
Visual Comput (2006) 22: 702–712
DOI 10.1007/s00371-006-0056-9 O R I G I N A L A R T I C L E

Naoki Tamura
Henry Johan
Bing-Yu Chen
Tomoyuki Nishita

A practical and fast rendering algorithm
for dynamic scenes using adaptive
shadow fields

Published online: 23 August 2006
© Springer-Verlag 2006

N. Tamura (�) · H. Johan · T. Nishita
The University of Tokyo
{naoki, nis}@nis-lab.is.s.u-tokyo.ac.jp

H. Johan
Nanyang Technological University
henryjohan@ntu.edu.sg

B.-Y. Chen
National Taiwan University
robin@ntu.edu.tw

Abstract Recently, a precomputed
shadow fields method was proposed
for achieving fast rendering of
dynamic scenes under environment
illumination and local light sources.
This method can render shadows
fast by precomputing the occlu-
sion information at many sample
points arranged on concentric shells
around each object and combining
multiple precomputed occlusion
information rapidly in the rendering
step. However, this method uses the
same number of sample points on
all shells, and cannot achieve real-
time rendering due to the rendering
computation rely on CPU rather than
graphics hardware. In this paper, we
propose an algorithm for decreasing
the data size of shadow fields by

reducing the amount of sample points
without degrading the image quality.
We reduce the number of sample
points adaptively by considering
the differences of the occlusion
information between adjacent sample
points. Additionally, we also achieve
fast rendering under low-frequency
illuminations by implementing
shadow fields on graphics hardware.

Keywords Photo-realistic ren-
dering · Real-time rendering ·
Precomputed shadow fields

1 Introduction

Creating photo-realistic images is one of the most import-
ant research topics in computer graphics and lighting plays
an important role in it. Traditionally, people simulated
the lighting environment by placing local light sources,
such as point light sources, and area light sources. Re-
cently, there are many methods using a dome-like lighting
environment (environment illumination) to create photo-
realistic images. However, since most of them use the
ray-tracing method for rendering, they need a lot of com-
putation time.

Sloan et al. presented the precomputed radiance trans-
fer (PRT) method [23] to render a scene in real-time under
environment illumination. Then, many methods were pro-

posed to enhance both the rendering quality and the com-
putation efficiency: PRT methods using wavelet trans-
form [16, 17], a method to compress the precomputed data
using the principal component analysis (PCA) [22], etc.
However, these methods have a problem: objects in the
scene cannot be translated nor rotated.

Zhou et al. extended the PRT method to render dy-
namic scenes by using an environment illumination and
local light sources together and proposed the precomputed
shadow fields (PSF) method [28]. In this method, they pre-
compute the shadow fields which describe the occlusion
information of an individual scene entity at some sam-
pled points arranged on concentric shells placed in its
surrounding space. When rendering dynamic scenes, for
each object, the occlusion information stored in its shadow
fields is interpolated to compute its occlusion information

A practical and fast rendering algorithm for dynamic scenes using adaptive shadow fields 703

at an arbitrary location. Then by quickly combining the
occlusion information of all objects, the final occlusion in-
formation at an arbitrary location is computed efficiently.
As a result, the radiance at a location can be computed
fast.

Their method has two limitations. First, they store the
shadow fields using the same number of sample points at
all the concentric shells. Second, they perform the render-
ing on CPU that limits the performance. In this paper, we
propose an algorithm to solve the limitations of the ori-
ginal PSF method, which includes two methods. We ob-
serve that the occlusion information stored in the shadow
fields varies slowly with their neighbors. Hence, we first
propose a method to optimize the number of sample points
by considering the difference between the occlusion infor-
mation at the nearby sample points. To increase the render-
ing performance under low-frequency illuminations, we
also propose a method to use shadow fields on graph-
ics hardware (GPU) for fast rendering. We assume that
a scene consists of triangular meshes. Generally, if we ap-
proximate the light source and the occlusion information
for all-frequency effects, the precomputed data size will
become large. Moreover, for capturing rapid changes in
radiance, it is necessary to subdivide the mesh data much
finely. For these two reasons, all-frequency approximation
is not suitable to be used in practical applications, such
as computer games and virtual reality. Hence, in this pa-
per we focus on the fast rendering under low-frequency
illuminations, which are sufficient for practical applica-
tions.

The rest of this paper is organized as follows. Section 2
describes the related work. Since our method is based on
the PSF method, the algorithm and limitations of the PSF
method are introduced in Sect. 3. The details of our al-
gorithm are explained in Sect. 4. Then, Sect. 5 describes
the implementation on graphics hardware. The results are
shown in Sects. 6 and 7 describes the conclusion and fu-
ture work.

