The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of Ray casting implicit fractal surfaces with reduced affine
arithmetic .

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/3762/

Article:
Gamito, M.N. and Maddock, S.C. (2007) Ray casting implicit fractal surfaces with reduced
affine arithmetic. The Visual Computer, 23 (3). pp. 155-165. ISSN 1432-2315

https://doi.org/10.1007/s00371-006-0090-7

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

The Visual Computer 23(3):155-165 (March 2007)
Online corrected version attp://www.dcs.shef .ac.uk/~mag/raycast.html

Manuel N. Gamito - Steve C. Maddock

Ray Casting Implicit Fractal Surfaces
with Reduced Affine Arithmetic

Abstract A method is presented for ray casting implicit surayer consists of a scaled and frequency shifted copy of some
faces defined by fractal combinations of procedural noiseiginal band-limited procedural noise functinrf25].
functions. The method is robust and uses affine arithmetic Implicit fractal surfaces are one example lyfpertex-
to bound the variation of the implicit function along a raytures[24]. Hypertextures use functions to add volumetric de-
The method is also efficient due to a modification in the afail to the surface of objects, thereby increasing theinais
fine arithmetic representation that introduces a condemsatcomplexity. Hypertextured objects can either be visudlise
step at the end of every affine arithmetic operation. We shavith a volume rendering approach or converted to an impli-
that our method is able to retain the tight estimation capatit surface representation [10].
ilities of affine arithmetic for ray casting implicit surfas Another application for implicit fractal surfaces ispro-
made from procedural noise functions while being faster gedural planet modelling [19]. One seeks to describe the ter-
compute and more efficient to store. rain of an entire planet by perturbing the surface of a sphere
with an appropriate fractal function. If the terrain is to be
realistic, however, the implicit surface cannot be allowed
split into separate disconnected pieces. This possibgity
currently avoided with the use of procedural noise funaion
in the formn(x/||x||), effectively turning the implicit surface
1 Introduction into a procedural displacement map over the sphere.

An implicit fractal surface is very irregular. The attempt

This work develops an algorithm for ray casting implicito render such a surface by first converting it into a poly-
fractal surfaces generated from procedural noise funstio§on mesh would require a very high polygon count if the
An implicit surface is defined as the set of all points fopurface was to be represented with any reasonable fidelity
which the evaluation of some continuous functibnR3 —  [3,14]. The best way to visualise implicit fractal surfaces
R gives zero. If the functiorf is a fractal with dimension IS to directly render them with ray casting. The ray casting
Dy, the implicit surface, being a zeroset of this function, idlgorithm must be guaranteed to find all correct ray inter-
also fractal with dimensioB¢ — 1 [29]. A common proced- Sections. Failure to provide such a guarantee would produce
ural technique to obtain functions that are fractal overiggfin the familiar “surface acne” problem, which can potentially

range of scales is to accumulate several layers of noisé. EGEOP up in all rendering algorithms that rely on ray-surface
intersection tests. Our algorithm evolves from the work of

The first author is supported by grant SFRH/BD/16249/20@nfr Mitchell where interval arithmetic was used to obtain estim
Fundacao para a Ciéncia e a Tecnologia, Portugal. ates on the variation of the implicit surface’s functionrajo
the ray [16]. However, we replace interval arithmetic (1A)
with affine arithmetic (AA) since the latter is able to prosid

Keywords Affine arithmetic- Implicit Surfaces Proced-
ural Noise FunctionsRay Casting

Manuel N. Gamito
Department of Computer Science

The University of Sheffield

211 Portobello Street

Sheffield S1 4DP

E-mail: M.Gamito@dcs.shef.ac.uk

Steve C. Maddock

Department of Computer Science
The University of Sheffield

211 Portobello Street

Sheffield S1 4DP

E-mail: S.Maddock@dcs.shef.ac.uk

much tighter estimates for the aforementioned variati¢n [6
Ray casting with affine arithmetic was developed by de
Cusatis Jr. et al. [4]. When comparing AA against IA, de
Cusatis Jr. et al. reported mixed results for several tekbo
mathematical surfaces like the Steiner surface or the d@oubl
torus. Our work focuses, instead, on implicit surfaces gene
ated from specific classes of procedural noise functiorts tha
find much employment in the field of computer graphics [5].
We have found that a direct implementation of AA, as pro-
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posed by de Cusatis Jr. et al., is less efficient than the &A the maximum rate of change thatan take inside some
implementation of Mitchell for ray casting implicit surfag region of space. Kalra and Barr successfully rendér@d
generated from fractal sums of procedural noise functiorssrfaces by advancing rays inside an octree structure [12].
This has motivated our use of a reduced representation liaside each cell of the octree, a Lipchitz bount used for
AA, which is just as accurate as the original one while beinfyand another Lipchitz boun@ is used for the derivative
more efficient [15]. It is the use of this reduced AA repre®f f along the ray direction. Hart also uses Lipchitz bounds
entation for ray casting implicit surfaces based on procaduin his sphere tracing method [9]. Unlike Kalra and Barr, it
noise functions that is the focus of this paper. is not necessary to employ Lipchitz bounds for the derivat-
Section 2 presents previous work in this area. Sectioriv@s of f. The method works by marching along a ray with
gives a general formulation for procedural noise and appligteps that are guaranteed not to cause intersection with the
this formulation to three commonly used noise functionsurface. In both the LG-surface method and in sphere tracing
Understanding how noise functions are procedurally evéilis necessary to specifypriori Lipchitz bounds related to
uated is essential to understanding why the reduced AA rébe functionf that one wishes to use. That can be difficult in
resentation works. Section 4 presents affine arithmetic amgeneral case although Kalra and Barr and also Hart present
explains how it is used to solve the ray-surface intersdesunds for some commonly used functions. If the Lipchitz
tion problem of ray casting. The reduced AA framework ibounds are not optimal, these methods will converge more
then presented and shown to be a simple modification sibwly.
the standard AA framework. Section 5 shows results and Worley and Hart introduced several optimisations in the
presents a comparison between reduced AA, standard Apghere tracing method for the case of implicit surfaces gen-
and IA. Section 6 presents conclusions, suggests possiaated from hypertextures [32]. The improved sphere tracin
enhancements, and shows other areas where our technigaéhod takes into account the fact that hypertextured tdjec
can be successfully applied. are often generated from the sums of many procedural func-
tions. Other optimisations include a spatial coherence-tec
nique to reduce the number of function evaluations and im-
age coherence and overshooting techniques to increase the
stepping size along the rays.
Mitchell computes ray-surface intersections with inter-

