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Abstract 

 
Motion capture is a prevalent technique for 

capturing and analyzing human articulations. A 
common problem encountered in motion capture is 
that some marker positions are often missing due to 
occlusions or ambiguities. Most methods for 
completing missing markers may quickly become 
ineffective and produce unsatisfactory results when a 
significant portion of markers are missing for extended 
periods of time. We propose a data-driven, piecewise 
linear modeling approach to missing marker 
estimation that is especially beneficial in this scenario. 
We model motion sequences of a training set with a 
hierarchy of low-dimensional local linear models 
characterized by the principal components. For a new 
sequence with missing markers, we use a pre-trained 
classifier to identify the most appropriate local linear 
model for each frame and then recover the missing 
markers by finding the least squares solutions based 
on the available marker positions and the principal 
components of the associated model. Our experimental 
results demonstrate that our method is efficient in 
recovering the full-body motion and is robust to 
heterogeneous motion data. 

 
1. Introduction 
 

Motion capture, or mocap, is a prevalent technique 
for capturing and analyzing human articulations. 
Mocap data have been widely used to animate 
computer graphics figures in motion pictures and video 
games. An optical mocap system utilizes video 
cameras to track the movements of a set of reflective 
markers that are strategically attached to the actor's 
body. The 3D marker positions are estimated via the 
triangulation from multiple cameras. A marker is 
considered missing if it is not visible to at least two 
cameras.  A major cause of marker missing is that a 
marker is occluded by props, limbs, bodies or other 
markers. It is also not unusual that positions of some 

markers can be missing for a long period of time. 
Although many methods have been developed to 
handle missing marker problem and are already in use 
in commercial mocap systems, most procedures 
require manual intervention and are not satisfactory 
with diverse motions, high percentage of missing 
markers, and/or extended occlusions. In this paper, we 
propose a data-driven approach that is especially 
appealing under these situations.  

  

 

Figure 1. Example human poses constructed 
from the marker placements. The red dots 
represent the marker positions. 

Coordinations as well as constraints between body 
parts are essential to produce valid human poses. As a 
result, the configuration space of human motions often 
exhibits low-dimensional local linearity. In particular, 
poses of a simple motion lie near a low-dimensional 
linear space with much fewer degrees of freedom than 
that of the original space. Such a local linear space can 
be described by the corresponding principal 
components obtained from principle component 
analysis (PCA). It is conceivable that, for a valid pose, 
its projection onto the principal component space can 
be determined by only a subset of markers. 

Without assuming any skeleton model, we learn a 
global model and a hierarchy of local linear models 
from a training set that contains sufficiently 



representative motion sequences. We then take a two-
step coarse-to-fine approach to estimating the missing 
marker positions of a new sequence. We use the global 
model to obtain a coarse estimation in the first step and 
refine the estimation via local linear models in the 
second step. Our method is very simple, fast and 
robust in recovering missing markers and estimating 
human motions on a frame-by-frame basis. Most 
importantly, our method allows different set of 
markers to be missing for a moderate-to-long period of 
time. In our experiments we demonstrate that our 
method can successfully estimate missing markers 
over a variety of motions from multiple subjects. 

While many motion capture systems are used to 
acquire athletic or unusual motions for video games or 
motion pictures, we imagine that a system like ours 
would more likely be used in low-budget settings like 
capturing plausible avatars for VR or capturing 
interacting group behaviors where marker occlusion is 
more problematic. 
 
2. Related work 
 

Missing marker problem is commonly encountered 
in marker-based mocap systems. Interpolation methods 
[8, 16, 22] can effectively estimate the missing marker 
if a marker is missing for only a very short period of 
time, typically less than 0.5 second. Some commercial 
mocap systems [14, 20] also provide missing marker 
recovery solutions, more or less based on various 
interpolation techniques as well as the use of kinematic 
information with assumed skeleton models. Kalman 
filters [5, 21] have also been used to predict the 
missing markers in the current frame with the available 
temporal information. These methods, however, can 
quickly become ineffective and often require manual 
intervention when markers are missing for a long 
period of time, or missing from the very beginning.  