2 Related work

Our method uses the dome-shaped light source and local
area light sources as the lighting environment. Since the
light sources have areas, it is important to simulate the
soft shadows. Moreover, to render a scene under the dome-
shaped light sources in real-time is related with the pre-
computed radiance transfer (PRT) method. Hence, the re-
lated work of these two categories is described in this
section.

2.1 Rendering soft shadows

Nishita et al. proposed methods [18, 20] to render soft
shadows caused by linear or area light sources. More-

over, they also proposed a method [19] to calculate soft
shadows due to the dome-like sky light, which is simi-
lar to the environment illumination. However, to use
their methods to generate soft shadows requires a lot
of calculation, and thus it is difficult to render in real-
time.

Recently, many methods have been proposed for
quickly calculating soft shadows by using GPU, which
can be divided into the shadow map [27] based methods
and the shadow volume [4] based ones. Heckbert and Herf
used the shadow map method to project multiple shad-
ows to the object and then combine the projected shadows
to calculate soft shadows [6]. Heidrich et al. proposed
a method to use GPU to calculate soft shadows caused
by linear light sources [7]. In their method, they first put
several sample points on the linear light source, and use
the shadow map method to project the shadows to the
object from the sample points. Then, the soft shadows
are calculated by summing the generated shadows. Soler
and Sillion presented a method to calculate soft shadows
by using the fast fourier transform (FFT) method [25].
Agrawala et al. proposed a method to calculate soft shad-
ows in screen space [1], but their method did not focus on
the real-time calculation.

Akenine–Moller and Assarsson extended the shadow
volume method to render soft shadows by using GPU
[2, 3]. However, the calculation of their methods depends
on the geometric complexity of the scene. Hence, it is dif-
ficult to calculate the soft shadows of a complex scene
efficiently. In addition, their methods did not deal with
the environment illumination. A fast soft shadows algo-
rithm for ray tracing was proposed by Laine et al. [13].
This method, however, does not compute soft shadows in
real-time.

2.2 Precomputed radiance transfer

Dobashi et al. used basis functions for fast rendering
under skylight [5]. Ramamoorthi and Hanrahan proposed
a method to render a scene under environment illumina-
tion in real-time by using the spherical harmonics (SH)
basis [21]. However, their method did not take the shad-
ows into account. To extend their method, Sloan et al.
proposed the PRT method [23], which can render the
soft shadows, inter-reflections, and caustics in real-time.
Then, to improve the PRT method, Kautz et al. presented
a method for arbitrary bidirectional reflectance distribu-
tion function (BRDF) shading [10], and Lehtinen and
Kautz proposed a method to efficiently render the glossy
surfaces [14]. Moreover, Sloan et al. proposed a method
to compress the precomputed data by using the princi-
pal component analysis (PCA) [22], and also a method
to render with the PRT method and bidirectional tex-
ture function (BTF) together [24]. Furthermore, Ng et
al. used wavelet transform for all-frequency relighting

704 N. Tamura et al.

[16, 17]. However, in these methods, the rendering ob-
jects cannot be translated nor rotated in the precomputed
scene.

James and Fatahalian applied the PRT method to cap-
ture several scenes, and then they can interpolate them
to simulate the translation, rotation, and deformation of
the objects in the scene [8]. However, the transform-
ation of the objects is limited to the ones captured at
the preprocessing step. Mei et al. used the spherical ra-
diance transport maps (SRTM) to make the object being
able to have free translation and rotation [15]. However,
in their method, the radiances of the vertices are calcu-
lated by using CPU only, and thus the performance is
poor. Since the SRTM needs many texture images while
rendering, it is difficult to shift the calculation to GPU.
Hence, their method cannot render a complex scene fast.
Kautz et al. used hemispherical rasterization for all ver-
tices and all frames under environment illumination and
made the object capable of free deformation [9]. How-
ever, for a complex scene, the calculation is too complex
to render the scene in real-time even after applying sev-
eral optimizations. The method for fast rendering of soft
shadows in dynamic scenes which distinguished between
self-shadow and shadows cast by other objects was pro-
posed by Tamura et al. [26]. This method, however, can-
not deal with local light sources. Efficient soft shadows
rendering under ambient light was proposed by Kontka-
nen et al. [12]. However, this method cannot take into ac-
count the illumination from distant lighting and local light
sources.

Zhou et al. proposed the PSF method which precom-
puted the shadow fields to store the occlusion informa-
tion of some sample points arranged on concentric shells
placed at the surrounding of the object. When rendering,
by quickly combining the occlusion information stored in
the shadow fields, they can render dynamic scenes which
may contain several objects [28]. In their method, how-
ever, they use the same number of sample points at all
shells. In this paper, we present a method for adaptively
sampling the shadow fields. Thus, our method reduces
the data size of the shadow fields. Moreover, we present
a GPU implementation for rendering using shadow fields
under low-frequency illuminations. Hence our method can

Fig. 1a,b. The concept of the
precomputed shadow fields
(PSF) method. a Precomputation
of the shadow fields. b The
calculation of the occlusion in-
formation due to other objects
at point p

be used for practical applications, such as computer games
and virtual reality.

