
1 Introduction

Texture-based volume
rendering of adaptive
mesh refinement data

Ralf Kähler,
Hans-Christian Hege

Konrad-Zuse-Zentrum für Informationstechnik
Berlin, Takustraße 7, 14195 Berlin-Dahlem, Germany
E-mail: {kaehler,hege}@zib.de

Published online: November 6, 2002
c© Springer-Verlag 2002

Many phenomena in nature and engineering
happen simultaneously on rather diverse spa-
tial and temporal scales. In other words, they
exhibit a multi-scale character. A special
numerical multilevel technique associated
with a particular hierarchical data structure
is adaptive mesh refinement (AMR). This
scheme achieves locally very high spatial
and temporal resolutions. Due to its popular-
ity, many scientists are in need of interactive
visualization tools for AMR data.
In this article, we present a 3D texture-based
volume-rendering algorithm for AMR data
that directly utilizes the hierarchical struc-
ture. Thereby fast rendering performance is
achieved even for high-resolution data sets.
To avoid multiple rendering of regions that
are covered by grids of different levels of
resolution, we propose a space partitioning
scheme to decompose the volume into axis-
aligned regions of equal-sized cells. Further-
more the problems of interpolation artifacts,
opacity corrections, and texture memory lim-
itations are addressed.

Key words: Scalar field visualization –
Multi-resolution volume rendering – AMR
data – 3D texture mapping.

Correspondence to: R. Kähler

In numerical analysis hierarchical techniques for lo-
cal refinement have became increasingly popular in
recent years because they lead to more reliable re-
sults and allow one to simulate more complex phe-
nomena. One such scheme is adaptive mesh refine-
ment (AMR), introduced by Berger in the 1980s [5].
In this approach, a hierarchy of nested grids is gen-
erated, representing relevant regions of the computa-
tional domain of different levels of resolution.
This numerical technique is applied in many fields,
like hydrodynamics [4], meteorology [3] and, in par-
ticular, astrophysics [8]. An increasing number of
scientists are in need of appropriate interactive vi-
sualization techniques to interpret and analyze 3D
AMR simulation data. They require tools for both
2D analysis to quantitatively convey the information
within single slices and 3D representation to quickly
grasp the overall structure. A popular technique for
interactive visualization of scalar data is texture-
based volume rendering, which is able to make ad-
vantageous use of modern graphics hardware.
In this paper we present a 3D texture-based algo-
rithm for the volume rendering of AMR data that can
achieve interactive frame rates even for large hierar-
chies. It directly exploits the hierarchical structure of
the AMR data, thereby accelerating rendering while
also allowing a high level of detail in representa-
tion. Interpolation artifacts are avoided by employ-
ing globally continuous interpolation. Economical
use of limited texture memory is achieved by utiliz-
ing packing algorithms.
In Sect. 2, we give an overview of related work in the
field of multi-resolution volume visualization. The
AMR data structure is explained in Sect. 3. In Sect. 4,
we discuss the problem of interpolation artifacts at
grid boundaries. The space decomposition and the
associated data structure utilized for volume render-
ing of AMR hierarchies are described in Sects. 5
and 6. In Sect. 7, the adaptive node selection strate-
gies, as well as opacity corrections, are presented.
We discuss the results of our algorithm applied to
AMR data in Sect. 8, and finally conclude with areas
of future research in Sect. 9.

2 Related work

Volume rendering via 3D texture mapping hard-
ware was introduced by Cullip and Neumann in
1989 [10]. In particular, they compared axis- and
viewpoint-aligned approaches. Cabral et al. pointed

The Visual Computer (2002) 18:481–492
Digital Object Identifier (DOI) 10.1007/s00371-002-0174-y