Herda et al. [9] used a simplified human skeleton 
and marker positions from the immediately previous 
frames to predict the missing markers. If only a few 
isolated markers are missing over a long period of 
time, their positions can still be inferred from the 
neighboring markers which share the kinematic 
relations with the missing markers. However, the 
skeleton information must be known a priori in order 
to apply this method. Hornung and Sar-Dessai [11] 
proposed to utilize more markers in a mocap set up 
and assemble neighboring markers into a rigid clique. 
Markers in a clique have fixed inter-marker pairwise 
distances. When a marker is missing, its position can 
be recovered through the distance constraints imposed 
by the markers within the same clique. This approach 
may become uneasy to use when many markers are 

missing so that the clique is unable to be formed from 
the available markers.  

There have been studies on exploiting the 
correlations among features in mocap data for motion 
synthesis based on a few control signals or motion 
estimation from incomplete information. Among them, 
Grochow and colleagues [7] developed a style-based 
inverse kinematics method in which a global nonlinear 
dimensionality reduction technique, Gaussian Process 
Latent Variable Model (GPLVM) [12], was used along 
with a pre-specified kinematic model. Their method 
worked well with a small homogenous data set, but 
might not be suitable for a large heterogeneous motion 
data set. The knowledge of skeleton information could 
present a challenge in some motion capture systems as 
well. Our method is a data-driven approach and 
requires no assumption about skeleton and domain 
information. Our piecewise linear approach also allows 
us to model data reasonably well even for a large 
heterogeneous motion data set. 

Local linear models have been used to model data 
that show local linearity [2, 6, 10, 18]. Recently, Chai 
and Hodgins [4] presented a method that could quickly 
find the nearest neighbors of the current frame with 
only a few marker positions available. They 
constructed a local linear model from these neighbors 
and then reconstructed the full pose of the frame by 
conducting an optimization in the space constrained by 
the model. Their method was very effective in 
reconstructing high quality human motions from a few 
control signals, i.e. markers. However, a set of control 
signals and the skeleton information must be known 
before a mocap session so that the whole motion 
database can be scaled to fit with this particular actor 
and the scaled control signals can be computed and 
stored for the later neighbor search.   

Liu et al. [13] proposed a piecewise linear approach 
to estimating human motions from a pre-selected set of 
most informative markers, i.e. principal markers. They 
characterized human motions as a collection of low-
dimensional local linear models. Given a frame with 
only positions of principal markers, they classified the 
frame to the most appropriate local linear model and 
used the corresponding mapping function to recover 
the positions of the non-principal markers. Our method 
builds upon a common modeling infrastructure as 
theirs.  However, this paper addresses a different 
problem -- filling missing markers, whereas they 
attempted to identify a smaller marker set based on 
sampling real motions and used them to recover the 
full-body motion.  With their method, the principle 
marker set has to be pre-selected and fixed before the 
modeling process. This may not be realistic 
considering that any set of markers can be missing 



during different periods of time in a motion capture 
session. Our method, on the other hand, allows 
arbitrary markers to be missing for a considerable 
period of time while still being able to recover their 
positions using all the available marker positions. 

 
3. Proposed method 
 

There are two essential components in the process 
of missing marker estimation (Figure 2): modeling 
training data and estimation of missing markers for 
new sequences. Training data set contains sufficiently 
representative examples of motions. We take a two-
stage modeling approach. In stage 1, we model motion 
data as a single global linear model, represented by the 
principal components. In stage 2, we model motion 
data in a refined fashion by a collection of local linear 
models, which together form a model hierarchy. Given 
a new sequence with missing data, we first fill in 
missing marker positions with the approximations 
derived from the global linear model. Next, for each 
frame with initially filled-in values, we identify the 
most appropriate local linear model via a classifier 
trained in the modeling stage and make a refined 
estimation for the missing markers by obtaining a least 
squares solution from the known markers and the 
principal components associated with the local linear 
model. 