3 Original precomputed shadow fields

In this section, we describe the overview and the limita-
tions of the original PSF method [28].

3.1 Overview

In the PSF method, the shadow fields of each local light
source and object which will be translated and rotated are
precomputed as Fig. 1(a). To calculate the shadow fields,
concentric shells are placed at the surroundings of the ob-
ject. Then, a large number of sample points are generated
on each shell, and the object occlusion field (OOF) and
source radiance field (SRF) of the object are calculated
at each sample point. The occlusion and radiance infor-
mation at each sample point are calculated in longitude
φ and latitude θ directions. The calculated information is
approximated using spherical harmonics as [23] or using
Haar wavelet transform as [16]. Different approximation
methods will cause different qualities of shadows, render-
ing performance, and memory consumption. Furthermore,
the self-occlusion (occlusion due to its own geometry) of
each point is also precomputed.

To render using shadow fields, the radiance at each ver-
tex must first be calculated. Then, the scene is rendered
by interpolating the radiance at each vertex. The occlusion
information due to other objects during the radiance cal-
culation is calculated by referring to the shadow fields as
shown in Fig. 1(b). The occlusion information of object A
at point p is calculated by interpolating the information at
the sample points near p. The occlusion information due
to more than one object is combined by using the triple
product [17].

In the original PSF method, the locations of sample
points are decided by projecting a cubemap to concen-
tric shells. A cubemap-based scheme is indeed efficient
on sampling distribution; however, it is difficult to keep
continuous interpolation near the cube edges when we

A practical and fast rendering algorithm for dynamic scenes using adaptive shadow fields 705

optimize the sample points on each cubemap face inde-
pendently. To simplify the interpolation, we employ polar
coordinates model for the locations of sample points. In
our method, the coefficient vectors of the orthonormal
basis transformed from the occlusion information (one di-
mensional array under the occlusion information in Fig. 1)
are called occlusion coefficient vectors (OCV). As for the
source radiance information, we call them radiance coeffi-
cient vectors (RCV).

3.2 Limitations

The PSF method proposed by Zhou et al. [28] has the fol-
lowing two limitations:

– It has the same number of sample points at all shells. If
we set the sampling resolution R in φ and θ directions
on C concentric shells and each sample point stores
OCV with E elements where each element needs D
byte, in the case of fix sampling resolutions, the data
size of the shadow fields is C × R2 × E × D bytes.

– Relatively low-rendering performance due to the com-
putation using only CPU.

4 Adaptive shadow fields

In this section, the adaptive sampling method for the OOF
is described. The SRF can also be adaptively sampled by
using the same method.

Based on our observation, the occlusion information
stored in the shadow fields varies slowly. Therefore, we
can reduce the data size of the shadow fields by removing
some unnecessary sample points at each concentric shell
respectively (Fig. 2(a)). We perform the optimization of
sample points at each shell independently.

The details of the algorithm for optimizing the number
of sample points at each concentric shell is as follows (see
Fig. 2(b)).

Fig. 2a,b. Optimization of the number of sample points. a Previous method [28] uniformly put the sample points (left), but our method
considers the variation of the occlusion information among the neighboring sample points to optimize the number of sample points (right).
b Reducing the number of sample points by halving the sampling resolution in each direction (left) and checking if the new sample points
(blue points) can approximate the initial sample points (red points) (right)

1. Set the initial sample points on the shell with reso-
lution R, that is, R× R sample points (red points).

2. Compute the occlusion information at all initial sample
points and transform them to OCV O. We use spherical
harmonics for low-frequency shadow fields and Haar
wavelet transform for all-frequency shadow fields.

3. Arrange the new sample points on the shell with R/2×
R/2 sample points (blue points).

4. Calculate the OCV Ō of the new sample points by lin-
early interpolating the occlusion information contained
in its four nearest initial sample points.

5. Obtain the OCV Õ of each initial sample point by lin-
early interpolating its four nearest new sample points
(however, we use the nearest point for the corner, and
the two nearest points for the boundary).

6. Calculate the difference between OCV Õ and OCV O
using Eq. 1.

Error(s, t) = 1

4π

∫

Ω

∣∣∣
G−1∑
g=0

Õg(s, t)Ψg(ω)

−
G−1∑
g=0

Og(s, t)Ψg(ω)

∣∣∣dω, (1)

where Ψ is the basis function (spherical harmonics or
wavelet), G is the number of the basis functions, 1

4π
is

the normalization term, and s and t are the indices of
sample points in θ and φ directions, respectively.

