
Visual Comput (2005) 21: 551–558
DOI 10.1007/s00371-005-0333-z O R I G I N A L A R T I C L E

Bing-Yu Chen
Yutaka Ono
Tomoyuki Nishita

Character animation creation using
hand-drawn sketches

Published online: 31 August 2005
© Springer-Verlag 2005

B.-Y. Chen (�)
National Taiwan University
robin@ntu.edu.tw

Y. Ono · T. Nishita
The University of Tokyo
ono@nis-lab.is.s.u-tokyo.ac.jp,
nis@is.s.u-tokyo.ac.jp

Abstract To create a character
animation, a 3D character model
is often needed. However, since
humanlike characters are not rigid
bodies, to deform the character model
to fit each animation frame is tedious
work. Therefore, we propose an easy-
to-use method for creating a set of
consistent 3D character models from
some hand-drawn sketches while
keeping the projected silhouettes
and features of the created models
consistent with the input sketches.
Since the character models possess
vertexwise correspondences, they

can be used for frame-consistent
texture mapping or for making
character animations. In our system,
the user only needs to annotate the
correspondence of the features among
the input-vector-based sketches;
the remaining processes are all
performed automatically.

Keywords Cel animation · Nonpho-
torealistic rendering · 3D morphing ·
Consistent mesh parameterization ·
Sketches

1 Introduction

The techniques of computer graphics are widely used for
supporting the animation creation process. In the tradi-
tional approach, animators had to draw each frame of an
animation by hand on paper or cel. This has now been su-
perseded by a method in which the frames are drawn using
computer-assisted tools or by rendering the scenes using
3D models. Moreover, if the animators use vector-based
drawings rather than raster-based paintings, they can scale
the drawings to any size and the images thus require less
storage space. Meanwhile, using 3D models the animators
can add many attractive effects to their animations, e.g.,
shading, shadowing, or texture mapping, which are diffi-
cult or time-consuming to draw by hand.

However, it is still difficult to construct humanlike
character models to support the animation creation pro-
cess, since their shapes are often drawn with considerable
distortions due to the characters’ motion, changing view-
points or animators’ exaggerations. Although it might be

possible to make several 3D models whose shapes change
with such distortions, deforming the models manually for
each frame is a very time-consuming task. Therefore, we
propose a method for creating a set of 3D polygon models
that correspond to the input frames of some hand-drawn
sketches. Animators can use the set of models for easily
adding 3D effects, especially for adding shading effects
or shadows to the animation and for mapping textures
to a character while preserving the user-specified features
with frame-to-frame coherence.

Our method takes a single cut of an animation from
a sequence of vector-based images drawn by animators as
the input, where each of the images contains the shape and
features of a character in a certain (key) frame of the ani-
mation. The correspondences of the features between the
frames are specified by the user. Our system then creates
a consistent 2D base domain according to the features and
silhouettes of the character on each frame. By subdivid-
ing the base domain recursively the system generates a set
of consistent 2D triangle meshes that approximate the fea-
tures and silhouettes of the character in each frame. After

552 B.-Y. Chen et al.

an inflation process, a set of consistent 3D polygon models
is created, so that the projected silhouettes and features of
the models are consistent with the input frames. Feature
specification is the only process carried out by the user; the
remaining processes are automatically done by our sys-
tem.

The created 3D models have the following properties.

(1) Silhouette preservation: The projected silhouette of
each created model coincides with that of the charac-
ter on the corresponding original frame.

(2) Frame-to-frame correspondences: The created
models exhibit vertexwise correspondences.

(3) Feature preservation: All features of the input image
are embedded in the corresponding model, and the
projection of these features coincides on the original
frame.

The silhouette preservation property allows the anima-
tors to use the set of consistent models that have been
created for adding shading effects or shadows, and the
frame-to-frame correspondence property allows them to
use frame-consistent texture mapping. Texture mapping
with user-specified constraints along the input vectors be-
tween the input image and the model, as well as of models,
is possible due to the feature preservation property. More-
over, since the created models possess vertexwise corre-
spondences, the method can assist the animators in gener-
ating in-between shapes among the input frames by apply-
ing morphing techniques.