2 Previous Work

Many methods have been presented to solve the intersection” . . : . .
problem between a ray and an implicit surface. We conceti- tarlthlmenc [lg]h' Intterval ant?meﬂcél?) 'St?‘ frameleotr_
trate here on methods that are robust. These methods can 4: 'cP'aces arthmetic operators and function evaioatio

ways find the correct intersection point and are limited on real numbers W'th equivalent operators and fu_nctlons tha
by the floating point precision of the machine. A survey re evaluated on intervals [17]. With IA it is possible to ob-

such methods is given by Hart [8] ain interval bounds for the variation défalong some arbit-
Robust implicit surface intersection methods were injary shan along a ray. The method by Mitchell performs a

tially developed for surfaces with a simple and well knowF{:"CurSiVe binary subdivision along the length of a ray, com-
shape. If the functiorf (x) is a polynomial then the impli-

puting interval bounds for the function and its derivatine i
cit surface is said to balgebraic and the intersection pointsz'dfeeﬁzhiL?Z;g?gﬂﬁégﬂg;g%hﬁi'?ul:]i?igéot{glsd ggig?noé
can be obtained with polynomial root finders [7]. Surfacel'

generated by sweeping a sphere along a curve, cgatst- , 2TRERE BT AOTE BY ERA S A
alised cylinders, and surfaces that are subject to non-line ’

deformations have also been considered [30, 1]. [4]. Ray casting with AA produces interval bounds that

Implicit surfaces based on the blending of compactf"re much tighter than those obtained with 1A, therefore in-

. : . X é(reasing the efficiency of the intersection algorithm. Cahe a
supported radial bas's funptlons are popular because iof tr\'/%mtage of interval methods over Lipchitz methods is that
ability to model objects with complex topology. Many aus terval bounds are computed automatically and on the fl
thors who have worked with this type of surface have al# X P naticatly he 1.
is not necessary to supply some initial parameter, in the

developed ray intersection algorithms for them. Such au- . ; S
. . . . - rm of a conservative estimate for the Lipchitz bound, that
g}O;iitw%i% al%lsm:n;w\t/r\}y\r/‘illslb;?]?jbyrrg?giﬁnN\lziT;gqo?trzb?t will ultimately determine the efficiency of the algorithm.

jects[2,20,33]. Sherstiuk has developed a general intersec-

tion method for surfaces generated from sums of compactly

supported basis functions [26]. His method approximat8sProcedural Evaluation of Noise Functions

any basis function with piecewise Hermite polynomials, the

roots of which can then be found with analytical formulas.Procedural noise functions generate random fluctuatiats th
Two general approaches can be followed to find the ipossess a band-limited spectrum. These functions implemen

tersection between a ray and an implicit surface when thwhat is calledorocedural noise because it can be embodied

function f that generates the surface has an arbitrary shaps.a procedure in a computer program. Procedural noise is

One approach is based aifpchitz bounds and the other is commonly used as a building block to construct complex

based onnterval arithmetic. Lipchitz bounds impose a limit and natural looking textures, terrain elevation data and dy
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namic phenomena such as fire, water or clouds [5]. The kegrlin improved his gradient noise function by using quinti

to the success of procedural noise functions is that they darmite polynomials foh and having(&1, &2, &3) be a ran-

be evaluated independently at any desired point in spacedom vector that can only take values from a discrete set of
The value of a procedural noise functin@at some point vectors [23].

x in R® depends on the position rfrelative to a discrete but

infinite setS= {x; € R3:i =0,1,2,...} of node points

that are distributed throughout space. Becd&lsas an infin- 3.2 Sparse Convolution Functions

ite number of node points, the evaluationngk) is feasible

whenn(x) is made to depend only on a small subSet) Sparse convolution noise functions were first proposed by

of S. At each locatiorx, the subse§(x) is the finite set of Lewis [13]. As with Perlin’'s noise functions, a regular lat-

node points irSthat surroundk according to some specifiedtice placed at integer positions is also used. Inside edth ce

criterion. in this lattice K node points are uniformly distributed. This
For our purposes, we can define the value of a procedusiinple scheme attempts to approximate a Poisson distribu-

noise functionn at x as a sum of kernel functiong, that tion of node points. The value of at each locatiorx de-

depend on the displacement vectors betweand the node pends on the node points of the cell that containslus
points inS(x): the node points in the twenty six surrounding cells. The set