7. For all the initial sample points, if the differences
are lower than a specified threshold, the initial sample
points are replaced with the new sample points, then
halve the value of R and return to Step 3. The threshold
will be explained in Sect. 6.1.

To perform the optimization recursively, we keep the num-
ber of sample points to be power of two. In our imple-
mentation, we set R = 64 in the initial state. By replacing
the OCV with the RCV, we can use the above mentioned
algorithm to adaptively sample the SRF.

706 N. Tamura et al.

5 GPU implementation

Our GPU implementation is for rendering using shadow
fields whose OCV and RCV are approximated using
fourth order spherical harmonics (16 bases), where each
spherical harmonics coefficient is quantized to 8-bits. Fig-
ure 3 shows the outline of the radiance computation using
shad-ow fields. Since the radiance computation of each
vertex v is independent of each other, it is possible to per-
form the computations in parallel and is hence suitable for
GPU implementation. The underlined parts in the figure
are performed on GPU.

In our method, we first prepare radiance texture TB
and vertex array texture TL with sizes N × N (N2 > the
number of vertices) for each object. We then use CPU
to perform the visibility culling operation to calculate the
visible vertex array L and store it in TL . Next, we make
the one-to-one correspondence between the k-th vertex vk
of L and the texel (x, y) of TB, where x = k mod N and
y = �k/N�. After this operation, we perform the calcula-
tion of each individual vertex to be that of each texel, and
most of the radiance computations are transferred to GPU
as shown in Fig. 3. Finally, the radiance of each vertex
of L is stored in TB. In the rendering stage, we use ver-
tex shader to reference the correspondence texel in TB to
obtain the vertex color.

To perform GPU-based radiance computations, we
have to keep Uv, Sj and Oj on GPU. We use the

Fig. 3. Outline of the rendering process. The underlined parts are
performed in GPU

frame buffer object (FBO) extension [11] to keep them.
In our implementation, one FBO F is created and the
e-th element of each Uv, Sj and Oj is stored in the
(e mod 4+1)-th channel at the (e/4 +1)-th COLOR_
ATTACHMENT [11] of F. If we try to operate the com-
putation of K-th order spherical harmonics on GPU, one
FBO with

⌈
K2/4

⌉
COLOR_ATTACHMENTs is needed.

Current maximum number of the available COLOR_
ATTACHMENT is four. Thus, our GPU-based radiance
computation is restricted to fourth order spherical harmon-
ics due to hardware capability.

The underlined parts in Fig. 3 mainly consist of the fol-
lowing four computations:
1. Reconstruct the OCV (RCV) of each object (light

source) at each vertex from the adaptive shadow fields.
2. Rotate the axes of the local coordinates of the OCV

(RCV) to the axes of global coordinates.
3. Combine the OCVs by calculating the triple product.
4. Compute the radiance by calculating the double prod-

uct of coefficient vectors.
The details of Step 1 and Steps 2, 3, 4 are described

in Sect. 5.1 and Sect. 5.2, respectively. Moreover, the
culling operation and sorting of occluders are explained in
Sect. 5.3.

5.1 Reconstruction of the OCV (RCV) on GPU

Figure 4 shows the outline of the OCV reconstruction pro-
cess. In our method, we first convert the visible vertex v
of target object I to coordinates vJ at the local coordi-
nates of the occluder J . Then, we calculate the nearest two
concentric shells H1, H2 at vJ . For each H , we refer to

Fig. 4. Outline of our OCV reconstruction fragment shader

A practical and fast rendering algorithm for dynamic scenes using adaptive shadow fields 707

the OOF to compute the OCV by interpolating the OCV
at the nearest four sample points. Furthermore, the com-
puted OCV at each shell is interpolated according to the
distance from vJ to H1, H2. The process here is fully per-
formed on a fragment shader, and hence can obtain high
performance. The RCV reconstruction is also performed
as the OCV.

To realize the computation in Fig. 4, the data of the
adaptive shadow fields have to be stored in textures
TO . To construct TO , we first create the texture T c

O to
store the OCVs of the c-th (c < C) concentric shell,
which has Rc × Rc sample points (that is, Rc is the sam-
pling resolution at the c-th shell). To create T c

O , we use
four RGBA (four channels) textures (size : Rc × Rc +2).
For keeping continuous interpolation at the boundaries
of φ direction, we allocate extra texels on T c

O borders
and the OCVs at the boundary are duplicated to the
other boundary. On each texture, the e-th (e : 0, ..., 15)
element of the OCV of a sample point (s, t : 0, ..., Rc −
1) is stored in the (e mod 4+1)-th channel of the
(s, t + 1) texel at the (e/4 + 1)-th texture of T c

O . In
the extra texels (s, 0) and (s, Rc +1), we duplicate the
OCV of sample points (s, Rc − 1) and (s, 0), respec-
tively.