 

Figure 2. Motion data modeling and missing 
marker estimation process. 

Throughout the paper, we treat each pose of motion 
sequences as a data point represented by a 3m-
dimensional column vector, y∈R3m, containing 3D 
marker positions (x, y and z coordinates) of m markers. 
Thus a motion sequence with N pose instances can be 
represented by a 3m×N data matrix Y=[y1, y2, …, yN], 

where yi is a column vectors of marker positions 
(i=1,…, N).
 
3.1. Global linear modeling 
 

Global PCA modeling is the first and the coarser 
stage of the modeling process. In this stage, a single 
linear model is constructed by applying PCA to the 
whole training set. We compute the principal 
components by performing Singular Value 
Decomposition (SVD) [15] on data matrix Y and form 
a 3m×d matrix P with its d columns being the leading 
d principal components. The principal component 
matrix P as well as the mean vector will be used to 
calculate the initial estimates of the missing markers. 

 
3.2. Piecewise linear modeling 
 

Piecewise linear modeling has 3 components: 
motion segmentation and characterization; model 
hierarchy construction; and classifier training. We 
briefly describe each component as follows. 
 
3.2.1. Motion segmentation and characterization. 
Clustering individual poses without considering 
temporal relationship among adjacent poses may lead 
to poor identification of local linear models because 
poses arising from different behaviors may be 
clustered together, while temporally adjacent frames 
may be clustered into different clusters. This clustering 
approach tends to result in unnecessary model 
transitions that may cause jerkiness during the motion 
reconstruction phase. To address this problem, we first 
segment motion sequences into short segments of 
single and simple behaviors using the probabilistic 
PCA (PPCA) segmentation method [1, 19]. 
Particularly, we assume a multivariate Gaussian 
distribution for poses coming from one distinct 
behavior and use PPCA technique to estimate the 
distribution. A local change in the distribution along a 
motion sequence forms a cutting point for the 
segmentation, and thus indicating a transition from one 
local linear model to another. After segmentation, a 
feature vector can be extracted from the mean vector 
and the covariance matrix of each motion segment as 
in Liu et al. [13].  
 
3.2.2. Model hierarchy construction. We construct a 
hierarchy of local linear models by performing divisive 
clustering on feature vectors of segments with distance 
metric being Euclidean norm. All of the branches keep 
splitting recursively to two children based on K-means 
method until all the clusters at those branches satisfy a 
preset distance tolerance. We assign the same local 
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linear model ID to the motion segments whose feature 
vectors are clustered into the same cluster and label 
each frame of a segment by its model ID. For each 
local linear model, we also compute PCA using the 
poses associated with that model. The resulting mean 
vector and the leading e principal components are later 
used to estimate missing marker positions from the 
positions of the known markers.  

 
3.2.3. Classifier training. We use Random Forest [3] 
to classify frames of a new sequence into different 
local linear models that are extracted from the training 
set. Random Forest (RF) is a powerful classification 
tool that grows and combines decision trees into 
predictive models. The overall prediction is 
determined by voting over all the trees in the forest, 
with the class having the most votes being chosen. For 
each frame labeled with a model ID, we retrieve all of 
its marker values and use them as input variables for 
training the RF classifier. 
 
3.3. Missing marker estimation 
 

We take a two-step, coarse-to-fine approach to 
estimating the missing marker positions of new motion 
sequences. In the first step, we apply the global PCA 
model computed from the training set to obtain a 
coarser estimation of the missing markers. Then a 
frame, with missing markers filled with the initial 
estimates in step 1, is classified into the most 
appropriate local linear model via RF classifier. We 
next find the least squares solution to the projection of 
the frame onto the principal component space 
associated with the identified local linear model. 
Finally we transform them back to the original marker 
space to obtain the estimates of the missing marker 
positions. 