S(x), therefore, always contains R7hode points. There is

L an equal number of kernels, one for each node point. A ker-

n(x) = Z ®(do,da,...,dn), D) nel @ depends only on the distané; || to its corresponding
k=0 node point:

whered; = x — x; andx;, with j =0,1,...,N, belongs to N _
S(x). ThJe characj:teristiés of each particular noise functio(‘?l(d’) = &hdlid; ). 3)
come from the choice of several factors, namely: The scalag is a gaussian random variable and the func-
tion h can take any shape as long as it is compactly suppor-
ted on the interval0, 1]. This last requirement is necessary
to guarantee that only the B7node points in the cell that
containsx and in its immediate neighbours can possibly in-
fluence the value afi(x).

The random fluctuations exhibited by procedural noise Sparse convolution noise functions are more expensive
result from the introduction of stochastic components into evaluate than gradient noise functions. A total oK27
some of the previous factors. In some cases of procedukainels need to be evaluated against only eight for Perlin’s
noise functions, the distribution of node points throughcgp gradient noise function. Sparse convolution functionsy-ho
follows a desired probability density. Random variables aever, have the advantage of providing exact control over the
also often included in the definition of the kernel functionsfrequency spectrum of the resulting noise. It is possible to

show that the spectrum of for sparse convolution noise
functions is proportional to the spectrum of the functlon
3.1 Perlin Gradient Noise Functions that is chosen for (3) [13].

— The shape of the kernels.

— The numbeL of kernels used.

— The criterion used to defir&x).

— The distribution of the; in space to forns.

Perlin’s gradient noise function was the first proceduréd@o

function to be proposed in the literature [22]. In this nois8.3 Cellular Texture Functions

function, the node pointg; coincide with the vertices of

a regular lattice placed at integer coordinate positi@s: Cellular texture functions, proposed by Worley, rely on a
{(u,v,w) : u,v,w € Z}. For each locatior, the setS(x) is Voronoi decomposition of space based on the location of the
made of the eight node points at the vertices of the lattisenode points [31]. As with sparse convolution functions,
cell in which x resides. There are eight kernels and ea@é approximation to a Poisson distribution of node points
one depends on a single node point fr&m). A kernel ¢ is generated inside an integer lattice, although the tegieni
that depends on the displacemépt= (x;,j, ), relative to  used to achieve this effect is slightly different from theson

node poinix;, is written as: employed by Lewis. The kernels for cellular texture noise
functions consist of the ordered set of increasing distance

o(dj) = (&xj + &2yj + &3z)) h(xj)h(yj)h(z;). (2) between any locatior and the node points. For some loc-
ationx, let D(x) = {||di|| : 1 =0,1,2...} be the set of dis-

The functionh is a cubic hermite polynomial and the;;nces fromx to all node points irS. Let alsop : No — Np
vector (&1, 82, ¢3) is randomly distributed over the surfacqys 4 permutation of the indices B(x) so that the new set
of a sphere with unit radius. There are several variatiomx) = {||d;||: j = p(i),i =0,1,2...} is ordered by increas-
of Perlin’s gradient noise function, which include PeSin’ing distancjes. The-th kernel function is then taken as the
value noise function and value-gradient noise functiort, bljJ_th element in the ordered sBtx):
these will not be described here [21]. They fit easily inte fo
mulation (1) with kernels that are similar to (2). Recentlyy, = a;||d;||, 4)
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wherea; is some chosen scaling constant. Worley points oRf¢sh To onto stack;
that only the kernel functiong, to ¢; are useful for texture while stack not empty
synthesis. They with j > 3 resemblep; and do not add Sig-  pop T = [tmin, tmax] from the stack;
nificant new details. With the first four kernel functionsyse it o ()
eral interesting combinations are possible by choosing the ¢, ;. _.
. . max min

appropriate values of theg constants. Kernel functions can return tmin:
also be turned off by settirg = 0. lett = (trme +tnin) /2:

The technique Worley employs to distribute the node let Ty = [trin b
points throughout the integer lattice guarantees thatferye ot T, — 5 e
locationx the four nearest node points will always be found ’
inside the lattice cell that contains or inside one of its
neighbours. Similarly to sparse convolution noise funtijo
the setS(x), used to computey to ¢, is then made of all
the node points that are contained inside the3®x 3 cube
of lattice cells that is centred on the cell containiag

push T, onto stack;
push T, onto stack;

Fig. 1 TheRayIntersect algorithm.