482 R. Kähler, H.-C. Hege: Texture-based volume rendering of adaptive mesh refinement data

out the correspondence between volume rendering
integrals and Radon transformations [9]; further-
more, they demonstrated that 3D texture-based ap-
proaches allow interactive volume rendering and
volume reconstruction.
A multi-resolution approach for volume render-
ing with 3D textures was described by LaMar et
al. [12]. They employed an octree-based subsam-
pling scheme for uniform scalar data sets to repre-
sent regions of the data volume of different levels
of resolution. Additionally, they proposed different
strategies for view-dependent node selection and
introduced the use of spherical shells as proxy ge-
ometries. Weiler et al. presented a similar approach,
paying special attention to avoid interpolation arti-
facts at the boundaries of adjacent cells of different
levels of resolution [20]. Their approach requires
that adjacent regions differ by at most one level of
resolution. They further improved the technique of
opacity corrections to reduce visual artifacts caused
by varying sampling distances of the texture slices.
Boada et al. presented strategies for adaptive selec-
tion of octree nodes from the full pyramidal struc-
ture, utilizing data homogeneity and importance
criteria [7].
Still, only a small number of papers deal with ren-
dering methods for AMR data. A back-to-front
cell-sorting algorithm for AMR hierarchies was pre-
sented by Max and utilized for volume rendering
as well as contour surface extraction [14]. In a pre-
processing step, he resamples cell-centered data to
vertex-centered data to ensure smooth volume ren-
dering and crack-free surfaces. Norman et al. de-
scribe their approach of resampling AMR data to
uniform as well as unstructured grids, which allows
them to apply standard rendering algorithms [15].
Ma presented a parallel volume renderer for AMR
data generated by the PARAMESH package [13, 16].
Weber et al. proposed a software and hardware-
accelerated cell-projection algorithm for AMR data
in [17]. They further proposed the use of different
types of stitching cells to connect cells of different
levels of resolution and applied this technique for
crack-free isosurface extraction of AMR data [18]
and a high-quality software cell-projection algo-
rithm [19]. This approach avoids resampling of cell-
centered data but has the drawback that it restricts
the applicability of their algorithm to AMR schemes,
which guarantee that refined levels are surrounded
by at least one layer of cells from the next coarser
level.

Kähler et al. accelerated the volume rendering of
large, sparse data sets by utilizing AMR data struc-
tures to extract non-transparent regions of the data
volume [11].
We present a 3D texture-based volume-rendering al-
gorithm that exploits the hierarchical nature of AMR
data in the sense that the distance of texture slices
is chosen with respect to the locally varying cell-
sizes and the rendering of subgrids can be omitted
if their parent cells have subpixel size. We propose
a new space-partitioning scheme that decomposes
the volume into axis-aligned bricks of the same level
of resolution. The procedure creates a small num-
ber of bricks and is utilized for view-consistent ren-
dering. We further avoid interpolation artifacts at
grid transitions by interpolating continuously even at
boundaries between subgrids of arbitrarily different
resolution.

3 The AMR data structure

In the AMR approach, the whole computational do-
main is covered by a coarse grid, representing the
root node of the hierarchical data structure. In re-
gions where higher resolution is required, finer sub-
grids are created as child nodes of the root grid.
Together they define a new level of the hierarchy, in-
creasing the resolution of their parent grid by some
refinement factor. Figure 1 shows a 2D example.
This process repeats until all leaf grid cells satisfy
certain error criteria, which depend on the particular
numerical simulation.
The data values are usually stored at the grids nodes
(vertex-centered) or at the centers of the cells (cell-
centered). For simplification purposes the AMR
schemes usually fulfill the following restrictions:

• The subgrids are axis-aligned, structured rectilin-
ear meshes, consisting of hexahedral cells with
constant edge lengths.

• Subgrids are completely contained within their
parent grids.

• Subgrids begin and end on parent cell boundaries,
which implies that parent grid cells are either
completely refined or completely unrefined.

Notice that the resolution levels of adjacent cells may
differ by more than 1. This has to be taken into ac-
count during interpolation to avoid artifacts due to
discontinuities at grid boundaries.



R. Kähler, H.-C. Hege: Texture-based volume rendering of adaptive mesh refinement data 483

1

2

3

Fig. 1. 2D example of an AMR grid hierarchy with a refinement factor of 2. Root grid A has one subgrid B, which again has
two children (C, D)
Fig. 2. Left: Cracks in a heightfield surface caused by discontinuous transitions of the interpolation function at grid bound-
aries. Right: In the volume rendered, image interpolation artifacts are visible as discontinuous change of color
Fig. 3. A 2D example of an AMR grid with two subgrids: Data values on common boundary nodes (white circles) are equal,
hanging nodes (white rectangles), which are nodes with no counterpart on the next coarser level, are obtained by linear
interpolation (bilinear in the 3D case) between adjacent common node

4 Interpolation

Artifact-free volume rendering of AMR data re-
quires a globally continuous interpolation of the dis-
crete data (c.f. Fig. 2). In this section, we address the
problem for both vertex-centered and cell-centered
data. Let us first consider the case of vertex-centered
AMR data as indicated in Fig. 3. Within hexahe-
dral cells, typically trilinear interpolation is applied.
Hence it has to be ensured that the interpolated scalar
function is continuous also at the boundaries of adja-
cent cells. For adjacent cells of the same resolution

level, this is automatically fulfilled, since both tri-
linear interpolants degenerate to the same bilinear
interpolant on the common face.
Continuity at boundaries of grid cells with different
resolutions requires the following: First, the data val-
ues on the boundary nodes common to a subgrid and
its parent grid have to be equal. This is ensured in nu-
merical AMR schemes by the projection step, which
updates the data values at coarser grid nodes by the
more accurate values of the subgrids. Second, the
values at grid boundary nodes without correspond-
ing coarse nodes on their parent grid (usually called



