance is maintained by the planet carrier,
which is either directly paired to ground or connec-
ted to ground through a sequence of turning edges.

Proposition 4 In each fundamental circuit, there
is one and only one local reference vertex; all the
edges on one side of the local reference vertex are
all at the same level, while all the edges on the
opposite side of the local reference vertex are at a
different level.

Explanation 4 Each gear pair is located on a differ-
ent turning edge level. Because the distance between
the centres of these two gears must be constant,
there is one and only one planet carrier (local
reference vertex) in the fundamental circuit defined
by this gear pair.

In addition, in the graph representation syntax,
there are embedded properties, part of which are
listed in Table 2. The Gruebler theory referred to in
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Table 2. Some of the embedded properties of the line graphs which correspond to planetary gear systems.

Embedded Derived from Graph theory formulation
property

1 The subgraph formed by turning edges is Propositions 1, 2 and 3. A subgraph that is connected, with no circuits,
a spanning tree. and contains all the vertices of the graph, is

a spanning tree.
2 Every gear edge forms a fundamental Embedded property 1. Adding an edge to the spanning tree forms

circuit with the spanning tree. one and only one circuit.
3 e(T) = v(G) 2 1. Embedded property 1. The number of spanning tree vertices is one

more than the number of its edges.
4 g(G) = v(G) 2 2. From embedded property 1

and Gruebler theory.
5 g(G) = e(T) 2 1. From embedded properties 3

and 4.

T – the spanning tree.
G – the line graph.

g(G) – the number of gear edges.
e(T) – the number of spanning tree edges.
v(G) – the number of vertices.

the table is well known in theory of machines, and
can be found, for instance, in Erdman [19].

Proposition 5 In each fundamental circuit, the levels
of the vertex representing a gear wheel and the
turning edge incident to it must be identical.

Explanation 5 The geometric center of a gear wheel
and its local center of rotation must coincide.

6.3. A Method for Checking the Validity of
the Planetary System

With this representation, checking the validity of
the system becomes a problem of checking whether
there is a contradiction between the domain knowl-
edge (in this case, the embedded properties and
propositions) and the representation of the given
system. For example, the computer program using
this representation [21,22] found that the system in
Fig. 9 is not valid, and explained why. In addition,
it is possible to arrange that the computer program
advises the designer what to change in the gear
kinematic chain, so that it would be valid.

By this approach, one can conclude whether a
working gear system is a well-formed planetary gear
system or not. For example, according to proposition
5, the gear system in Fig. 10(a) is not a well-formed
planetary gear system, since the turning edge that
enters vertex ‘l’ is labeled ‘a’ while the gear vertex
‘l’ is labeled ‘c’.

Fig. 9. Example of topological analysis of a planetary gear sys-
tem, with the computer program output shown.

Fig. 10. Example of a gear system which is not a well-formed
planetary gear system.
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7. Conclusions

The incessant pressure to reduce time while increas-
ing the quality of engineered products emphasises
the importance of searching for every possible
efficiency when making a mathematical analysis of
an engineered system. There is benefit in analysing
the well-formedness of the topology before pro-
gressing to solving the equations of the system.
Topological analysis can usually be performed much
more quickly than solving for the behaviour of the
system, and if a topological impossibility is found
before progressing to full analysis, much time and
effort is saved. Topological consistency or well-
formedness is analysed by using a mathematical
representation which is isomorphic with the
engineering system being dealt with. An isomorphic
representation has the property that there is a
one-to-one correspondence between elements of the
mathematical representation and the physical system.
Graph theory can be used as such an isomorphic
representation, and matroid theory is then invoked
as a means for proving various useful theorems on
the representation.

Topological well-formedness is a necessary con-
dition for the system to be physically viable and
mathematically soluble, but it is not sufficient. If
the definition of the system is not a well-formed
topology, it will not be feasible. However, if it has
a well-formed topology, singularities in the geo-
metric or other state variables can still inhibit correct
physical behaviour and mathematical solubility (as,
for instance, in a mechanism at top-dead-center).

The paper showed how this representation is used
to check the topological well-formedness of three
types of engineering system: a structural truss, a
planetary gear wheel system, and a dynamic mass-
spring-damper oscillator. The method can be applied
to many more types of engineering systems. Having
checked the topological well-formedness, the full
analysis can proceed with the assurance that if a
singularity or similar impossibility occurs in the
calculation, it will necessarily be because of the
values of the geometric or other state variables in
the system, and cannot be due to the topological
configuration. This approach saves time and effort
when computing the behaviour of engineering sys-
tems, especially if they are large and complex, with
many elements.

Having completed the topological analysis of the
system, the behaviour may be computed using
traditional methods. However, it is often useful
to compute the behaviour from the isomorphic
representation of the system. This subject is not

covered in the paper. The reader is referred to the
papers in the literature dealing with this [5,6]. It is
expected that more papers on analysis using graph
theory and related representations will be published
in the near future.
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