2 Related work

To add attractive and impressive 3D effects onto cel
animations, animators usually require 3D geometric in-
formation. The method of obtaining 3D information
for rigid objects is quite straightforward since model-
ers can simply be called on to construct 3D models.
Those 3D models can be directly rendered by using
so-called toon or comic shaders [22], together with sev-
eral stylized rendering methods [7, 8, 15]. However, for
humanlike characters, there seems to be no simple so-
lution to obtaining 3D information due to their artistic
distortions.

Rademacher [18] presented a typical method of creat-
ing an animation using a 3D character model, generated
by a professional animator. In this method, the animator-
generated 3D character model is deformed to match sev-
eral reference images, and the deformed models are then
interpolated to create a 3D geometry whose shape deforms
with the changes of viewpoint. Martín et al. [13] also pre-
sented a related method. Since the animators manually de-
fine the 3D models at each key viewpoint, these methods
were able to satisfy the three properties that are high-
lighted in our method, i.e., silhouette preservation, fea-
ture preservation, and frame-to-frame correspondences,

and they could be used for many applications. However,
manually editing the 3D models is still a time-consuming
task. Li et al. [12] also provide a sketch-based method to
generate character animation.

A texture mapping method for cel animation presented
by Corrêa et al. [3] also uses 3D models created by anima-
tors. Although a reference model must be created manu-
ally, a simple interface for deforming the model to meet
the silhouette preservation and frame-to-frame correspon-
dence criteria are provided. Therefore, this technique may
also be used for adding shading effects or shadows. How-
ever, since the feature preservation requirement is only
an approximation, it cannot be used for complex tex-
tures that must critically satisfy the user-specified con-
straints.

In order to create a 3D model, Igarashi et al. [6] and
Karpenko et al. [10] proposed easy-to-use sketching sys-
tems with which the user draws only the silhouette. The
systems can then create a 3D model that satisfies the sil-
houette preservation requirement for a single frame. How-
ever, it is not simple to extend this to animation since the
frame-to-frame correspondence criterion is obviously not
considered. A method proposed by Petrović et al. [17] for
adding shadows cast by the characters on the scenes re-
quires only a small effort on the part of animators because
it creates 3D models semiautomatically using the above
methods. However, these models do not possess feature
preservation or frame-to-frame correspondence proper-
ties, so the range of applications where these models can
be used is very limited.

Some computer vision techniques could be used to
construct 3D models from 2D tracking points. However,
most of these techniques assume that the object is rigid,
and hence they are not applicable to the characters in char-
acter animations. Several methods, e.g., those presented
by Bregler et al. [2] and by Torresani et al. [21], have been
proposed for generating 3D nonrigid models, but they
all require a large number of images and tracking points.
Therefore, these methods cannot be applied to keyframe
character animation in general. Our previous work [16]
also used some computer vision methods to construct
a set of consistent 3D character models from an exist-
ing cel animation for adding some effects to the original
animation. Hence, the methods presented in this paper
are different from the previous one, since the informa-
tion on some hand-drawn sketches is not as much as that
on a cel animation that has more frames than the input
sketches.

In this paper we aim to identify a method that can
be used to create consistent 3D models featuring silhou-
ette preservation, feature preservation, and frame-to-frame
correspondence properties. Applications for these models
include adding shading effects and shadows and mapping
textures within the animator’s constraints. The burden for
the animator with this technique is not so different from
the method of Petrović et al. [17].