TheRayIntersect algorithm is a simplified version of
the interval algorithm by Mitchell [16]. In Mitchell’s ori-
4 Robust Ray Casting of Implicit Surfaces ginal algorithm, an interval extensi@f of the derivative of
g along the ray was also computed. Whea G(T) and 0¢

Ray casting an implicit surface consists of determining ttf& (T) were both verified, the function was known to have

intersection point between the surface and any ray, paranfét iSolated root inside the intervéland Newton’s method
erised ag (t) = o+ tl with t > 0. Because the implicit sur- could then be used to provide quadratic convergence. In the

face is the zeroset of some functidpray casting amounts €aS€ of fractal combinations of procedural noise functions

to finding the first root of the non-linear equation: however,g varies erratically and only for very small inter-
vals do the conditions for monoticity exist that enable us to
f(r(t)) =0. (5) isolate a single root. We have found that the us&ofloes

not provide any speedup while ray casting fractal implicit

Let the parameter along the ray vary inside some intérurfaces and, in fact, slows down the alg_orlthm since two
val T = [tmin, e FOT simplicity of notation, let us also in- interval extensions have to be computed instead of one. de
troduce the7auxiliaw functiog = for. We V\;iSh to find an Cusatis Jr. et al. reached the same conclusion for the type of

interval estimat&(T) of the corresponding variation git) implicit surfaces that they were interested in renderirig [4
ast takes values fronT. The functionG is called aninter-

val extension of g. The interval extension function provides
information about the presence of roots of (5) inside sonfet

interval. If 0¢ G(T) then no root can be present T If, ' . - : N
on the other hand, @ G(T), a root may or may not exist Affine ant_hmetlc is a tech_mque propose_zd by de Flguelre_do
' . and Stolfi [6]. This technique can provide accurate estim-

in T. This is because current techniques for computig tes for the int | extension functiGiT) featured in th
can only provide a conservative interval estimate that copes for the interval extension func iG(T) featured in the

tains the true variation of. The fact that 0= G(T) does RayIntersect algorithm. Affine arithmetic represents an
not necessarily mean thg(tf) — 0 for somet € T. The best improvement over the previous interval arithmetic techriq

strategy in this case is to spilt into smaller intervals and [17]: The representation of some quantity with affine arith-
test the interval extension function on each of them metic (AA) tries to model the uncertainties about that quant

Figure 1 lists a robust algorithm, calledy Intersect ity so that it is always bounded inside a known interval. The

that is used to find the first intersection point between a r vantage over the simpler mt_erval arithmetic ffa”_‘.ewefk '
and the implicit surface. The algorithm relies on the sub nat AA tries to keep correlations between quantities, cal-

vision of an initial intervalTp and the information returned culated along some arbitrarily Iong c_haln of computations.
by the interval extension functidB. A stack is used to store A4 keeps correlations between similar quantities through

the subdivided intervals that are waiting to be tested fer the use oferror symbols. A quantityt in AA is represen-
existence of roots. The algorithm terminates either whent‘aad as a central valug plus a sequence of error symbels
small enough interval bounding a root has been found %?Ch with its associated error coefficignt

when the stack becomes empty. The latter scenario OCCUISt) 1 t1e) 1 tyey + - - - + then. (6)

in situations where a ray does not intersect the surfaceh Eac

interval taken from the stack is subdivided if there isthe-po  The error symbols lie in the interviat- 1, +-1] but are oth-
sibility that it may contain a root. The order with which thesrwise unknown and the coefficietit€xpress the contribu-
two subintervals are then pushed onto the stack is not arlion of each symbol to the AA quantity. Error symbols can
rary. By pushingr; first and therl}, the nearest intersectionbe shared among several AA quantities and that is how cor-
is guaranteed to be found. relation information can be kept among related quantities.

Standard Affine Arithmetic
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The computation of affine operations on AA quantities does< i < m. This is not a problem if the aforementioned error
not result in the creation of any new error symBoFor two  symbols were unique ta The accuracy of subsequent com-
AA quantitiesu; vV and a scalagr, the affine operations are: putations is affected, however, if tleg were being shared
_ with other AA quantities that are involved in those compu-
al= (aup)+ (aug)e;+---+ (aup)en,

R tations.
U+ a = (UpEa)+uer+-- -+ Un€n, (7)
U4V = (ug=£ Vv Up Vv <4 (UnE£Vh)en.
(Uo Vo) + (U £ Va)€1 + -+ (Un £ V)& 4.2 Reduced Affine Arithmetic

For non-affine operations, like multiplication or square
root, a new error symbol must be introduced to express thie problem of having to deal with ever increasing sets of
non-linearity of the operator. The result of some non-affingrror symbols in standard AA has motivated our use of a re-
operator is a new AA quantity = wo +Wwi€1+---+Wheq+  duced AA form for ray casting implicit surfaces made from
wiex, where the extra error symbe| has been added to theprocedural noise functions. Reduced affine arithmetic was
representation. For examplewf= 0V, the coefficients o™ proposed by Messine as the first of several possible exten-
are given by: sions to affine arithmetic [15]. In his work, this first exten-
sion is called Affine Form 1 (AF1).

