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Abstract We synthesize and animate general texture paéquirementis thatit must satisfy the Markov-Random-iel
terns over arbitrary 3D mesh surfaces. The animation is cdMRF) assumptions so that we can perform texture synthe-
trolled by flow fields over the target mesh, and the textusss. In addition, our computation is fast and the rendered an
can be arbitrary user input as long it satisfies the Markownation is frame-coherent.
Random-Field assumptions. We achieve this by extending We achieve this by extending the texture optimization
the texture optimization framework over 3D mesh surfacesamework [4] over 3D mesh surfaces [14,17]. We propose
We propose an efficient discrete solver inspired by k-cale¥an efficient numerical solver inspired by k-coherence searc
search, allowing interactive flow texture animation whiteid-[11, 5], allowing fast flow texture animation via a GPU im-
ing the blurry blending problem for the least square solvptementation (via an approach similar to [5]). We dub our
in previous work. Our technique has potential applicatiomschniquediscrete optimization due to the discrete natural of
ranging from simulation, visualization, and special efifec our k-coherence solver (versus the continuous natural of a
least square solver).
keywords: texture synthesis, texture mapping, flow visual- Our technique is simple to implement, and has a variety

ization, texture animation, energy minimization of potential applications such as visualization and specia
effects rendering.

1 Introduction
1.1 Background
We present a technique that allows us to animate a given tex- ) . i
ture pattern over arbitrary 3D mesh surfaces. The animatib@xtures have long been used for visualizing flow fields over
is controlled by a (possibly dynamic) flow field over the tar€ither regular 2D/3D grids or curved 3D surfaces [3,12]. The

get mesh, and the texture can be arbitrary user input; tiye ofjajority of these methods are based on line integral convo-
[ution (LIC) [1], utilizing random noises as textures fomeco
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veying flow fields. Most of these visualization methods use
static images. [18] extended LIC-based visualization &s an
mation via coherent warping between adjacent frames. Most
of these methods, however, utilize random noises as the vi-
sualization texture. Even though noise is effective in @yav

ing detailed flow fields, it is not suitable for simulating raor
general flow fields such as water, smoke, or fire.

The major challenge for animating general texture flows
is to ensure frame-to-frame coherence; this is particularl
tricky around flow singularities such as sources or sinkswhe
texture pattern appears or disappears. For random noises,
frame coherence can be enforced via proper warping [18]
and singularities can be trivially handled since noise is in
herently chaotic. However, for more general textures, care
has to be taken to ensure that the texture patterns evolve
smoothly and naturally when animating with the flow fields.

This work was done while Jianwei Han and Minmin Gong weretvisi[10] proposed procedural methods for synthesizing certain

ing students at Microsoft Research Asia.

classes of flows over arbitrary mesh surfaces, but since it



is procedural, it cannot be utilized for animating arbigrarthe E-step. As an added advantage, our k-coherence solver
user given textures. [4] animates flow fields for any user iallows a GPU-friendly implementation, resulting in funthe
put patterns; the technique produces stunning visuatizatiacceleration of our algorithm.
effects, but has so far been limited to 2D image grids. In ad-
dition, the presented technique is computationally expens
which greatly_ restricts its applicability. % Algorithm

Our goal is to extend [4] over 3D mesh surfaces to al-

low animation of user-input textures over arbitrary 3D SUgyr 51g0rithm extends [4] over 3D mesh surfaces for synthe-

face flow fields. Due to the use of pixel-wise optimizatiog;,jng static textures and dynamic flow visualizations. For

in [4], we adopt the mesh neighborhood sampling methogs, iy of exposition, we begin with a brief review of [4]. We

in [17,14] as opposed to some patch-based algorithms [8, . hresent our modifications over [4] for surface synthesi

In particular, we synthesize textures over mesh vertices as For easy reference, we summarize [4] and our algorithm

in [17,14], and we adopt their methodology for re-meshingg s \,4o-code in Table 1. We also highiight the differences

assigning orientation fields, synthesis ordering, and imul f these two algorithms in the table caption.

resolution synthesis.
Another related issue is computational speed. Even though

most texture synthesis algorithms have been utilized as @nimage Synthesis

offline process (with a notable exception in [5,6]), computa 2%« random neighborhood if ¥ p € X

tion speed is important for our application since we need tofor iteration n = 0:Ndo

synthesize multiple frames of textures over dense polylgona x"*' «— argmin [E:(x; {; }) + AEc(x; u)] // E-step

meshes. Unfortunately, despite its high quality, textypt-o z; ! — argminy [|x, —2|° + AEc(y; u)] // M-step

mization in [4] can be slow due to its particular search and Z é:cse%t”%?z?éﬂggfhg‘og xanaﬁ):ilcitigerﬁr;:j\);\mh ,

minimization algorithms. Fortunately, extensive reshdras it 2+ == 7" Y p e X' v

been performed for synthesis acceleration; as reported in =y _yn+1"