Character animation creation using hand-drawn sketches 553

3 System overview

In this section, the system overview is described from
an animator’s viewpoint. Initially, he or she loads a se-
quence of images, which are hand-drawn sketches, repre-
senting some keyframes of a character animation shown in
Fig. 1a–c. The animator then overwrites some stroke vec-
tors on the features of the images as shown in Fig. 1d–f.
This can be done by using some commercial tools that can
convert raster-based or scanned hand-drawn sketches into
vector-based images. Of course, if the original input im-
ages are already vector-based like the example shown in
Fig. 5a, this step can be omitted. After specifying the cor-
responding points and paths between the frames by adding
some ID numbers, the preprocessing setup step has been
completed. The animator can then obtain a set of con-
sistent 3D models automatically, as shown in Fig. 1g–i.
These models can then be used for further applications,
such as texture mapping and shadowing, as shown in
Fig. 1j–l.

With some complex characters, some areas of the char-
acter are hidden by others, for example, the forearms and
the upper arms of the dancing bear shown in Fig. 1. In this
case, the animator has to draw some stroke vectors and

Fig. 1a–l. User-input hand-drawn sketches of a dancing bear and
corresponding output models. a–c Three of the six input sketches.
d–f Converted stroke vectors from input sketches with user-
specified correspondences. g–i Output 3D models shown in wire-
frame. j–l Texture-mapped models with shadows using toon render-
ing

specify the correspondence of the missing parts by sepa-
rating the input images into multiple layers. This decom-
position is natural for the process of making cel anima-
tions [4].

4 Generation of consistent 2D meshes

After the preprocessing setup described in Sect. 3, we now
have F vector-based images as in Fig. 1d–f, where F is
the number of input frames. These images are treated as
F sets of 2D (x–y) planar graphs, and each graph is de-
noted as G f = (Wf , Pf), f = [1, F], where Wf is a set
of points in Re2 and Pf is a set of finite simple paths
in Re2 connecting two different points in Wf , and each
path is sampled to a polyline. Moreover, we assume that
the graphs are consistent, which can be guaranteed by
guiding the user’s input, where saying two graphs are con-
sistent means that there are one-to-one correspondences
among their points and paths as in the two graphs shown
in Fig. 2a.

To generate 2D meshes from the graphs, it is neces-
sary to convert the graphs so that they contain no iso-
lated points and paths as shown in Fig. 2b. Therefore, we
separate our consistent 2D triangle mesh generation al-
gorithm from a sequence of input graphs into two steps.
In the first step (Sect. 4.1), we create a set of consistent
base domains, which are consistent triangulated graphs
G′

f (G f) = (Wf , P′
f) of G f = (Wf , Pf), where P′

f ⊆ Pf ,
as shown in Fig. 2c for all of the frames, which means
some paths are inserted into the graph G f to make each
patch have only three points and paths. A patch is defined
as a closed region bounded by the paths of the graph.

In the second step (Sect. 4.2), we create a set of con-
sistent 2D triangle meshes Mf in which the triangulated
graphs G′

f are embedded by subdividing each patch of G′
f ,

as shown in Fig. 2c.

4.1 Consistent graph triangulation

The algorithm described in this section creates a set of
consistent base domains, which are triangulated graphs
G′

f (G f) = (Wf , P′
f), from a set of consistent input graphs

G f = (Wf , Pf), by adding the paths, one by one, to
G f . This method, which sequentially adds paths to
the graph, is modified from the method described by
Kraevoy et al. [11]. In order to describe the algorithm
clearly, we use G∗

f = (Wf , P∗
f) as an intermediate graph

between the given set of consistent graphs G f = (Wf , Pf)
and the output set of consistent base domains G′

f (G f) =
(Wf , P′

f) for all of the frames. We first compute a path
q1 connecting {p1,i, p1, j}, where i �= j and p1,i, p1, j ∈
W1, that does not cross the unbounded region and that
minimizes the path length. If path q1 is found, then

554 B.-Y. Chen et al.

Fig. 2. a Input graphs of two frames. Green numbers: correspond-
ing ID numbers for points; blue numbers: paths. b Triangulated
graphs of a. c Output-consistent 2D triangle meshes

we sequentially compute paths q2, . . . , qF for con-
necting {p2,i, p2, j}, . . . , {pF,i, pF, j}, respectively, where
q2, . . . , qF are corresponding paths with q1, so that
the graphs G∗