484 R. Kähler, H.-C. Hege: Texture-based volume rendering of adaptive mesh refinement data

hanging or dangling nodes) have to be obtained by
bilinear interpolation between the adjacent nodes.
This replaces some of the fine boundary nodes, but
ensures that for both sides the same values are com-
puted on the whole interface.
We now consider the case of cell-centered AMR
data. Nearest-neighbour (i.e. constant) interpolation
schemes available in graphics APIs like OpenGL
can be used to render the data directly and give sci-
entists the possibility of examining the unmodified
results of their simulations. Of course this scheme
has the drawback that the resulting images usually
show quite granular structures. So, one still needs an
approach that achieves better image quality. Defin-
ing the dual grid of each AMR grid as a 3D texture
and employing trilinear interpolation would result in
gaps between the grids. Inserting different types of
stitching cells to fill the gaps, as worked out in [18,
19], is not applicable to volume rendering via 3D tex-
tures, since the texels are supposed to be equidistant.
So we decided to resample the cell-centered AMR
data to achieve the vertex-centered case described
above. Inner nodes of the vertex-centered grid are
obtained by trilinear interpolation of the eight sur-
rounding cell-centered data values, as proposed
in [14] and [13]. For the boundary nodes, we distin-
guish the following cases:

• If the boundary node is surrounded by cells of
AMR grids with the same level of resolution, the
value is obtained by trilinear interpolation, as in
the case of an inner node.

• If the node on the vertex-centered grid has a cor-
responding coarse cell node and is adjacent to
a coarse cell, the value is obtained by projection
from the parent grid.

• If the node is a hanging node, the value is ob-
tained by bilinear interpolation between the sur-
rounding boundary nodes, just like in the vertex-
centered case.

Notice that by projecting the values from grid nodes
to subgrid nodes, the more accurate values of the
finer grids are also taken into account, since the
coarse cell values that are further refined are aver-
aged from the subgrid cells in the numerical scheme,
as mentioned above. Alternatively, one could aver-
age between adjacent coarse and fine cells as pro-
posed in [13] and project the values to the coarse
nodes. But we experienced that this can introduce
artifacts on the corresponding layer of coarse grid
cells, which become visible if subgrids are omitted

during rendering to increase the performance, see
Sect. 7. This holds, for example, if the values on the
higher-resolved levels strongly increase, since in this
case the values at the replaced boundary nodes on the
coarse grid tend to be larger than the adjacent ones.
The AMR hierarchy is resampled in a top-to-bottom
traversal, starting at the root grid. The vertex-
centered boundary values of the root grid have to be
obtained by extrapolation. We end up with a vertex-
centered hierarchy that ensures continuous trilinear
function interpolation, even if adjacent cells differ by
more than one level of resolution.

5 Texture-brick hierarchy

In this section, we assume that the reader is familiar
with texture-based volume rendering, as for example
proposed in [9, 10].
A possible approach for volume rendering an AMR
hierarchy via 3D textures would be to process each
slice separately in a view-consistent order, followed
by a blending step in the frame buffer. First the poly-
gons resulting from the intersection of the first slice
with the finest grids would have to be interpolated
and rendered. In order to prevent these regions from
being painted over by the following slice parts, one
could utilize the stencil-buffer available in the graph-
ics API. Then the polygons resulting from intersec-
tion of this slice with grids on the next coarser level
would be rendered, with the stencil buffer being up-
dated appropriately. This would continue until the
polygons on the root-level grid are processed. Then
the next slice would be processed, blending the re-
sulting polygon into the frame buffer.
However, this approach has some drawbacks. Since
volume rendering is fill-rate limited, it is disadvanta-
geous to render the same area in screen space several
times, even if the stencil buffer prevents the frame
buffer from being painted over. If the total size of
textures needed to represent the AMR hierarchy ex-
ceeds the amount of available texture memory, tex-
ture swapping will take place. In the approach de-
scribed above, swapping occurs several times for
each region corresponding to a texture or part of
a texture.
In order to avoid multiple rendering of regions that
are covered with cells of different resolution, we sub-
divide the data volume into non-overlapping axis-
aligned regions (called bricks in the following) that
consist either completely of cells being refined by