After creating T c
O for all concentric shells, all T c

O are
packed to construct TO as shown in Fig. 5. As described
in Sect. 4, Rc is different for each concentric shell. In
our packing method, we sort the T c

O according to Rc to
tile T c

O as a rectangle. Although this Rc packing method
may have some gaps, it does not pose a memory con-
sumption problem since we only take low-frequency data
into consideration in our GPU implementation and the
memory consumption is relatively small. Furthermore, in
this packing method, since T c

O are usually preserved as
a rectangle, we can use the bilinear interpolation func-
tions on GPU to efficiently interpolate four points when
performing TextureFetch(TO, tJ) in Fig. 4. Since T c

O in
TO is arranged according to the size of Rc, we use an
additional address texture to store the position of T c

O
on TO .

Fig. 5. The concept of texture storage for the adaptive shadow fields

Since TO is quantized to 8-bits, it is necessary to
create four RGBA textures Tq (size : 2 ×C) to store the
minimum value and step of quantization for the restora-
tion of the OCV on GPU. Hence, we store the minimum
value of the e-th element of the c-th concentric shell as
the (e mod 4+1)-th element of the texel (1, c) on the
(e/4+1)-th texture of Tq . The step value is stored in the
position (2, c).

5.2 SH rotation, double product, and triple product

We use the ZXZXZ Rotation method [10] to perform
the spherical harmonics rotation. Figure 6 shows the por-
tions of our nVIDIA Cg fragment shader code to com-
pute the spherical harmonics rotation. The number of
total instructions of the shader is 137. Since the values
of alpha, beta, gamma in Fig. 6 depend only on the
amount of rotation of the object, that means their values
are the same for all the vertices, we hence compute
their values on CPU and set them as the shader con-
stants.

To compute the double product of the coefficient vec-
tors on GPU, we employ the vector dot product command
provided in the fragment shader. Since there are 16 coeffi-
cients, we compute the dot product on every 4 coefficients
and sum up the results.

Fig. 6. nVIDIA Cg fragment shader code for the fourth order spher-
ical harmonics rotation

708 N. Tamura et al.

Fig. 7. nVIDIA Cg fragment shader code for the fourth order spher-
ical harmonics triple product

As mentioned in Ng et al.[17] and Zhou et al.[28], the
number of the non-zero tripling coefficients of the fourth-
order spherical harmonics are relatively small (77). There-
fore, we determine all the non-zero tripling coefficients
and use them to compute the projection coefficients. Fig-
ure 7 shows some portions of the fragment shader code for
performing the triple product. The number of total instruc-
tions of the shader is 415.

5.3 Culling and sorting

As in the original PSF, we perform the visibility culling
for the vertices of each object on CPU. We cull the vertices
outside the view volume and the vertices which do not be-
long to the front face triangles. The vertices that passed
the culling test are put in visible vertex array L. The co-
ordinates of the vertices in L are then put in TL and the
correspondences between the vertices in L and the texels
in radiance texture TB are redetermined. Since the number
of vertices in L (referred as |L|) differs for every object
and in every frame, for efficient computation, we only ex-
ecute the pixel shader on a rectangular region with width
N and height |L|/N. The array of the self-occlusion infor-
mation Ov of the vertices in L is also stored in textures in
every frame.

Since for each object, we compute the radiances of its
vertices simultaneously on GPU, to efficiently perform the
radiance computations for each object, we sort its occlud-
ers and use the results when computing the radiance of all
its vertices. However, if the object is very large, the sorting
results may not be applicable at some of the vertices. To
avoid this problem, for large objects, we divide the mesh
into several sub-meshes and perform the radiance compu-
tation in the unit of sub-mesh.

6 Results

In this section, we show the rendering results using adap-
tive shadow fields. In our experiments, we use a desktop
PC with a Intel Pentium D 3.0GHz CPU and a GeForce
7800GTX GPU. The occlusion and the radiance infor-
mation are computed as maps with resolution 64 × 64.
For low-frequency shadow fields, we use 32 concentric
shells and 64 ×64 sample points as the initial sampling
resolution. The information in the shadow fields is approx-
imated using the fourth order spherical harmonics with
16 coefficients, where each coefficient is quantized to 8
bits. For all-frequency shadow fields, we use 32 concen-
tric shells and 64 ×64 sample points as the initial sam-
pling resolution. The information is approximated using
wavelets and 5% of the largest coefficients are kept, where
each coefficient is also quantized to 8 bits. The center of
the concentric shells is placed at the center of the object
and the radius of the c-th (c = 0, ..., 31) shell is 0.2Vr(1+
c), where Vr is the radius of the bounding sphere of the
object.