As equation (1) shows, procedural noise functions are
®) built from sums of independent kernel functions. No correl-
n n ations exist between the sequence of computations that are
Wi = _Zl‘ui| ' _Zl“’i B performed for any two kernel functiorgg and¢; during the

= = computation ofn. Correlations during the evaluation of a

The coefficientw in (8), associated with the newly in-procedural noise function have a very localised nature and
serted error symbdd, is positive and represents the magare isolated inside the sequence of computations for each
nitude of the error introduced by the linearisatiorudfirito individual kernel. The only global correlation that is egpe
an affine form. The same propertywf holds in the case of ted to exist throughout the computationroik related to the
all the other non-affine operations. uncertainty with the position of the robtalong a ray. This

As a sequence of AA operations progresses, quantittegppens when is embedded in the equatigit) = O that
have an increasingly larger number of error symbols, slowwust be solved by the ray caster.
ing down subsequent AA computations and increasing the Our reduced AA representatidiis equivalent to an AF1
memory requirements. This is because, if the uncertainty aspresentation which considers only two error symbols: the
sociated with some error symbs| of an AA quantity is symbole;, expressing the uncertainty along the ray, and the
not shared with any other AA quantities, the latter must alymbole,, which is always non-negative and expresses un-
have a null coefficient fog. When implementing AA, cum- certainties involved in the computationoélone. The error
bersome book-keeping routines are required to manage $§enbole; is the only symbol that is shared betwedeand
large but sparse sequences of error coefficfeifisis ineffi- other AA quantities. The expression fois:
ciency associated with AA representations has been ackngw-
ledged by Stolfi and de Figueiredo [27]. They recommegd’ to+ 1181 + 128, (10)
that a procedure callesbndensation be periodically applied The starting point for the computation of the interval ex-
on an AA quantity when its sequence of error symbols growsnsionG(T), as part of th&ayIntersect algorithm, is the
too large. An AA quantityu,”with m error symbols, can be conversion of the intervall = [tyin, tmax] into the reduced
condensed to form another quantitywith n < merror sym- AA form {:

bols, according to: to = (tex + tmin) /2

vi=uy, fori=0,....n—1 t1 = (tmax —tmin) /2, (12)

m —
Vph = Z|Ui‘. (9) t2 0 ]
i=n Reduced AA operations are always followed by a con-
Condensation brings some large AA quantitydéwn densation step to remove any extra error symbols that would
to a more manageable size but it also destroys the corrégﬁye been introduced otherwise. Reduced AA can, therefore,
tion information that was kept in the error symbejswith e seen as a modification of affln_e arithmetic that employs
an aggressive form of condensation. We present, as an ex-
1 Assuming that rounding errors are ignored. Otherwise,afijer- ample, the case of the multiplication between two reduced

ations, just like their non-affine counterparts, requiritisertion of a  AA quantitiesu”and V. Originally, the result of this multi-
new error symbol that accounts for the rounding error of {heration. plication would give:
2 A simpler alternative would be to store in full all the cogffiats )
of an AA quantity. This would be wasteful of memory, considgr ~»
that many of those coefficients are zero. It would also beafaisof 1Y — YoVo + (Uov1 +Vouz) €1 +
CPU cycles. As example (8) shows, the computation of AA dpmEra
involves a loop over all the; error symbols. If the sequence of coeffi-
cients is sparse, many of the loop iterations become unsages + UoVa€y + Vol + ([Ur]+U2) - (Vi +V2) &, (12)

Wp = UgVo,
Wi = UpVi +Vvoui, fori=1,...,n,
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where we have written the second error symbols ehdv'
asey, andey,, respectively, to make it clear that they are not
correlated. The last three terms of (12) are condensed into a
new symbole, that is unique to thev'quantity, giving:

(¥ = UgVo + (Ugv1 +Vour)er +

trmin tr%i n

+ (|uolva + |Voluz + (Jua|+U2) - (Jva| +V2))e2.  (13)

( R -
In practice, all operations in reduced AA are modified

so that a condensation step is automatically built into them

The affine operators (7) now become:

al= (aup) + (aup)er + (|afuz)ey, Fig. 2 The information conveyed by reduced affine arithmetic fer th
G+ a = (uo:t ) + Ure; + Uzey, (14) behaviour of the functiog inside an interval = [tmin, tmax] -

0+V= (UpEVo)+ (UuptVvi)er+ (U +Vvo)en.

The last st inth tati fanint | extensi In the case of Worley's cellular texture function, the ker-
€ laststagein the computation oran Interval ex €nsiQR s eyajuated by iteratively applying a binary minimum

for ray casting is the conversion of the reduced AA forrB erator mirl: 1) on all the pairs of distancds —

~ A - . . R R = dk

g =g(t) into the intervalG(T) = [gm'l”’.gma{d’ which allows frgm X to thg Incit):ie points ttht belong to the §(ax).”Th!3
the test 0= G(T) to be performed trivially: minimum operator is evaluated with affine arithmetic ac-

Omin = Jo — |G1| — Q2 cording to the expression:

Omex = Go + |01| + G2, 15 i+l =1

An analysis of the localised nature of the correlations For example, if; > I we have mifl;,1;) = (I +1;)/2—
during AA computations, as part of the evaluation of a pr@t —1j)/2 = |;. This exact cancellation effect can only be
cedural noise function, requires that the kernels for eaabhieved if all correlations betweén= ||d;|| andl; = ||d;]|

individual noise function be examined in turn. In the casee maintained. However, the distance computations with re
of Perlin’s gradient noise function, the kernel (2) has ¢hreluced AA involve the condensation of error symbols, as we
AA multiplications, each of which would introduce new erhave seen in the case of Lewis’s sparse convolution noise
ror symbols in a standard AA representation. However, onftection, and an exact cancellation cannot be obtained. For
these three multiplications are performed, the evaluaifonthis reason, the application of reduced AA to cellular tex-
@(d;j) is complete and the new error symbols can be safélyre functions incurs a loss of accuracy. In Section 5, the
condensed. At the same time, the AA evaluation of the cubass of accuracy of reduced AA will be compared against its
hermite polynomiah is performed through a direct procesincreased performance relative to standard AA for cellular
of Chebyshev affine approximation rather than applying @#xture functions.
the usual algebraic operations [27,11]. This means that no
internal correlations have to be considered during theueval
ation ofh because the reduced AA result is computed in ode3 Interval Optimisation
single step. In the end, itis possible to say that the evianiat
of @(dj) with reduced AA does not lose any correlation inThe idea of optimising the size of the interval bounding the
formation and has the same accuracy as standard AA. first root of (5) was initially presented by de Cusatis Jr.let a
In the case of Lewis’s sparse convolution noise fungd4]. We present it here again in the framework of reduced af-
tion, the kernel (3) depends only on the distaridg|| to fine arithmetic. When implementing tikayIntersect al-
some node point;j. This distance computation features fougorithm with affine arithmetic, it is possible to reduce the
non-affine operations, namely three squares and one squ&ze of the intervall being tested at the start of each itera-
root operation. The distandl;||, however, is involved in tion, and prior to its subdivision, by taking advantage @ th
the computation ol alone and does not influence the otheextra information provided by reduced AA.
@ kernels (withi # j) that are required for the evaluation of  Figure 2 shows an example of the information conveyed
n. The condensation of the new error symbols from the evaly a reduced AA representation of the functmprevaluated
uation of||d;|| does not, therefore, lead to any loss of accuirside some intervall = [tmin, tmax] @long the ray, for a situ-
acy. The evaluation of the functidmis performed directly ation whereg increases smoothly. The purpose of the ray
by Chebyshev approximation and, again, we can say thatasting algorithm is to find the point where the graplgof
reduced AA computation ofj is as accurate as a standardrosses the horizontal axis. The reduced AA representation
AA computation. g(f), wheret encodesT in reduced AA form according to
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(11), is geometrically equivalent to a parallelogram that eTable 1 Statistics for Perlin’s gradient noise function.
closes the graph @ for the intervalT. The bounding inter-

val can be optimised by reducing it 1@ = [t%,,,t%] prior Avg. Evals. plray Time
to subdivision. It is clear from the drawing that significant IA  78.40 8m27.5s
convergence towards the root is achieved with just a single Standard AA 3460 36m22.9s
evaluation ofy(f) in reduced AA form. Reduced E:i“lcn’idé'? 322(1) %gg

The optimised interval © is obtained from the reduced i i
AA representations = to +t;e; for the interval andy(t) =
0o + g1€1 + g2e for the functiong in the following way: Table 2 Statistics for Lewis’s sparse convolution noise function.

Avg. Evals. p/ray Time
toin = max(to — @tl — gtl,tmm> ) IA  48.44 26m31.0s
o ol Standard AA 225 3aM24.7s
(17) Reduced AA 225 10M7.2s
) do o2 Reduced AA + Int. Opt. 136 6m29.3s
tr?lax =min(top— =—t1 + —11, tmax
g |9

A derivation of these equations is given in Appendix A.Table 3 Statistics for Worley’s cellular texture function.

To summarise, we sh_ow her(_a the steps necessary to com- Avg. Evals. p/ray Time
pute the interval extensioB(T) in the RayIntersect al- 570 SerEATe
gorithm of Flgl.Jre 1, after the intervdl has been removed Standard AA 356 N56ML5.0s
from the stack: Reduced AA 4378 29m39.9s

Reduced AA + Int. Opt. 229 14m25.9s

1. Compute the reduced AA variadléom T = [trin, tmax]»
written as (10) and with coefficients given by (11).

2. Compute the reduced AA estimage="g(f), using re-
duced affine arithmetic operators. Figure 3 shows, from left to right, a rendering of the

3. Compute the interval extensi®{T) from ¢, using (15). implicit surface whem is Perlin's improved gradient noise

- - function, Lewis’s sparse convolution function with= 2
I aﬁeg Steg 3, ('Jt is found than @ G(T), the optimised (refer to Section 3.2) and Worley's cellular texture funati
interval T° = [t% .t2..] is obtained from the initial interval

: min’ e . N with ag = 1 anda; = a» = az = 0 (refer to Section 3.3). We
T, its reduced '(?‘A representatianand the estimatg, Us- 1,,¢ implemented a reduced affine arithmetic model of cel-
Ing (.17)' It isT®, rather tharil, which is then subdivided lular texture functions that can use linear combinations of
and its subintervals pushed back onto the stack for furtr}%% andg; kernels only. We have found that tipe andgs
processing during subsequent iterations of the algofithm kernels are too complex to implement when using AA. This
is due to the difficulty in determining the third and fourth
smallest distances in the s&i) when all the||d;|| have an
5 Results arbitrary degree of uncertainty. For this reason, our airre

h dimolici ‘ d by the followi implementation of Worley’s cellular texture functions rhus
A hypertextured implicit surface generated by the folloyingn¢orce the restrictiony, = ag = 0.