R. Kähler, H.-C. Hege: Texture-based volume rendering of adaptive mesh refinement data 485

Fig. 4. Left: 2D example of one grid, that contains three subgrids on the next level of resolution. In order to subdivide the
volume into axis-aligned, non-overlapping regions containing only cells of the same refinement level, two split axis are de-
termined. Right: Subregions that contains just one subgrid, are finally partitioned in up to four subregions (up to six in the 3D
case)

subgrids, or of cells that are not further refined. In
the rendering step, each of these bricks is processed
separately in a view-consistent order. So it has to be
ensured that there are no visibility cycles between
these bricks.
Notice that for an octree data structure this decom-
position is explicitly given. In principle one could
overlay the computational domain with an octree and
subdivide it until each octant (brick) contains only
cells of the same resolution level. This usually leads
to a very large number of bricks, since many oc-
tants would have to be subdivided until they contain
only one cell. But minimizing the number of bricks is
important in texture-based approaches, in order to re-
duce the amount of computation for intersection and
texture coordinates, as well as I/O overhead due to
texture paging.
Weber et al. also proposed a scheme for decompos-
ing the domain into regions of refined and unrefined
cells and used it for hardware-accelerated cell pro-
jection [17]. This approach usually splits grids and
their subgrids and hence increases the number of
bricks.
We propose a decomposition heuristic that creates
only few regions and avoids the splitting of subgrids
in most cases. To see how this decomposition works,
consider a simple 2D example of one coarse grid that
contains three subgrids on the next level of refine-
ment, as shown in Fig. 4. At first the region covered
by the coarse grid is subdivided in such a way that
one subgrid lies on one side and the other two sub-
grids lie on the other side of the split (split 1 in left

side of Fig. 4). The subdomain with the two grids
is split again at their common boundary. Now ev-
ery subvolume contains exactly one subgrid. In a last
step, the coarse cells are enclosed by up to four axis-
aligned bounding boxes (six in the 3D case) as indi-
cated in the right picture in Fig. 4.
It is straightforward to generalize this scheme to gen-
eral grid configurations. In some cases, several splits
might be performed to obtain the partition. In this
case, the split with the most similar number of grids
on both sides of the split is chosen. There might fur-
ther exist configurations for which it is not possible
to find such a partition position, such as if the sub-
grids form visibility cycles for certain viewpoints.
In these cases one or more grids, and possibly also
their subgrids, have to be split up. Notice that AMR
schemes usually utilize clustering algorithms like the
one presented by Berger et al. [6], which create sub-
grids by binary space partitioning. This ensures that
always at least one partition position exists, that does
not intersect any of the subgrids.
In some cases, the partition scheme mentioned above
still produces unnecessarily many bricks – see for
example the left side of Fig. 5. In order to reduce
the number of bricks in such cases, we enclose the
subgrids with a minimal bounding box, and first de-
compose the outer region, like indicated on the right
side of Fig. 5. Notice that this never increases the
number of created bricks. For our data sets, this step
reduced the total number of leaf bricks by up to 10%.
This space decomposition is stored in a kD-tree data
structure. For each grid, a separate 3D texture is



486 R. Kähler, H.-C. Hege: Texture-based volume rendering of adaptive mesh refinement data

Fig. 5. Left: Subgrid configuration where the unmodified decomposition leads to an unnecessarily high number of bricks.
Right: By first enclosing the subgrids with a minimal bounding box, and decomposing the outer region, the number of created
bricks is reduced

allocated (or inserted into a bigger texture in the
case of texture packing, as described in Sect. 6) and
a data structure node that can store texture brick
and space partition information is allocated. The
node associated with a grid stores a reference to its
texture object, positional information, and an off-
set into the texture coordinates. If the grid is not
a leaf grid and thus a space partition as described
above is carried out, information about the parti-
tion axis and references to the two subnodes that
are associated with the first two subvolumes are also
stored.
In a next step, the subnode information is deter-
mined. In the case of a subregion containing only
unrefined grid cells, just the texture brick informa-
tion is stored. It contains a reference to the grid’s
3D texture object, the bricks’ bounding box position
and texture offset information of the subregion. This
node becomes a leaf node. To avoid artifacts orig-
inating from discontinuities between adjacent grids
during the rendering, one has to assure that adjacent
bricks share one row of data samples at their com-
mon boundary faces.
If the subregion covers both refined and unrefined
grid cells, only information about the next parti-
tion axis and pointers to the next two subregions are
stored. These nodes are used to traverse the hierarchy
from back to front in the rendering step. In the case
that the subregion contains only grid cells that are
further refined by a subgrid, a reference to that AMR
subgrid texture object is stored. If the grid itself is
further refined the process continues, otherwise this
node becomes a leaf node.