1 = (W1, P∗
1 ∪{q1}), . . . , G∗

F = (WF, P∗
F ∪

{qF}) are still consistent.
In order to find paths q2, . . . , qF, we need to search

all possible paths in the graphs from the standpoint of the
topology. To achieve this topological search and to com-
pute the paths, we use trapezoidal maps of the graphs
as shown in Fig. 3. The paths are generated by connect-

Fig. 3a–d. Path search/computation using a trapezoidal map.
a Input graph. b Trapezoidal map of a with its “road map.”
c Four topologically different paths for connecting yellow points.
d Optimized path derived from red path in c

ing the centroids of the trapezoids and the centers of the
vertical extensions, as in Fig. 3b,c. The paths are then
optimized by removal of the redundant points. The con-
ditions for removing the redundant points are that (1) re-
moving the point must not change the topology of the
path and (2) removing the point must not involve mov-
ing a remaining path too close to other points or paths.
The second condition is necessary to avoid degeneracy
in the following algorithms. For example, removing the
squared point in Fig. 3d is topologically possible, but it
would make the path too close to other points or paths.
After all possible paths are found, we will choose the
path with the same topology as the path in the first frame.
Once the paths q1, . . . , qF are decided and added to
G∗

1, . . . , G∗
F , we will check if G∗

1, . . . , G∗
F have become

triangulated graphs to stop or continue the triangulation
process.

Note that this triangulation algorithm is not symmetric,
because graph G∗

1 is dealt with first, and the others follow.
Although it is possible to make the algorithm symmetric
by further computing path sets for G∗

2, . . . , G∗
F as the first

steps and then deciding the minimum average length path
sets, we have found that just dealing with G∗

1 in the first
instance is sufficient in our experiments.

4.2 Consistent face subdivision

We now have consistent base domains G′
f (G f) =

(Wf , P′
f), and each patch in a base domain has a simple

boundary defined by three paths, as shown in Fig. 2b. To
create consistent 2D triangle meshes Mf in which the in-
put graphs G f are embedded as shown in Fig. 2c, we first
define 2D meshes, M∗

f = (Wf , K∗
f), by identifying G′

f as
meshes, where K∗

f is a simplicial complex derived from
the paths of G′

f . Since the paths of G′
f are represented by

polylines, M∗
f may not consist of triangles or be consistent

among frames in general. To establish consistency over
M∗

f , we apply an edge-split operator to M∗
f to make the

boundary of each face have the same number of vertices
among frames as shown in Fig. 4b. A consistent triangu-
lation method for simple boundary polygons may then be
applied to all the faces of M∗

f independently, the results
of which are shown in Fig. 4c, and we use M′

f to denote
the generated consistent 2D triangle meshes. The trian-
gulation method we used here is an adaptive semiregular
refinement method (a combination of 4-to-1 and 2-to-1
subdivisions).

Although M′
f are consistent 2D triangle meshes, they

may have some undesirable creases due to the paths that
were added for graph triangulation and thus may not be
valid. Therefore, we apply a smoothing method to M′

f
based on the algorithm of Freitag et al. [5] that moves each
vertex locally to minimize an energy function while con-
straining the positions of the vertices corresponding to G f
and get Mf .

Character animation creation using hand-drawn sketches 555

Fig. 4a–c. A process of consistent face subdivision. a Input patches
of two base domains G ′

1(G1) = (W1, P′
1) and G ′

2(G2) = (W2, P′
2).

Yellow points: corresponding points in W1 and W2. b Results after
applying edge-split operators to a. c Consistent 2D triangle meshes
are generated by subdividing b

4.3 Consistent 3D mesh generation

After creating consistent 2D (x–y) triangle meshes M1,
. . . , MF , we inflate each vertex of the meshes to de-
termine its z(depth)-coordinate. We apply an inflation
method to the boundary vertices of Mf , based on the
method proposed by Igarashi et al. [6], and create a height
field for the positions inside the boundary. Each z-
coordinate of the vertices of Mf is determined from the
height field. Since the values of the height field for frame
f are only dependent on the boundary of Mf , frame-
to-frame coherence with respect to the z-coordinates is
not considered. To maintain the frame-to-frame coher-
ence, we apply an optimization method based on Taubin’s
paper [20], to smooth the depth of the vertices, both inter-
frame and within-frame, by an iterative process.