[15,5], k-coherence search [11] provides the best tradeoff  preak

in terms of quality and speed for an efficient parallel im-  endif

plementation. We adopt k-coherence into our optimizationend for

framework, and propose a discrete solver which addresggs esh Synthesis

both the speed and quality issue in the original solver pr =0

[ N r—— : t
« random neighborhood if V p € X
posed by [4]. As a recent work, [6] extends the GPU synthe-; iteration n = oqudo P

sis in [5] to arbitrary surfaces, but the underlying aldumit X" —argminy ) ckpyvn (Bt (6 {Z5}) 4+ AE(x; u)] // E-step
is k-coherence synthesis, different from our optimizatibn 22t — argminy [[W,ox — z|? 4+ AE.(y; u)] // M-step
gorithm. II' W, is the interpolation matrix so that x,, = W, X

The fields of flow visualization and texture synthesis are ifz;™' ==z} Vpe X'

both vast, and it is beyond our paper to provide a complete Ez;f“
coverage; for more detailed surveys, we refer the readers to endrif

[18,12] for flow field visualizationand [19,4,5,6] for texal  eng for
synthesis.
Table 1 Pseudocode. The top portion is for [4], while the bottom por-
tion our algorithm. The major differences include (1) Théput vari-
P ablesx indicates image pixel colors in [4] but mesh vertex colorsun
1.2 Our Contribution case, (2) the output neighborhorglis from regular image grid in [4]
] o but interpolated from mesh vertex colors in our case, (3)é¢l#riction
Our major contributions are as follows. of each output vertex colot(p) to its k-coherence candidate $&p)

We combine texture optimization [4] and synthesis i) the E-step, and (4) we utilize k-coherence as the seagaitdm in
neighborhood sampling [14, 17] to achieve controllablayfe-e M-step.
coherent texture animation over general input textures and
output meshes. To our knowledge, this combination has not
been attempted before, and it requires non-trivial extessi
of previous algorithms. In particular, we have to re-cast th
energy function in [4] so that the optimization variables 1i2.1 Brief Review of [4]
on irregular mesh vertices instead of regular-grid image pi
els. Unlike most previous work based on greedy heuristics, [4]
In addition, the original EM-solver [4] is too computa-synthesizes textures by optimization. Specifically, theoge
tionally expensive for real-time or interactive applicais. output pixel colorsx is treated as a high-dimensional vari-
We propose a novel discrete solver based on k-cohereatte, and its value is determined by energy minimization.
search [11], allowing a fast, quality neighborhood seanch The energy functionE(x) measures the perceptual differ-
the M-step, while avoiding the blurry blending problem irnce between the input and output based on a simple local



neighborhood metric [2,16]. For constrained synthesi®isuc Since output colors are defined over irregularly sam-
as frame-coherent animation, the energy function also pled mesh vertices, we have to resample each output neigh-
corporates output color constraints This energy function borhood into a regular grid, in order to perform pixel-wise

E(x) can be summarized as follows: comparison as shown in th& term in Equation 1. This can
be done by the neighborhood flattening and resampling idea
E(X) = Ex(X%:{z,}) + AEc(X; U) from [14,17]. Specifically, each resampled output neighbor
Ei(x;{z,}) = Z X, — 2,/ (1) hood can be expressed as a linear combination of nearby

pext vertex colors:

, where E; measures local neighborhood similarity acrody ~ WX 2)
the current active subséf' of the output £, indicates the , wherew,, is a per-vertex sparse interpolation matrix relat-
most similar input neighborhood to each output neighbdrg X, tox. For static meshes, the set of interpolation weights
hood x,), E. imposes color constraints as detailed in [4}V, can be pre-computed and stored with each output vertex,
(Section 4), and weighs these two energy terms differentlyo reduce run-time computation cost.
according to user preference. Based on this representation of re-samptgdwe can

[4] solves the energy function via an EM-like algorithmre-write E; as follows:
in the E (expectation) step, the set of matching input neigh- )
borhoods{z, } remains fixed and the set of output pixelis E(x{z,}) = Y WXz, ®3)
solved via least-square method; in the M (maxization) step, peXT
the set of output pixels remains fixed and the set of match-  Note that this equation is still a quadratic energy func-

ing input neighborhoods$z, } is found by searching. Thesetjon, allowing fast least-square solvers as in the origatal
two steps are iterated multiple times until convergence, grithm [4].

a maximum number of iterations is reached. Please referto |n our mesh synthesis algorithm shown in Table 1, we

This energy minimization framework blends the flavor of

both pixel and patch based algorithms; while the neighbozr-2 2 Discrete solver based on k-coherence
hood metric is pixel-centric, the global optimization ciohs =
ers multiple pixels together, bearing resemblence to pat