6 Texture packing

The graphics hardware assumes the dimensions of
3D textures to be equal to a power of two. This could
be achieved by extending the data subvolume of each
leaf grid of the AMR hierarchy to the next bigger
power of two by, say, clamping the boundary tex-
els and restricting the generated texture coordinates
to the unextended area. With regard to the poten-
tially large number of textures to deal with, this of-
ten results in an enormous amount of unused texture
memory. This holds especially in the case where cell-
centered data is resampled onto vertex-centered data.
Often the grids have dimensions equal to a power
of two, and thus the corresponding vertex-centered
grids contain a disadvantageous number of (2n +1)
data samples.
Therefore we reduce the texture memory require-
ments by utilizing a packing algorithm that merges
separate textures into one bigger texture. For more
details refer to [11].

7 Rendering

As mentioned in Sect. 5, the brick structure is uti-
lized for traversing the separate bricks from back
to front, starting at the root node. If a node which
stores texture brick information is processed, two
cases have to be distinguished:

• The node is a leaf node, indicating that the cov-
ered cells are not further refined and thus have to
be rendered.



R. Kähler, H.-C. Hege: Texture-based volume rendering of adaptive mesh refinement data 487

• The node is not a leaf node, and so represents
a grid that is further refined. In this case, it has
to be checked if it suffices to render this region
with this level of detail, or if its subnodes need
to be visited because higher visual accuracy is
required.

In the second case, the following steps are performed
in order to check whether a brick is selected for ren-
dering. Since it is sufficient to render regions with
a level of detail such that projected cells have sub-
pixel size in screen space, we determine the extent in
screen space of a ball centered at the grid’s bounding
box corner closest to the view point and with a diam-
eter equal to the grid cells’ diagonal. If the projected
size is smaller than the size of a pixel, all cells of
this grid have subpixel size and the brick is rendered,
omitting its subnodes. Notice that rendering perfor-
mance can be increased by weakening this criterion
from subpixel sizes to larger screen extents.
Further a maximal level at which the hierarchy
traversal is stopped, can be specified. This can be
used to guarantee a desired lower bound of the frame
rate.

7.1 Opacity corrections and
adaptive brick selection

If a brick is selected, it is rendered utilizing the stan-
dard approach for volume rendering with 3D textures
as, for example, proposed in [9, 10]. The 3D tex-
ture is sampled on slices perpendicular to the view-
ing direction and blended in the frame buffer. We
use one channel textures and the OpenGL color-table
extension.
In order to take advantage of the multi-resolution
structure of the AMR data for fast rendering, the
sample distance of the slices is set with respect to
the resolution level of the texture brick: For bricks on
the root level a distance d0 is chosen, bricks on level
l are rendered with slice distances dl = d0

rl , where r
is the relative refinement factor between two consec-
utive levels of the AMR hierarchy. Since the inter-
polation function continuity is ensured (see Sect. 4)
adjacent parts of the slices show no interpolation
artifacts. Nevertheless, bricks from different levels
are rendered with varying sample distances, so one
has to perform opacity corrections. Similar to the
approach discussed in [20], we accomplish this by
defining a separate color map for each level l of the
hierarchy with opacity values αi[l], l = 0, 1, . . . lmax,

where the index i numbers the color map entries for
each level. Assuming the following relationship be-
tween the opacity entry αi[0] and the associated ex-
tinction values τi for the root level of the hierarchy
αi[0] = 1− e−τi d0 . We obtain the opacity entries for
a higher-resolved level l as

αi[l] = 1− e−τidl

= 1− (e−τid0)
dl
d0

= 1− (1−αi[0]) 1
rl ,

where r is the relative refinement factor. Before
a subregion of the hierarchy is rendered the appropri-
ate color table is activated.