If the characters in the input frames are composed of
several layers, we create the 3D meshes separately for
each layer and then bring them together as a composi-
tion. If the user has defined the same closed input paths
for two different layers, the paths are regarded as stitches.
Two meshes are combined by uniting the vertices of the
stitches. After combining the layers, they are smoothly

shifted and sheared so that they do not intersect with each
other.

Since the animator draws the characters aesthetically,
it is difficult to generate their 3D shapes fully automati-
cally. In addition to the above automatic inflation method,
we also provide several tools to let the animator manually
adjust the z-coordinate of the vertices if necessary, such
as the methods described in [17–19]. We only allow the
changes in the positions of vertices along the direction of
the projections in order to maintain the silhouette preser-
vation and the feature preservation properties.

5 Results and applications

The dancing bear models shown in Fig. 1j–l were cre-
ated from six input images. Three of these are shown in
Fig. 1a–c. In the preprocessing step, 60 curves are drawn
on each frame. By using the current system, it takes about
20 s to produce six consistent 3D models using a desktop
PC with an Intel Pentium 4 1.7-GHz CPU. Each model
contains 6,018 faces (triangles) and 3,280 vertices. Over-
writing stroke vectors on the input hand-drawn sketches
and specify the correspondences of 59 features among the
six frames takes 30 min with our user interface, which is
comparable to the time taken by other tools for object
space morphing.

The running dinosaur models shown in Fig. 5b were
also created from six input images. Three of these are
shown in Fig. 5a. It takes about 40 s to produce six consis-
tent 3D models with 86 features, each of which contains
4,862 faces and 2,550 vertices. Since the constructed di-
nosaur models are three-dimensional, we can change the
viewpoint to render the dinosaur model as the images
shown in Fig. 5c. However, since we have the input im-
ages from only one viewpoint, changing the viewpoint so

Fig. 5a–c. Example of a running dinosaur. a Three of six input-
vector-based images. b Texture-mapped models using toon render-
ing. c Viewed from another viewpoint

556 B.-Y. Chen et al.

Fig. 6. a Long shadows cast by two bears. A shadow caused by one
bear is cast onto another bear. The background image is taken from
Corrêa et al.’s paper [3]. b Simulating effect of light through trees

that it is too large will cause some errors due to the lack of
information from other viewpoints.

The created set of 3D character models can be used for
the following applications.

Shading effects and shadows. Figure 6 shows two synthe-
sized scenes that use different illumination conditions. In
Fig. 6a, we use low-contrast diffusion colors to simulate
an evening scene. On the other hand, in Fig. 6b, we use
high-contrast diffusion colors and apply specular effects
to mimic the light through trees. The lighting conditions
and the position of the ground can be changed by the user.
To add shading effects to the characters, we implemented
our rendering algorithm on programmable graphics hard-
ware (NVIDIA GeForce FX) and were able to render the
scenes in real time. Scenes that include shading effects
or shadows can be easily generated once the 3D models
have been created. It typically takes 2 or 3 min to change
the illumination conditions and the directions of the light
sources. Since our method can be seen as an extension of
the work by Petrović et al. [17], adding shadows or shad-
ing produces almost the same results as their method.