function was used to test our reduced affine arithmetic ray T5pjes 1. 2 and 3 show some statistics that enable a com-

casting method: parison between all the interval estimation techniques for
3 the procedural noise functions under consideration. We hav
F) =Ix||—1+0.6 5 2 %%n(2+2x). (18) compared the performance of interval arithmetic (IA), gtan
k=0 ard AA, reduced AA and reduced AA with interval optim-

The term||x|| — 1 is responsible for giving an overall'sat'clmt'. The rendering é'm? X{[ﬁls otgl::]ed for a 8‘0‘1}%
spherical shape to the surface. The remaining summation'Gro uton image on a dua onA>HZ processor. 1he
the right of (18) employs a procedural noise functoand average number of fupctlon evaluations per ray tells how of-
represents the hypertexture, being responsible for the g r?n Tterval exter;sm_atg) h_?g. to ?et_C(t)_m_puted as part O';
eration of all the surface detail. This summation produce aylntersect algoritim. 1NiS Stalistic IS a measure o
fractal surface with a dimension of2 according to Saufe he accuracy of each part'CUIar interval estimation tequne .
[25] A more accurate technigue causes the ray casting algorithm
) to converge to the intersection point with fewer iterations
8 Wheng; — 0, the enclosing parallelogram in Figure 2 tends taand fewer interval extension computations.
ward an axis aligned rectangle. In the limit, no optimisai@possible As expected, the IA intersection algorithm needs a large
and the original interval must be subdivided. number of function evaluations due to the excessive con-

4 To be more precise, a fractal surface with dimensidh\2ould . . . .
result if the summation had an infinite number of terms, With Z. servativeness of IA estimates. Interval arithmetic, havev

As it stands, the function (18) produces a fractal surfadg over a COMpensates for this lack of accuracy by being quite fast,
limited range of scales. which makes it competitive with some of the more advanced
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Fig. 3 An implicit surface representing a sphere that has beenrteytered with three layers of (from left to right) Perlirggadient noise
function, Lewis’s sparse convolution noise function andrgs cellular texture function.

algorithms. Straightforward replacement of the IA opera
tions with AA equivalents leads to a more inefficient al-
gorithm, due to the need to compute sequences of error syrf
bol coefficients that grow progressively larger. Neverks|

tion evaluations, which shows that AA does have the pote
tial to optimise ray-surface intersection algorithms,rfyoit
can be implemented in a more efficient manner.

The better performance of IA over standard AA for the
evaluation of procedural noise functions was acknowledgege. &
implicitly by Heidrich et al. [11]. In their work, IA was used r ;
for computing the interval estimates of a Perlin noise func:
tion. These interval estimates were then converted into A4~
form for use in the rest of the application. The authors d
not state a reason for preferring 1A over AA when comput
ing a Perlin noise function but it is symptomatic that such
decision was taken in a paper whose purpose was to propo|
AA as a better alternative to IA.

Efficiency with AA is obtained in the reduced AA rep-
resentation. As we had predicted in Section 4.2, no accurac
is lost by the use of reduced AA for the gradient noise funcH
tion and the sparse convolution function. There is a loss
accuracy in the case of the cellular texture function, whic
is compensated by its increased computation speed so th
overall, reduced AA performs much better than standard
for all three procedural noise functions. The final improve
ment comes from optimising the size of the intervals, as exXyg. 4 A procedural planet represented as an implicit surface with
plained in Section 4.3. Reduced AA combined with intervaadius equal to the radius of the Earth and seen from an d#tiof

optimisation gives the lowest rendering statistics ofretei- 100 metres. The implicit surface uses a mixture of all threegdural
val estimation techniques noise functions that are studied in this paper.

Figure 4 shows a procedurally defined planet. The impli-
cit surface uses a combination of the procedural noise func-
tions studied in this paper. The faceted aspect of the terrdnterval optimisation. Given the results in Tables 1 to 3, no
in particular, is a consequence of the Voronoi regions edtatattempt was made to render this image with any of the other
by the cellular texture function. In this example, no attémjnterval estimation techniques. This is an example of a com-
was made to avoid the occurrence of disconnected pieceplaik surface, with detail that is visible over a wide range of
terrain that arise naturally from the implicit represeittat distances, that would have been impracticable to rendér wit
giving the planet a somewhat surrealistic look. This imaggandard AA and whose rendering becomes feasible with re-
took 6 hours and 37 minutes to render with reduced AA amidiced AA.