8 Results and discussion

The algorithm has been implemented in Amira, an
object-oriented, extendible 3D data visualization
system developed at ZIB [1, 2]. The runs were per-
formed on a single 195 MHz MIPS R10k proces-
sor of a SGI Onyx2 system. The performance was
tested on a single InfiniteReality2 pipeline with two
RM7 raster managers and 64 MB of texture memory
each.
Since texture-based volume rendering is fill-rate lim-
ited, the frame rates depend on the size of the viewer
window, the number of slices, and the area in screen
space covered by the data volume (and thus on the
actual position of the viewpoint). For all image ex-
amples the size of the viewport was 764×793 pixels.
Data set I, resulting from an AMR galaxy cluster
simulation, consists of 91 grids on 7 levels of re-
finement. The (resampled) root level contained 333

data samples and was rendered with 120 slices, the
more refined grids with progressively more. If re-
sampled to an uniform grid, the grid would con-
tain more than 40003 data samples, corresponding to
about 70 000 MB of texture memory.
Data set II represents a hierarchy consisting of 359
grids on 4 levels of refinement. The root level con-
tained 95×63×14 data samples and 200 slices were
chosen for the root level. This AMR hierarchy was
generated from an uniform 749×495×100 sized
confocal microscopy data set utilizing an opacity
based importance criterion. Regions with associated
opacity values below a certain threshold are rep-
resented with coarser resolution. For more details
about this algorithm refer to [11].



488 R. Kähler, H.-C. Hege: Texture-based volume rendering of adaptive mesh refinement data

a b

c d

Fig. 6a–d. Data set I. The result of a galaxy cluster AMR simulation, consists of 91 subgrids on 7 levels of refinement: a root
level; b full hierarchy; c close-up view of refined inner region; d associated bounding boxes

Data set III is an AMR hierarchy resulting from
a cosmological AMR simulation that consists of 813
grids on 9 levels of refinement. The (resampled) root
grid contained 1293 data samples and was rendered
with 250 slices. If resampled to an uniform grid,
the grid would contain about 66 0003 data samples,
resulting in an amount of 2.7×108 MB of texture
memory.
Table 1 lists the number of leaf bricks created, the
preprocessing time for allocating the brick’s hierar-
chy and texture packing as well as resampling in case
of cell-centered data, the percentage of texture mem-
ory reduction achieved by texture packing and the
size of the resulting texture. An average number of 3
to 4 leaf bricks per subgrid was created, independent
of the depth and total number of grids of the hierar-

chy. The average texture memory reduction achieved
by packing was about 45%.
Resulting renderings are presented in Figs. 6–8.
They show the root grid (a), the full hierarchy ren-
dered with all bricks (b), a close-up view of the

Table 1. This table lists the number of created leaf bricks, the
preprocessing time for allocating and packing the textures as
well as resampling, the achieved texture memory reduction and
the resulting size of the packed texture

bricks prepr. ratio texmem

Data set I 345 0.2 s 45% 1 MB
Data set II 970 1.2 s 43% 16 MB
Data set III 3370 5.8 s 46% 16 MB



R. Kähler, H.-C. Hege: Texture-based volume rendering of adaptive mesh refinement data 489

a b

c d

Fig. 7a–d. Data set II. An AMR tree generated from a confocal microscopy image stack of a bee’s brain, consists of 359
subgrids on 4 levels of refinement: a–d as in Fig. 6

refined part of the hierarchy (c) and the associated
bounding boxes of the subgrids (d).
Looking at the close-up views in Figs. 6–8 one no-
tices regions with rendering artifacts caused by adap-
tive slice distances. They arise at boundary regions of
adjacent grids with different resolution, since edges
of slice parts that are not present on the coarser grids
become visible. Weiler et al. addressed that problem
in [20].
Table 2 displays the associated frame rates for the
root level data, the full hierarchy and the close-up
view on the refined part for the viewer positions
chosen in Figs. 6–8. The last entry represents the
frame rate achieved when rendering the full hierar-
chy in the mode described in Sect. 7, where bricks

are omitted if their parent grids have subpixel size.
Rendering the data sets with the stencil buffer ap-
proach as described in Sect. 5 was about 3 times
slower than the frame rates for the decomposition ap-

Table 2. The table shows the frame rates (fps) for rendering the
root level data, the full hierarchy, the close-up view, and the full
hierarchy in the mode where grids are omitted whose parents
cells have subpixel size

root full close-up full adap.

Data set I 10.4 6.7 2.0 7.2
Data set II 10.1 3.2 2.0 3.2
Data set III 6.5 1.4 1.1 2.4



490 R. Kähler, H.-C. Hege: Texture-based volume rendering of adaptive mesh refinement data

a b

c d

Fig. 8a–d. Data set III. The result of a cosmological AMR simulation, consists of 813 subgrids on 9 levels of refinement:
a–d as in Fig. 6. For clarity only a subset of the bounding boxes was rendered in image d

proach in 2. Rendering the uniform data set being
used to generate data set II with the standard ap-
proach for texture-based volume rendering resulted
in frame rates below 2 fps. The amount of texture
memory was 64 MB.
For all data sets, almost interactive frame rates
were achieved. The frame rates were minimal for
the close-up views, since the covered screen space
is maximal for these view points. As the per-
formance figures for data set III show, omitting
subgrids with subpixel-sized parents can result in
significant performance gains. In general, the ef-
fect is more pronounced for deep hierarchies with
a large number of subgrids on the more refined
levels.