Texture mapping. Since the 3D models that were created
exhibit feature-preservation and frame-to-frame corres-
pondence properties, mapping a texture image onto each
model or obtaining intermediate models is straightfor-
ward. The stroke vectors drawn on the images by the
animator work as guides or constraints for texture map-
ping or morphing. Figure 7 shows a simple example of
mapping one texture image onto two models. Note that
the pattern of the texture corresponds on each model. We
transfer the same texture from the first model to others
by giving the same texture coordinates to the correspond-
ing vertices, i.e., texture transfer. However, simple texture
mapping is not sufficient in some cases. Figure 8a shows
a bad example, since it produced some serpentine lines
around the animator-specified stroke vectors. The model
shown in Fig. 8a is the same as that shown in Fig. 8b,
which is a closeup view of Fig. 1k, but the eyes and the
mouth of the bear model in Fig. 8a have some errors. This
unpleasant effect is caused by the differences in the vertex
densities of the models in the regions of the stroke vec-

Fig. 7. Simple textured models. Note that the texture on the groins
of both dinosaur models is continuous

Fig. 8. a Texture-mapped model with some errors. Eyes and mouth
are drawn with serpentine lines, which are quite different from b.
b Correct texture-mapped result, which is a closeup view of Fig. 1k

tors, as in the models shown in Fig. 1g,h. Although we can
put hard constraints onto the stroke vectors, we cannot en-
sure the uniformity of the vertex densities around them.
This problem is closely related to the manner of drawing
silhouettes in an artistic style [7, 8, 15]. Since in a charac-
ter animation the features are the most important parts, the
problem must be solved.

In our approach, we record the texture around each
animator-specified stroke vector separately from the or-
dinal textures by parameterizing its width onto a vertex
sequence that corresponds to the stroke vector. To render
the vertex sequence corresponding to the stroke vectors,
we first check whether (a part of) the vertex sequence is
visible. If it is, we disable the z-buffer, generate triangle
strips in the image space according to the parameterized
width, and draw them directly onto the image plane. Fig-
ure 8b (also Fig. 1k) shows the modified texture-mapped
model of Fig. 8a.

The texture-mapped dinosaur model shown in Fig. 7 is
composed of several layers, e.g., the body and the left leg
are two different, but connected, layers. By applying the
same constraints to the stitches of the connected layers, the
texture on connected layers can be mapped smoothly. Note
that the texture on the groin of the dinosaur model shown
in Fig. 7 is continuous.

Morphing and shape blending. To morph models by using
their vertexwise correspondences, many 2D or 3D mor-
phing methods [1, 9, 14] might be applied. However, most
existing morphing methods are designed for morphing be-
tween two models and cannot be easily extended to more

Character animation creation using hand-drawn sketches 557

Fig. 9. Upper row: intermediate models constructed between
models shown in Fig. 1j,k. Middle row: pseudoview-dependent
models generated from models in upper and lower rows. Lower
row: morphing sequence generated from two other input frames
from another viewpoint

than two models. Hence, we currently choose to use a sim-
ple spline interpolation method to construct the intermedi-
ate models, as shown in the upper row of Fig. 9, for gen-
erating a smooth animation sequence. Moreover, by speci-
fying the corresponding strokes and features on the images
of two different characters, two 3D models with a consis-
tent mesh parameterization can be constructed. Then, the
morphing sequence between the two character models can
also be generated. Two or more different character models
can also be blended.

Pseudoview-dependent models. Given sets of input frames
from different viewpoints, by specifying the correspond-
ing strokes and features onto the images, the 3D models
that interpolate the viewpoints can be constructed as
shown in the middle row of Fig. 9. We thus can help the
animators generate both temporal and spatial intermedi-
ate shapes. Since the models are constructed from a set of
consistent 2D graphs, if there are no corresponding fea-
tures on the input frames, we cannot construct the models.
Therefore, even if the user gives an input of a set of im-
ages to show the back of the bear, we can still not generate
a set of pseudoview-dependent models from the front of
the bear to the back.

6 Conclusions and future work

In this paper, we proposed a method for creating a set
of consistent 3D models from a sequence of hand-drawn
strokes. The models have the following properties.

(1) Their projected silhouettes coincide with the input
strokes, and therefore they can add plausible shading
effects or shadows to a scene.