-
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6 Conclusions and Future Developments terpolating implicit surfaces are entirely similar to sgar
convolution noise functions, with equation (1) being used

Ray casting implicit fractal surfaces with affine arithngetit® Sum the contribution of several independent radial _ba5|s
becomes efficient only with the introduction of a reducelyinctions (RBFs). Each RB§(d;) depends only on the dis-
representation for uncertain quantities. The represientatt2nce|dil| to constraint poink;. A RBF is written asp(d;) =

of an uncertain quantity with reduced affine arithmetic us@(lldill), whereh is some continuous and differentiable

a maximum of two error symbols. It has been shown thitnction. The difference between this RBF and (3) is only
without this reduced representation affine arithmetic wioull the meaning of the scaling constanior ¢, respectively.

not be able to compete against a simpler interval arithmefiB€ & are pre-computed so as to cause the surface to inter-
representation. These results were obtained while ray c@late through the required constraint points whei@as

ing implicit surfaces generated from procedural noise funt'® outcome of a random variable.

tions that are widely used in computer graphics. Such pro- Given the structural similarity between sparse convolu-
cedural noise functions are based on the summation of sBQD noise functions and interpolating implicit surfacesda
eral statistically independent terms. By maintaining ahly from sums of RBFs we can say that our reduced affine arith-
correlation related to the uncertainty in the position af tfn€tic method can also be used successfully to render the
root along the ray, reduced affine arithmetic can achieve figger with ray casting. Current methods for renderingrinte
same results as standard affine arithmetic while being mi@ating implicit surfaces resort to sphere tracing, wheere
efficient. Lipchitz bound must be supplied by the user before render-

; ; ; . ing takes place [9]. The optimal Lipchitz bound for a con-
A dicted in Section 4.2 and sub tl firm&t . . L , ;
S precicted in Section anc subsequenty on Irm)g_muous and differentiable functiof in three dimensions,

ture functions incurs a loss of accuracy. This is ultimateRHCP @S the one generated through (1) for sums of RBFs, is

due to the destruction of important correlation informatiot'€ Maximum magnitudglf || of the gradient vector. For an

through the condensation of error symbols. The loss of ZPitrary set of constraint points, this maximum gradient

curacy, however, is compensated by the greatly increasedf@?‘gnitUde can only be found throu_gh a costly global optim-
ficiency that comes from dealing with only two error Syml_satlon procedure. Morse et al. avoid this procedure by-eval

bols for each AA quantity, with a rendering time that dropatingd |[Jf || at a large set of random points and using the
from almost 3 hours with standard AA to only 29 minute aximum value thus obtained as their Lipchitz bound [18].

with reduced AA. Itis possible, however, that for some oth 'e.af'y’ this dO?S not lead to a robust rendering algorithm
procedural noise functions, with kernels that we have n@t Itis not poss_|ble to guarantee that _aII correct_ray—sarfa
rsections will be found. Problematic areas will be &hos

tested, the loss of accuracy may be more significant. In sub ; .

a case, standard AA can be used for the calculation of f8®® th‘? value of changes more rapidly than pred!cte_d by
kernel @(dy,d, ..., dn) and a switch to reduced AA can béh€ LiPchitz bound that Morse etal. use. By ray casting inter
done for the remainder of the calculations in ). polating implicit surfaces with reduced affine arithmetice

Standard and reduced AA quantities can easily be intglgs an automatic, robust, efficient, and verifiable method of

changed. Any reduced AA quantity is also a valid standaZ&’mpUtmg all ray intersections without the burden of hgvin

AA quantity that happens to have only two error symbol O estimate the Lipchitz bound as a pre-computation step.
The second error symbej has to be given a new and unique

index number, after conversion to standard AA, to express

the fact that it is not shared with any other standard AA Derivation of the Interval Optimisation Equation
guantities. A standard AA quantity can be transformed to a A A
reduced AA quantity through condensation. For ray castiN!S“e;” Cowﬁg:énﬁse%(g; ;Vemhbaagtggg = g(; : ugrﬁ] ;r v?ﬁeéuir:/(gr:in
purposes, it is required that bOth_AA representations agl{%éirl]teé}val[—l,-&-l]. Replaging the expr?ezssion fbin the express}{on
that the common error symbe} is used to express Un-for g by way of thee; error symbol, we have:

certainty relative to the position of the root along the ray.

This is so that the interval optimisation procedure of Seg- ol (f —to) + go + G- (A1)
tion 4.3 can be properly implemented. In a situation lik¢ tha

of Figure 4, v_vhgere several _procedural noise functlon§ aré £quation (A.1) is the equation for a line in tigef plane with a
used, the majority of the noise functions would be entirelyope ofg, /t;. By letting e; vary in [—1,+1] and keepingin < f <
computed with reduced AA while only the more problemin.x we sweep the parallelogram that is shown in Figure 2. Theruppe

atic ones would use standard AA internally to compute theifd lower edges of this parallelogram are obtained from)(#fien
kernel functions e = +1. The intersections of these two edges with the horizoxial a

L .. . give the new and optimised limits for the interval. Settidgl() equal
Interpolating implicit surfaces have gained much pofo zero, withe, = +1, and rearranging, we have:

ularity in recent years because of their ability to interpol

ate any set of constraint points [28,18]. Interpolating inf=t, — Yoy, 4 B2y, (A.2)
plicit surfaces are now the method of choice to generate a R

continuous and smooth surface approximation from a set of |ndependently of the sign @f; (g is always positive ant is also
scattered data points. From a structural point of view, iakways positive because of they it is constructed in eqodtid)), the
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left and right solutions to (A.2) along the horizontal axis,aespect- 18.

ively:
0 = to— 2ty — Z.py,
[V v] (A3)
to,, =tg— @tlJr gtl. . 19
e o o '

We only use the results from (A.3) if they lead to a tighteeiwtl
than the originaltmin, tmax], hence the min and max functions in (17). 20
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