9 Conclusions and future work

We presented a hardware-accelerated volume-ren-
dering approach for adaptive mesh refinement data
utilizing 3D textures. Since current texture hardware
requires axis-aligned texture bricks which contain
cells of the same resolution level, some preprocess-
ing is necessary. For this, we proposed a new par-
titioning heuristics which creates a small number
of such bricks, a prerequisite for interactive render-
ing. The heuristics avoids splitting of subgrids, if the
grid hierarchy was created by a BSP algorithm like
the widespread clustering algorithm of Berger [6].
During rendering, branches of the AMR tree are
pruned, based on a projection criterion ensuring that



R. Kähler, H.-C. Hege: Texture-based volume rendering of adaptive mesh refinement data 491

the rendering results are not affected. Artifacts at
grid boundaries due to discontinuities are avoided
by globally continuous interpolation which does not
impose restrictions on the level differences at grid
boundaries. The amount of texture memory is re-
duced by employing a packing scheme.
As future work, it would be interesting to investi-
gate whether it is possible (in spite of the potentially
large number of bricks for deep hierarchies) to apply
the additional opacity corrections at grid boundaries
proposed by Weiler et al. [20] without significantly
decreasing the rendering performance. Furthermore,
the application of data homogeneity and importance-
based criteria as proposed by Boada et al. in [7] could
be utilized for pruning branches of AMR hierar-
chies. For camera positions inside the volume, such
as in immersive environments, the use of spherical
shells as proxy geometries, as introduced by LaMar
et al. [12], could also be investigated. Furthermore,
the use of improved packing schemes decreasing the
amount of texture memory consumption would be
interesting.

Acknowledgements. We thank Detlev Stalling for helpful discussions
and proofreading. The cosmological simulation data sets were provided
by Mike Norman and Brian W. O’Shea (National University of Califor-
nia, San Diego), and Stuart Levy (National Center for Supercomputing
Applications (NCSA), Urbana, Illinois). The confocal bee brain data
set was provided by Robert Brandt (research group Randolf Menzel,
Freie Universität at Berlin).
This work was supported in part by the Max-Planck-Institut für Gravi-
tationsphysik (Albert-Einstein-Institut) in Potsdam, Germany.

References

1. Amira (2001a) Amira User’s Guide and Reference Man-
ual. Konrad-Zuse-Zentrum für Informationstechnik Berlin
(ZIB) and Indeed Visual Concepts GmbH, Berlin.
http://www.amiravis.com. Cited 17 July 2002

2. Amira (2001b) Amira Programmer’s Guide. Konrad-Zuse-
Zentrum für Informationstechnik Berlin (ZIB) and Indeed
Visual Concepts GmbH, Berlin. http://www.amiravis.com.
Cited 17 July 2002

3. Almgren AS, Bell JB, Colella P, Howell LH, Welcome ML
(1997) A high-resolution adaptive projection method for re-
gional atmospheric modeling. In: Delic G et al. (ed) Next
generation environment models and computational meth-
ods. Workshop held in Bay City, MI (USA), August 7–9,
1995. Philadelphia, PA. SIAM Proc Appl Math: 69–79

4. Berger MJ, Collela P (1989) Local adaptive mesh refine-
ment for shock hydrodynamics. J Comput Phys 82(1):64–84

5. Berger MJ, Oliger J (1984) Adaptive mesh refinement for
hyperbolic partial equations. J Comput Phys 53:484–512

6. Berger MJ, Rigoutsos I (1991) An algorithm for point clus-
tering and grid generation. IEEE Trans Syst Man Cybern
21(5):1278–1286

7. Boada I, Navazo I, Scopigno R (2001) Multiresolution vol-
ume visualization with a texture-based octree. Vis Comput
17(5):185–197

8. Bryan GL (1999) Fluids in the universe: adaptive mesh re-
finement in cosmology. Comput Sci Eng 1(2):46–53

9. Cabral B, Cam N, Foran J (1994) Accelerated volume ren-
dering and tomographic reconstruction using texture map-
ping hardware. In: Kaufman A, Krueger W (eds) 1994
Symposium on Volume Visualization. IEEE Computer So-
ciety Press, Los Alamitos, Calif., pp 91–98