(2) They possess vertexwise correspondence, so it is pos-
sible to obtain a continuous animation sequence by
interpolating their coordinates or to add the same tex-
tures to all of the models by propagating the texture
coordinates to the corresponding vertices.

(3) The correspondence of the vertices can be controlled
by the animator’s drawing strokes, and thus the tech-
nique can be applied to morphing or texture mapping
with constraints set by the animator.

The additional effort required of the animator, beyond
the traditional process of making cel animations, is only
to specify several correspondences on input strokes, where
the animator would like to place constraints. Thus, our
method can yield a range of applications with only a mini-
mum of effort. Since our method can construct several 3D
models with a consistent mesh parameterization for differ-
ent characters, several related applications might also be
achieved.

Since the 3D position of the vertices of the created
models are estimated, the surfaces of the created models
may be a little bumpy. This limitation is not so import-
ant when we apply toon shading to the models. When
it comes to background characters as in an animation of
crowds, the details of the character models are also not
so necessary. Therefore, it may be acceptable to use the
created models in those cases. Moreover, our method is
also suitable for adding some effects to cel animation,
such as what has been done in [17]. Helping traditional
2D animators to produce a prototype of 3D character an-
imation is also one of our major contributions. The gen-
erated 3D animated character models can then be fur-
ther modified using commercial modeling tools such as
Maya.

The following list of topics indicates aspects of the
work that we hope to cover in the future:

(1) Reduce the labor of animators by finding the corre-
spondences between the input images automatically
or semi-automatically. This might become possible by
utilizing computer vision techniques.

(2) Enable the creation of models from nonconsistent im-
ages.

(3) Given a character animation sequence, transfer the mo-
tion of the character to another character that is only
drawn on a single image.

Acknowledgement We thank Dr. Ken-ichi Anjyo (Oriental Light
& Magic Inc.) for providing the input images (Fig. 1). This work
was partially supported by the National Science Council of Taiwan
under numbers 93-2213-E-002-084.

558 B.-Y. Chen et al.

References

1. Alexa, M., Cohen-Or, D., Levin, D.:
As-rigid-as-possible shape interpolation. In:
Proceedings of SIGGRAPH, pp. 157–164
(2000)

2. Bregler, C., Hertzmann, A., Biermann, H.:
Recovering non-rigid 3d shape from image
streams. In: Proceedings of CVPR,
pp. 2690–2696 (2000)

3. Corrêa, W.T., Jensen, R.J., Thayer, C.E.,
Finkelstein, A.: Texture mapping for cel
animation. In: Proceedings of SIGGRAPH,
pp. 435–446 (1998)

4. Fekete, J.D., Bizouarn, É., Cournarie, É.,
Galas, T., Taillefer, F.: Tictactoon: A
paperless system for professional 2-d
animation. In: Proceedings of SIGGRAPH,
pp. 79–90 (1995)

5. Freitag, L.A., Jones, M.T., Plassmann, P.E.:
An efficient parallel algorithm for mesh
smoothing. In: Proceedings of IMR,
pp. 47–58 (1995)

6. Igarashi, T., Matsuoka, S., Tanaka, H.:
Teddy: A sketching interface for 3d
freeform design. In: Proceedings of
SIGGRAPH, pp. 409–416 (1999)

7. Kalnins, R.D., Davidson, P.L., Markosian,
L., Finkelstein, A.: Coherent stylized
silhouettes. ACM Trans. Graph. 22(3),
856–861 (2003). (Proceedings of
SIGGRAPH 2003)

8. Kalnins, R.D., Markosian, L., Meier, B.J.,
Kowalski, M.A., Lee, J.C., Davidson, P.L.,
Webb, M., Hughes, J.F., Finkelstein, A.:
Wysiwyg npr: Drawing strokes directly on
3d models. ACM Trans. Graph. 21(3),
755–762 (2002). (Proceedings of
SIGGRAPH 2002)

9. Kanai, T., Suzuki, H., Kimura, F.:
Metamorphosis of arbitrary triangular
meshes. IEEE Comput. Graph. Appl. 20(2),
62–75 (2000)