 
3.3.1. Estimation with the global linear model. 
Given a frame with all the known markers correctly 
labeled and the rest markers missing, we compute a 
least squares approximation of the missing marker 
positions from the known marker positions using the 
global PCA model. We first retrieve the 3k×1 position 
vector of k known markers, f, and obtain a centered 
vector s by subtracting from f the corresponding part 
of mean vector of the global PCA model. Then we 
form a 3k×d matrix U from the leading principle 
component matrix P by taking the entries 
corresponding to the known markers, and a 3(m-k)×d 
matrix V by taking the remaining entries. Let a d×1 
vector, w, be the projection of a frame on the leading d 
principal component axes, we compute a least squares 
solution to w according to U w = s and estimate the 

3(m-k)×1 position vector of missing markers, x, as x = 
V w. The least squares solution to w is 

w = UT(U UT)-1 s, 
and thus  

x = VUT(UUT)-1s. 
Such an initial estimate of missing markers from one 
global model may be too coarse, especially when the 
database is a large heterogeneous motion data set 
where various types of motions are included. So it is 
crucial to use the local linear models to refine the 
estimation result of this step. 
 
3.3.2. Estimation using the local linear models. 
Once we fill in the missing marker positions of a frame 
with the estimated values in step 1, we classify this 
updated frame, consisting of full marker positions, to 
the most appropriate local linear model by the Random 
Forest classifier. We then use the mean vector and the 
principal component matrix associated with the local 
linear model to estimate the missing marker positions 
through a least squares solution method as described in 
step 1.   

When modeling time series data, an inherent 
drawback of piecewise linear modeling approach is 
temporal discontinuity at the transitions between two 
different linear models. We incorporate a mixture of 
local linear models associated with the previous poses 
to smooth out the jerkiness at the transitional poses. 
Let st be a centered pose vector containing the 3D 
positions of available markers at time t, we define 
matrices Ui and Vi associated with the ith model in the 
same way as matrices U and V in Section 3.3.1, we 
estimate the positions of the missing markers, zt, as 

zt = Σi wi Vi UT
i   (Ui UT

i) -1
  st, 

where wi = ri / (h+1) is a weight for the ith model, ri is 
the number of poses classified to the ith model among 
the prior h poses and current pose. Two complement 
parts of the leading principle component matrix, Ui and 
Vi, are eigenvector matrices corresponding to the 
known markers and missing markers respectively. 
Basically, we want to put more weights on the model 
that is favored by more of the current pose and its 
previous h poses. In our experiments, h=10-30 works 
well. 
 
4. Experiments 
 
4.1. Design 
 

We evaluated our method with the mocap data from 
Carnegie Mellon University’s Graphics Lab motion 
capture database available at http://mocap.cs.cmu.edu. 

http://mocap.cs.cmu.edu/


Typical motion data are captured in an absolute world 
coordinate frame. Our model, however, describes 
relative motions in a model-rooted frame. Therefore, a 
normalization step is required. CMU mocap system 
used a 41-marker setup. We choose the marker located 
at the C7 vertebrae as the origin.  Our z-axis coincides 
with the z-axis (the up axis) of the original world 
coordinate system. We project a vector pointing from 
the left shoulder marker to the right shoulder marker 
onto the horizontal plane and use the projected vector 
as the x-axis. The cross product between z and x axes 
produces the y-axis. 

We divided data into a training set and a testing set. 
The training set consisted of 132 sequences with total 
151,882 frames collected from 21 subjects. We 
included a variety of motions (i.e., walking, 
running/jogging, golfing, soccer kicking, Salsa 
dancing, jumping, cartwheel, climbing steps), as well 
as different styles of the same motion from different 
subjects. Segmentation of the training sequences 
yielded 271 segments with length varying from 128 to 
3,670 frames (mean: 560; standard deviation: 425; 
median: 440). Hierarchical clustering of segments 
according to their feature vectors produced 65 clusters, 
i.e., 65 local linear models. We retained the leading 15 
principal components to approximate the poses of each 
local linear model. 