6.1 Determining the threshold values

In order to determine the threshold value to be used when
we optimize the number of sample points, we performed
several experiments as follows. We made a scene con-
sisting of three different types of objects, that is, an al-
most isotropic object (a teapot), a long object (a statue),
and a plane (thin rectangular solid). Then, we rendered
it by varying the threshold using non-adaptive and adap-
tive, low- and all-frequency shadow fields. The results are
shown in Fig. 8. We can notice the difference between the
images generated by non-adaptive shadow fields and adap-
tive shadow fields when setting the threshold to 0.020, but
the difference is not notable when setting the threshold to
0.010. Therefore, we set the threshold to 0.010 for all the
rest of the examples presented in this section.

Table 1. Optimal number of sample points

Sampling resolution Rc at the shells

Teapot (L) 8 64 64 64 64 64 64 64 64 32 32 32 16 16 16 16
16 16 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Teapot (A) 8 64 64 64 64 64 64 64 64 64 64 64 64 64 32 32
32 16 16 16 8 8 8 8 8 8 8 8 8 8 8 8

Statue (L) 64 64 64 64 64 64 64 64 32 16 16 16 16 8 8 8
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Statue (A) 64 64 64 64 64 64 64 64 64 64 32 32 16 16 8 8
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Plane (L) 64 64 64 64 64 64 64 64 64 64 64 32 16 16 16 16
16 16 16 8 8 8 8 8 8 8 8 8 8 8 8 8

Plane (A) 64 64 64 64 64 64 64 64 64 64 64 64 64 32 32 32
16 16 16 8 8 8 8 8 8 8 8 8 8 8 8 8

A practical and fast rendering algorithm for dynamic scenes using adaptive shadow fields 709

Fig. 8a,b. Determining the threshold values for a low-frequency shadow fields and b all-frequency shadow fields. The images from left
to right are the result of using non-adaptive shadow fields (for comparison) and the results of using adaptive shadow fields and setting
the threshold to 0.020, 0.010, 0.005, respectively. The images at the bottom show the differences (scaled 15 times) between the result of
non-adaptive shadow fields and the results of adaptive shadow fields

6.2 Optimal sampling resolutions

Table 1 shows the sampling resolutions at the concentric
shells of the shadow fields of the three objects described

Table 2. The data sizes of the shadow fields

Fix sampling Adaptive sampling
(MB) (MB)

Teapot (L) 2.0 0.59
Teapot (A) 21.9 13.0
Statue (L) 2.0 0.55
Statue (A) 21.3 11.7
Plane (L) 2.0 0.75
Plane (A) 19.5 11.9

in Sect. 6.1. The shells are sorted in order of increas-
ing radius. For each object, the upper and the lower row
are the results for low-frequency (L) and all-frequency
(A) shadow fields, respectively. Table 2 shows the data
sizes of the shadow fields. By using adaptive sampling,
generally, we achieve about 60%–70% and 40%–45% re-
duction on the data sizes of the low-frequency and all-
frequency shadow fields, respectively. The reason why the
first shell of the teapot has the smallest resolution is that
all sample points of the shell are located inside the teapot,
and thus the differences of occlusion information are ev-
erywhere zero. Note that in our implementation for low-
frequency shadow fields, we use 32 shells, each consisting
of 4096 samples, and each sample has an OCV at size 16
bytes. Therefore, the data size of our non-adaptive low-
frequency shadow fields is 32×4096×16 = 2 MB.

710 N. Tamura et al.

Fig. 9. The statues scene (6 objects, 32 875 vertices)

Fig. 10. The bowling scene (15 objects, 41 340 vertices)

Fig. 11. The falling objects scene (20 objects, 88,739 vertices)

6.3 Rendering results

Figures 9–11 shoa the rendering results using our algo-
rithm. We rendered three scenes while changing the envi-
ronment illumination and moving the objects. The objects
are moved by user in Fig. 9, and by rigid body simula-
tion in Figs. 10 and 11. For the rigid body simulation, we
use the PhysX Engine1. The statues scene (Fig. 9) has 6
objects and 32 875 vertices, the bowling scene (Fig. 10)
has 15 objects and 41 340 vertices, and the falling objects
scene (Fig. 11) has 20 objects and 88 739 vertices. For the
statues and the falling objects scenes, some of the objects

1 Ageia (PhysX Engine): http://www.ageia.com/

Table 3. The total data sizes of the shadow fields and the rendering
performances

Sizes of SF CPU GPU
(MB) (fps) (fps)

Statues 4.6 4–18 70–100
Bowling 4.2 1–3 30–40
Falling objects 12.9 0.5–1 12–16

have glossy BRDF. For the bowling scene, during the ani-
mation, we changed the BRDF of the ball to glossy BRDF.