10. Cullip T, Neumann U (1993) Accelerating volume recon-
struction with 3D texture mapping hardware. Technical
report TR93-027. Department of Computer Science, Uni-
versity of North Carolina, Chapel Hill

11. Kähler R, Simon M, Hege HC (2001) Fast volume ren-
dering of sparse datasets using adaptive mesh refinement.
ZIB-Report 01-25 July 2001 (to appear in IEEE Transac-
tions on Visualization and Computer Graphics)

12. LaMar EC, Hamann B, Joy KI (1999) Multiresolution
techniques for interactive texture-based volume visualiza-
tion. In: Ebert D, Gross M, Hamann B (eds) Proceedings
of IEEE Visualization ’99, San Francisco, 24–29 October
1999. IEEE Computer Society Press, Los Alamitos, Calif.,
pp 355–362

13. Ma K-L (1999) Parallel rendering of 3D AMR data on the
SGI/Cray T3E. In: Proceedings of the 7th Symposium on
Frontiers of Massively Parallel Computation. IEEE Com-
puter Society Press, Los Alamitos, Calif., pp 138–145

14. Max NL (1993) Sorting for polyhedron composition. In:
Hagen H, Müller H, Nielson GM (eds) Focus on Scien-
tific Visualization. Springer, Berlin Heidelberg New York,
pp 259–268

15. Norman M, Shalf J, Levy S, Daues G (1999) Diving
deep: data-management and visualization strategies for
adaptive mesh renement simulations. Comput Sci Eng
1(4):22–32

16. PARAMESH (1998) NASA Goddard Space Flight Center.
http://webserv.gsfc.nasa.gov/rib/repositories/inhouse_
gsfc/paramesh.html. Cited 17 July 2002

17. Weber GH, Hagen H, Hamann B, Joy KJ, Ligocki TJ,
Ma KL, Shalf JM (2001) Visualization of adaptive mesh
refinement data. In: Erbacher RF, Chen PC, Roberts JC,
Wittenbrink CM, Groehn M (eds) Visual Data Exploration
and Analysis VIII, Proc. SPIE Vol. 4302, SPIE – The In-
ternational Society for Optical Engineering, Bellingham,
Washington, pp 121–132

18. Weber GH, Kreylos O, Ligocki TJ, Shalf JM, Hagen H,
Hamann B, Joy KI (2001) Extraction of crack-free isosur-
faces from adaptive mesh refinement data. In: Data Visual-
ization 2001 (Proceedings of VisSym ’01). Springer, Berlin
Heidelberg New York, pp 25–34

19. Weber GH, Kreylos O, Ligocki TJ, Shalf JM, Hagen H,
Hamann B, Joy KI (2001) High-quality volume render-
ing of adaptive mesh refinement data. In: Proceedings of
Vision, Modeling, and Visualization 2001, Stuttgart. IOS
Press, Amsterdam, pp 121–128

20. Weiler M, Westermann R, Hansen C, Zimmerman K, Ertl
T (2000) Level-of-detail volume rendering via 3D textures.
In: IEEE Volume Visualization and Graphics Symposium
2000. IEEE Computer Society Press, Los Alamitos, Calif.,
pp 7–13



492 R. Kähler, H.-C. Hege: Texture-based volume rendering of adaptive mesh refinement data

RALF KÄHLER studied phys-
ics at the Free University of
Berlin, where he received his
MS degree in 1999. Afterwards
he joined the Konrad-Zuse-
Zentrum Berlin (ZIB) as a re-
search scientist in the Scientific
Visualization department. His
research interests include com-
puter graphics and data visual-
ization. Currently, he is working
in the field of hierarchical meth-
ods in volume rendering.

HANS-CHRISTIAN HEGE
is head of the Scientific Visual-
ization department at Zuse Insti-
tute Berlin (ZIB, www.zib.de).
He studied physics at the Free
University of Berlin. From 1984
to 1989, he was a research assis-
tant in the physics department,
working in quantum field theory
and numerical physics. In 1986,
he co-founded Mental Images
and GDS. From 1986 to 1989, he
worked as a researcher at Mental
Images and as managing direc-
tor at GDS. Since 1989, he has

been with ZIB, a non-university research institute of the State
of Berlin, operating in the field of information technology. At
ZIB, he built up and now directs the Scientific Visualization de-
partment. In parallel, he acts as managing director of Indeed
Visual Concepts, a company specializing in data visualization
which he co-founded in 1999. His current research interests are
in computer graphics, data visualization, image analysis, and
biomedical computing.