10. Karpenko, O., Hughes, J.F., Raskar, R.:
Free-form sketching with variational
implicit surfaces. Comput. Graph. Forum
21(3), 585–594 (2002). (Proceedings of
Eurographics 2002)

11. Kraevoy, V., Sheffer, A., Gotsman, C.:
Matchmaker: Constructing constrained
texture maps. ACM Trans. Graph. 22(3),
326–333 (2003). (Proceedings of
SIGGRAPH 2003)

12. Li, Y., Gleicher, M., Xu, Y.Q., Shum, H.Y.:
Stylizing motion with drawings. In:
Proceedings of SCA, pp. 309–319 (2003)

13. Martín, D., García, S., Torres, J.C.:
Observer dependent deformations in
illustration. In: Proceedings of NPAR,
pp. 75–82 (2000)

14. Michikawa, T., Kanai, T., Fujita, M.,
Chiyokura, H.: Multiresolution

interpolation meshes. In: Proceedings of
PG, pp. 60–69 (2001)

15. Northrup, J.D., Markosian, L.: Artistic
silhouettes: A hybrid approach. In:
Proceedings of NPAR, pp. 31–38 (2000)

16. Ono, Y., Chen, B.Y., Nishita, T.: 3d
character model creation from cel
animation. In: Proceedings of CyberWorlds,
pp. 210–215 (2004)

17. Petrović, L., Fujito, B., Williams, L.,
Finkelstein, A.: Shadows for cel animation.
In: Proceedings of SIGGRAPH,
pp. 511–516 (2000)

18. Rademacher, P.: View-dependent geometry.
In: Proceedings of SIGGRAPH,
pp. 439–446 (1999)

19. Singh, K., Fiume, E.L.: Wires: A geometric
deformation technique. In: Proceedings of
SIGGRAPH, pp. 405–414 (1998)

20. Taubin, G.: Curve and surface smoothing
without shrinkage. In: Proceedings of
ICCV, pp. 852–857 (1995)

21. Torresani, L., Hertzmann, A., Bregler, C.:
Learning non-rigid 3d shape from 2d
motion. In: Proceedings of NIPS,
pp. 577–580 (2003)

22. Winnemöller, H., Bangay, S.: Geometric
approximations towards free specular comic
shading. Comput. Graph. Forum 21(3),
309–316 (2002). (Proceedings of
Eurographics 2002)

BING-YU CHEN received his B.S. and M.S. in
computer science and information engineering
from the National Taiwan University, Taipei,
in 1995 and 1997, respectively, and his Ph.D.
in information science from the University of
Tokyo, Japan, in 2003. He has been an assistant
professor in the Department of Information
Management and the Graduate Institute of Net-
working and Multimedia of the National Taiwan
University since 2003. His research interests
are mainly in computer graphics, geometric
modeling, and Web and mobile graphics. He is
a member of IICM, ACM, and IEEE.

YUTAKA ONO received his B.S. and M.S. in
information science and computer science from
the University of Tokyo, Japan, in 2002 and
2004, respectively. He has been working for
SEGA Corp. since 2004. His research interests
are mainly in computer graphics, geometric
modeling, and computer animation.

TOMOYUKI NISHITA received his B.S., M.S.,
and Ph.D. in electrical engineering from Hi-
roshima University, Japan, in 1971, 1973, and
1985, respectively. He worked for Mazda
Motor Corp. from 1973 to 1979. He became
a lecturer at Fukuyama University in 1979,
associate professor in 1984, and professor in
1990. He moved to the Department of Infor-
mation Science of the University of Tokyo as
a professor in 1998 and has been a professor
in the Department of Complexity Science and
Engineering of the University of Tokyo since
1999. He received Research Award on
Computer Graphics from IPSJ in 1987, and
also received Steven A. Coons awards from
ACM SIGGRAPH in 2005. His research
interest is mainly in computer graphics. He is
a member of IEICE, IPSJ, ACM, and IEEE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