Table 3 shows the total sizes of the shadow fields and
the comparison of the rendering performances using CPU

A practical and fast rendering algorithm for dynamic scenes using adaptive shadow fields 711

and GPU of the three scenes. It is obvious that using the
proposed GPU implementation, we were able to signifi-
cantly speed up the rendering process.

7 Conclusion and future work

In this paper, we have presented an algorithm for adap-
tively sampling the shadow fields and for fast rendering of
dynamic scenes under environment illumination and local
light sources. Concretely, we solved the limitations of the

original PSF method. We decrease the data size of shadow
fields by reducing the amount of the precomputed data,
since the difference between the nearby precomputed data
is small. Thus, we can adaptively optimize the number of
sample points of the shadow fields. Furthermore, we re-
alize the fast radiance computation under low-frequency
illuminations by implementing the PSF method on GPU.

The next thing to do is to explore the possibility of
compressing the all-frequency shadow fields. We also be-
lieve that our algorithm can be extended to adaptively
control the number of the concentric shells.

References
1. Agrawala, M., Ramamoorthi, R., Heirich,

A., Moll, L.: Efficient image-based methods
for rendering soft shadows. In: Proc.
SIGGRAPH 2000, pp. 375–384 (2000)

2. Akenine-Moller, T., Assarsson, U.: Shading
and shadows: Approximate soft shadows on
arbitrary surfaces using penumbra wedges.
In: Proc. 13th Eurographics Workshop on
Rendering, pp. 297–306 (2002)

3. Assarsson, U., Akenine-Moller, T.: A
geometry-based soft shadow volume
algorithm using graphics hardware. ACM
Trans. Graph. 22(3), 511–520 (2003).
(Proc. SIGGRAPH 2003)

4. Crow, F.C.: Shadow algorithms for
computer graphics. In: Proc. SIGGRAPH
77, pp. 242–248 (1977)

5. Dobashi, Y., Kaneda, K., Yamashita, H.,
Nishita, T.: A quick rendering method for
outdoor scenes using sky light luminance
functions expressed with basis functions. J.
Inst. Image Elec. Engin. Jap. 24(3),
196–205 (1995)

6. Heckbert, P.S., Herf, M.: Simulating soft
shadows with graphics hardware (1997).
Technical report CMU-CS-97-104,
Carnegie Mellon University, January 1997

7. Heidrich, W., Brabec, S., Seidel, H.P.: Soft
shadow maps for linear lights. In: Proc.
11th Eurographics Workshop on Rendering,
pp. 269–280 (2000)

8. James, D.L., Fatahalian, K.: Precomputing
interactive dynamic deformable scenes.
ACM Trans. Graph. 22(3), 879–887 (2003).
(Proc. SIGGRAPH 2003)

9. Kautz, J., Lehtinen, J., Aila, T.:
Hemispherical rasterization for
self-shadowing of dynamic objects. In:
Proc. Eurographics Symposium on
Rendering 2004, pp. 179–184 (2004)

10. Kautz, J., Sloan, P.P., Snyder, J.: Shading
and shadows: Fast, arbitrary BRDF shading

for low-frequency lighting using spherical
harmonics. In: Proc. 13th Eurographics
Workshop on Rendering, pp. 291–296
(2002)

11. Kilgard, M.J. (ed.): nVIDIA OpenGL
Extension Specifications. nVIDIA
Corporation (2004)

12. Kontkanen, J., Laine, S.: Ambient
occlusion fields. In: Proc. Symposium on
Interactive 3D Graphics and Games 2005,
pp. 41–48 (2005)

13. Laine, S., Aila, T., Assarsson, U., Lehtinen,
J., Akenine-Moller, T.: Soft shadow
volumes for ray tracing. ACM Trans.
Graph. 24(3), 1156–1165 (2005). (Proc.
SIGGRAPH 2005)

14. Lehtinen, J., Kautz, J.: Matrix radiance
transfer. In: Proc. Symposium on
Interactive 3D Graphics 2003, pp. 59–64
(2003)

15. Mei, C., Shi, J., Wu, F.: Rendering with
spherical radiance transport maps. Comput.
Graph. Forum 23(3), 281–290 (2004).
(Proc. Eurographics 2004)

16. Ng, R., Ramamoorthi, R., Hanrahan, P.:
All-frequency shadows using non-linear
wavelet lighting approximation. ACM
Trans. Graph. 22(3), 376–381 (2003).
(Proc. SIGGRAPH 2003)

17. Ng, R., Ramamoorthi, R., Hanrahan, P.:
Triple product wavelet integrals for
all-frequency relighting. ACM Trans.
Graph. 23(3), 477–487 (2004). (Proc.
SIGGRAPH 2004)

18. Nishita, T., Nakamae, E.: Continuous tone
representation of three-dimensional objects
taking account of shadows and
interreflection. In: Proc. SIGGRAPH 85,
pp. 23–30 (1985)

19. Nishita, T., Nakamae, E.: Continuous tone
representation of three- dimensional objects
illuminated by sky light. In: Proc.