. Cllhe solver in [4] utilized hierarchical tree search for the M
based algorithms.

step and least squares for the E-step; however, tree search
has an average time complexity Oflog(N)) whereN is
the total number of input neighborhoods, and this step can
2.2 Our Approach easily becomes the bottleneck of the solver as reported in
[4].
In our approach, we synthesize textures as vertex colors di- In our solver, we adopt an alternative search method for
rectly over the target mesh surface (similar to [14,17])aaghe M-step. Specifically, we have chosen k-coherence search
result, our output variablg is defined over mesh verticed11] due to its constant time complexity per search; in ad-
rather than image pixels. We adopt the surface neighbdition, its quality is satisfactory as reported in [5]. The k
hood sampling idea from [14,17] so that we could utilizeoherence algorithm is divided into two phases: analysis an
the pixel-grid optimization in [4] to mesh surfaces. Belowsynthesis. During analysis, the algorithm builds a sirtifar
we detail the necessary extensions and modifications.  set for each input pixel, where the similarity-set contains
list of other pixels with similar neighborhoods to the spe-

) cific input pixels. During synthesis, the algorithm builds a
2.2.1 Resampling x,, fromx candidate-set by taking the union of all similarity-setsff
neighborhood pixel/vertex for each output pixel/vertend a
then searches through this candidate-set to find out the best
match. The size of the similarity-sé¥{,, is a user-controllable
parameter that determines the overall speed/quality.
- Unfortunately, a direct adoption of k-coherence into the
_— solver in [4] is impossible due to the inherent incompatibil
ity between k-coherence (in M-step) and least square (in E-
— step). In particular, k-coherence requires the bookkeppin
the source pixel locations (x, y) for each output pixel/ggrt
and this location information is lost during least squateeso
Fig. 1 Resampling mesh neighborhoods. The green circle inditages (and in general, any method beyond direct pixel copying).

current vertex p to be synthesized, and the blue mesh irditae local We overcome this problem by adopting a different ap-
region on the target surface around p. The red grid indicatempled proach for the E-step other than least squares. The algorith
neighborhood. In our implementation, we utilize [14] fosaenpling.  can be considered as a discrete optimization, as follows. To




oer | case] inputsize | outputsize] [4] [ CPU ] GPU ]

el a 642 48K 7.87 | 274 ] 0.61
b 1282 48K 53.66 | 2.97 | 0.66

a0 | c 642 48K 12.39] 2.14 | 0.59
w d || 27T x4 48K 30.84| 1.o1 | 062

so0 [ Lovel 5 e 642 48K 8.02 | 2.46 | 0.61
e f 647 48K 10.72| 2.82 | 0.61

w00 | g 1282 48K 55.36 | 2.45 | 0.70
h 1282 48K 79.79| 1.83 | 0.68
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Table 2 Statistics of synthesis results in Figure 3. The input size i
measured in pixels whereas the output size in vertices. ifhemost
ZL“"* three columns demonstrate total synthesis time per M+E stepec-
onds via [4], our technique on CPU, and our technique on GRU. F
each case, we use a 3-level pyramid and within each level vierpe
1~3 iterations of our algorithm with neighborhood sizZ&* followed
by 1~3 iterations with neighborhood si#é. All performance timings
are measured on the following platform: CPU (Pentium 4 3.2z)GH

) ) ] ~and GPU (NVIDIA Geforce 7800 GT). We utilize kd-tree in ANN][7
Fig. 2 Texture energy plotted as a function of number of iterationgor implementing the search algorithm in [4].

The energy is normalized with respect to output resolute@ [4].
Also shown is the synthesized texture after each resolatimhscale
(neighborhood size) level.
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Output mesh retiling As a pre-process, we retile the output

mesh using [13]. This allows us to control the texture den-
computex™*! in the E-step, each one of its value@®) at sity with a more uniform vertex distribution. As observed in
vertex p is determined independently from each other. [14, 16], the retiling is indispensable for such vertexetivig
particular,x(p) for the next iteration is chosen from its k-synthesis techniques. (This retiling process can be sHijfpe
coherence candidate d€ip), as the one that most reducethe texture is synthesized into an atlas [20] rather than ind
the energy function. Since now eag{p) is copied direct vidual vertices.)
from some input pixel, we can retain the input location in- For multi-resolution synthesis, we build a mesh hierar-
formation to conduct k-coherence search in the M-step. chy via simplification (via [13]) and retile each resolution

As an added benefit, since our solver does not blend pirdependently. The retiling density is controlled so thad i

els, we do not suffer from the blurry blending problem amughly 4:1 between adjacent pyramid levels. In addition,

reported in [4]. we pre-compute and store correspondences between each
Figure 2 illustrates the evolution of a synthesis resulertex and its parent triangles at the lower resolution,rin o
throughout multiple iterations of our algorithm. der to accelerate the run-time up-sampling process as de-

scribed above.