 We used a testing set to validate our method. The 
testing set contained 28 sequences with 19,553 frames 
from 18 subjects. Among them, there were 9 walking 
sequences, 6 running, 5 golfing, 2 cartwheel, 2 Salsa 
dancing, 1 walking on uneven terrain, 1 running jump, 
1 soccer kick, and 1 climbing three steps. None of the 
testing sequences was included in the training set. Four 
testing sequences, namely, 1 walking, 1 soccer 
kicking, 1 running and 1 golfing are from 4 new 
subjects who never appeared in the training set. 

We assessed the performance of our method with 
different number of markers missing (i.e., 5, 8 10, 15 
and 20) in each frame of the testing sequences. In each 
experiment, for every testing motion sequence, we 
randomly chose a fixed number of markers to be 
missing for a period of 1 second (120 frames). For 
example, in the first experiment we randomly chose 
markers 1, 15, 21, 32, 38 to be missing for the 1st 
second and 2, 7, 12, 29, 40 to be missing for the 2nd 
second.   

We also compared our method to spline 
interpolation in two scenarios where there were always 
8 markers missing in the middle of a sequence with 
missing marker set being changed for every second.  
However, in the first scenario full marker positions 
were known at the two ends; while in the other 
scenario 8 randomly selected markers were also 

missing for a period of time either at one end or two 
ends of a sequence. 

 
(a) 8 markers missing 

 
(b) 15 markers missing 

 
(c) 20 markers missing 

Figure 3. Reconstruction errors. 

4.2. Results 
 

Figure 3 shows the frame-by-frame root mean 
squared errors (mm per missing marker) of each 
experimental result. It appeared that the reconstruction 
errors were minimal when there were 8 markers 
missing. Although the errors increased with increasing 
number of missing markers, the magnitude remained 
acceptable. Even when the number of missing markers 
reached 20, i.e., 50% of the total markers, the 
reconstructed motions as shown in the accompanying 



video were still plausible. We tested our method 
against various types of motion sequences that were 
not included in the training set. The results showed 
that our method was robust enough to produce 
reasonably good estimation to these heterogeneous 
motions. We also observed that the estimation results 
may appear unsatisfactory when many important 
markers were missing together, e.g., when all the 
markers on one leg or arm are missing. 

We show in figure 4 the reconstruction results for 
each coordinate of two missing marker positions in a 
short segment of a motion sequence, using both the 
spline interpolation method and our method. When a 
marker was missing in the middle of the sequence, 
shown in the top panel of figure 4, our method 
recovered sufficient details missed by spline 
interpolation. In another example where a marker was 
also missing at the very beginning of the sequence, as 
shown in the last two panels in figure 4, spline 
extrapolation totally failed due to the fact that there 
was only support on one side of the missing frames. 
However, our method was still able to estimate the 
missing marker reasonably. The accompanying video 
also showed some examples where our method clearly 
outperformed the spline interpolation in full-body 
motion reconstruction. 

Table 1. Running time (ms/frame) of 
estimation procedure when various numbers 
of markers are missing. 

#of 
missing 
markers 

 

Global 
PCA 

estimation 

Local linear 
model 

classification 

Local 
model 

estimation 

Total 
time 

5 0.52 15.36 1.90 17.78 
8 0.50 14.98 1.94 17.42 

10 0.50 15.32 1.95 17.77 
15 0.46 15.25 1.93 17.64 
20 0.42 15.61 1.95 17.98 
 
One advantage of our method is that the estimation 

procedure can run very fast after off-line motion 
modeling with the training set. In Table 1, we show the 
distribution of the time spent at each key step. It only 
takes in average less than 18 milliseconds to estimate 
the missing marker positions per frame. That is over 
50 frames per second, well above the typical 
interactive frame rate (i.e., 30 frames/second). It also 
appears that the total estimation time per frame 
remains about the same in spite of the increasing 
number of missing markers. We ran our experiments in 
Matlab V7 on a Dell Inspiron Laptop, with 1.4GHz 
CPU and 512M physical memory. A more powerful 

computer and more efficient code implementation may 
push the performance much higher. 
 