SIGGRAPH 86, pp. 125–132
(1986)

20. Nishita, T., Okamura, I., Nakamae, E.:
Shading models for point and linear
sources. ACM Trans. Graph. 4(2), 124–146
(1985)

21. Ramamoorthi, R., Hanrahan, P.: An
efficient representation for irradiance
environment maps. In: Proc. SIGGRAPH
2001, pp. 497–500 (2001)

22. Sloan, P.P., Hall, J., Hart, J., Snyder, J.:
Clustered principal components for
precomputed radiance transfer. ACM Trans.
Graph. 22(3), 382–391 (2003). (Proc.
SIGGRAPH 2003)

23. Sloan, P.P., Kautz, J., Snyder, J.:
Precomputed radiance transfer for real-time
rendering in dynamic, low-frequency
lighting environments. In: Proc.
SIGGRAPH 2002, pp. 527–536 (2002)

24. Sloan, P.P., Liu, X., Shum, H.Y., Snyder, J.:
Bi-scale radiance transfer. ACM Trans.
Graph. 22(3), 370–375 (2003). (Proc.
SIGGRAPH 2003)

25. Soler, C., Sillion, F.X.: Fast calculation of
soft shadow textures using convolution. In:
Proc. SIGGRAPH 98, pp. 321–332 (1998)

26. Tamura, N., Johan, H., Nishita, T.:
Deferred shadowing for real-time rendering
of dynamic scenes under environment
illumination. Comput. Anim. Virtual World
16, 475–486 (2005)

27. Williams, L.: Casting curved shadows on
curved surfaces. In: Proc. SIGGRAPH 78,
pp. 270–274 (1978)

28. Zhou, K., Hu, Y., Lin, S., Guo, B., Shum,
H.Y.: Precomputed shadow fields for
dynamic scenes. ACM Trans. Graph. 24(3),
1196–1201 (2005). (Proc. SIGGRAPH
2005)

712 N. Tamura et al.

NAOKI TAMURA received the B.E. in Archi-
tecture from Waseda University in 2003. He is
currently a master student in the Department of
Complexity Science and Engineering at the Uni-
versity of Tokyo. His research interests center in
computer graphics including real-time rendering.

HENRY JOHAN received the B.S., M.S., and
Ph.D degrees in Computer Science from the
University of Tokyo (Japan) in 1999, 2001,
and 2004, respectively. From 2004 to 2006, he
was a post-doctoral fellow in the Department of
Complexity Science and Engineering at the Uni-
versity of Tokyo. He is currently an assistant
professor in the School of Computer Engineer-
ing at Nanyang Technological University (Singa-
pore) since 2006. His research interests include
computer graphics and image processing.

BING-YU CHEN received the B.S. and M.S.
degrees in Computer Science and Information
Engineering from the National Taiwan Univer-
sity, Taipei, in 1995 and 1997, respectively, and
received the Ph.D. degree in Information Science
from the University of Tokyo, Japan, in 2003. He
is currently an assistant professor in the Depart-
ment of Information Management and the Grad-
uate Institute of Networking and Multimedia of
the National Taiwan University since 2003. His
research interests are mainly for computer graph-
ics, geometric modeling, computer animation,
web and mobile graphics. He is a member of
ACM, ACM SIGGRAPH, Eurographics, IEEE,
IEICE, and IICM.

TOMOYUKI NISHITA received the B.E., M.E.,
and Ph.D. degrees in Electrical Engineering

from the Hiroshima University, Japan, in 1971,
1973, and 1985, respectively. He worked for
Mazda Motor Corp. from 1973 to 1979. He
has been a lecturer at the Fukuyama University
since 1979, then became an associate professor
in 1984, and later became a professor in 1990.
He moved to the Department of Information Sci-
ence of the University of Tokyo as a professor in
1998 and now is a professor at the Department
of Complexity Science and Engineering of the
University of Tokyo since 1999. He received Re-
search Award on Computer Graphics from IPSJ
in 1987, Steven A. Coons Awards from ACM
SIGGRAPH in 2005, and CG Japan Award in
2006. His research interest is mainly for com-
puter graphics. He is a member of IEICE, IPSJ,
ACM, and IEEE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