GPU acceleration Since both our E-step and M-step utilizes
k-coherence search as the core algorithm, our entire synthe
Sis process can be implemented on GPU in a method similar
R 1) [5]. Specifically, we store the inpaf the outpuk, and the
matchz, as textures, and implement each E and M step as
a separate fragment program. The entire synthesis pracess i

. . . . . iterated via multi-pass rendering, where the new values are
Multi-resolution synthesis As demonstrated in [16], a multi- written into proper render targets femndz,.

resolution framework allows us to capture large scale textu , ih
structures without the need for large neighborhoods, which Puring then™ E-step, our E fragment program reads
can cause efficiency and stability issues rom z andx™ textures, perflorms the discrete optimization,
. ; ey
In our approach, we build multi-resolution pyramids fo@%?cmtgsl égeaget‘ger?ns:gg for'?ht;,}?vle gtrgger render target,
both the input image and output mesh, and we synthes . - :
b g b y During then!” M-step, our M fragment program reads

the output from lower to higher resolutions. At the lowest
b 9 omzandx"*!, performs the necessary k-coherence search,

resolution, we simply randomly copy sample colors fro ; L
input to output since at this low resolution the texture is egnd writes the new resutf ™ into the proper render target.

sentially random. (For texture images satisfying the MRF

assumptions, this is always achievable with a deep enough

pyramid.) When synthesizing a higher resolution, we firStResults

initialize it by up-sampling from the already synthesized i

mediate lower resolution. We then perform synthesis on thi¢e have applied our algorithm over a variety of input tex-
level via our algorithm as described in above. tures and output mesh models, as shown in Figure 3. (Please

2.3 Further Details

Here, we describe further implementation details beyomd
basic algorithm.




Fig. 4 Comparison of our solver with the least square one in [4]. For
each group of images, the input is on the left, our resultisémiddle, . ) . )
and the result via least square solver [4] is on the right. Fig.5 2D synthesis quality comparison. For each group of images, t
input is on the left, our result is in the middle, and the resia [5] is
on the right.
note that all of these images are screen shots of texture an-
imations; please refer to our accompany video for full dy-
namic animation effects) [4]. Our discrete solver further enables a GPU friendly im-
For quality comparison, in Figure 4 we have attachgslementation, with even more speed improvement over our
two results generated by our k-coherence solver and the legBU-only implementation.
square solver [4]. Notice that our k-coherence solver pro- Our initial goal of this project was to simply combine

duces crispier image quality due to its use of copying rathgr - e s : L .
- X . ynthesis [17,14] and optimization [4] to allowthig
than blending. A further advantage of our technique is tha uality, offline surface texture animation. Our discovefy o

is much faster than [4] when both running on CPU with fuly, o yiserete solver as both a quality and speed improvement

E&me only as a second thought near the end game of our

Desoit dand lity i ¢ text roject. For future work, we plan to investigate other possi
pespite our speed and quaity improvement over textugQiia g for optimization solvers in order to achieve gexat

optimization [4], one inherent limitation of optimizatias uality and speed. In particular, both our current CPU and

that it will always be slower than [5], which utilizes a loca, PU implementations are not yet real-time, and we envision
greedy search. Howevgr, the advantage_of our approach) &y e technique that combines the quality of our work with
that we produce superior synthesis quality than [5] due

f optimizati d trated in Fi 5 e speed in [5,6] will be invaluable for a variety of appli-
our use of optimization, as demonstrated in Figure . cations, ranging from offline movie production to real-time

gaming.

our timing measurements in Table 2,

4 Conclusions and Future Work

We have presented a surface texture synthesis and animation

algorithm based on optimization. Our basic idea is to comeknowledgement We would like to thank the anonymous
bine neighborhood-based surface synthesis [17,14] with apviewers for their comments. The ZJU authors were par-
timization [4] to achieve high quality, frame coherent text tially supported by 973 Program of China (No. 2002CB312104)
animation over arbitrary 3D object surfaces. On top of thSSFC (No. 60021201) and Specialized Research Fund for
basic idea, we have proposed a variety innovations for qudde Doctoral Program of Higher Education of China (No.

ity and speed improvements, among which a discrete sol20030335083). Dr. Zhang’s work is partially supported by
based on k-coherence that allows both faster computatibe International Scholar Exchange Fellowship (ISEF) ef th
speed and crispier image quality than the original solver Korea Foundation for Advanced Studies 2005-2006.
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Fig. 3 Surface synthesis results. For each group of images, the isipn the left and our result is on the right. Please refeutoaccompany

video for animation effects.