5. Discussion and Future Work 
 

We presented a piecewise linear modeling approach 
to estimating missing markers in human motion 
capture data and reconstructing plausible human 
motions. We learned the local linear models from a 
training set without prior knowledge of the human 
skeleton. We exploited the correlations among mocap 
markers to infer the missing marker positions from the 
positions of the known markers. The motion 
reconstruction process was efficient with no need to 
search in a database, or to estimate/calibrate a skeleton 
model. The experimental results demonstrated that our 
method can quickly generate plausible human motions 
on a frame-by-frame basis without any manual 
intervention. 

 Our method complements the interpolation-based 
methods in that it consistently produces reasonable 
estimation of missing markers even when the missing 
gap is so long such that the interpolation methods 
become ineffective or inapplicable. It also achieves 
better estimation than the spline interpolation methods 
when the frames at either ends of a sequence have 
missing markers. On the other hand, this non-linear 
cluster-based modeling method has limitations similar 
to other data-driven modeling approaches. It assumes 
that the training set is both representative of and 
adequately samples the data space. Moreover, its 
ability to extrapolate from the training data is more 
limited than its interpolation capabilities. The notion, 
however, of an interpolation system that is limited by 
its underlying model is not unique to data-driven 
methods. Kinematic models are also limited by the 
accuracy with which they accurately represent linkages 
and their motion ranges.  

We limited out model to only marker positions and 
ignored velocities and accelerations. Using more 
information could improve our model, however, in our 
approach, adding more data may also increases the 
dimensionality of the problem, which implies the need 
for even more data, and we are already undersampled. 
This increases the likelihood of overtraining our 
model, thereby limiting its ability to generalize as 
discussed earlier. One of the strengths of our models is 
that it is very simple and fast. There are few 
parameters to be tweaked during modeling. 
Incorporating the velocity and even acceleration may 
make the model too complicated and slow down the 
estimation. Another reason that prevents us from using 
the acceleration and velocity is the concern of the 
accumulation of errors. Computing the acceleration 



and velocity requires the knowledge of the positions of 
the previous frames. However, some markers in the 
previous frames may have been missing and have to be 
estimated as well. So these frames may not be accurate 
enough to be used to estimate the current frame. We 
are concerned that this may in fact affect the 
estimation of the current frame due to the 
accumulation of errors. In our opinion, only the 
available marker positions of the current frame have 
the most accurate information since they are actually 
measured. So they should play more important roles in 
estimating the other marker positions. 

There may be a normalization issue with the use of 
marker data. However, the performance of our method 
was not sensitive to the size variation in the subjects as 
shown in the experiments. Nevertheless, we attempt to 
conduct more experiments to verify this finding. In 
reality, a complete training data may not be available. 
So the EM algorithm-based PCA [17] may be 
potentially useful to handle the training set with slight 
to moderate missing. Further study is needed in this 
respect.  
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(a) 3D positions of marker on the right ankle 

 

(b) 3D positions of marker on the left arm (Original motion and our estimation result only)  

 

(c) 3D positions of marker on the left arm 

 
Figure 4. Comparison of estimating results (original motion in blue, spline interpolation results in 
green and our estimation results in red). The top panel corresponds to the marker on the right 
ankle; the middle and bottom panels correspond to the marker on left arm. The middle panel only 
shows the original marker positions and our estimations; while the bottom panel shows the 
original marker positions, spline interpolations and our estimations respectively in a larger scale.
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