
promoting access to White Rose research papers 
   

White Rose Research Online 

     
 

Universities of Leeds, Sheffield and York 
http://eprints.whiterose.ac.uk/ 

 
 

 
This is an author produced version of a paper published in The Visual 
Computer. 
 
White Rose Research Online URL for this paper: 
http://eprints.whiterose.ac.uk/3927/ 
 

 
 
Published paper 
Gamito, Manuel and Maddock, Steve (2008) Topological correction of 
hypertextured implicit surfaces for ray casting. The Visual Computer, 24 (6). 
pp. 397-409. 

 

eprints@whiterose.ac.uk 
 



The Visual Computer 24(6):397–409 (June 2008)

Manuel N. Gamito · Steve C. Maddock

Topological Correction of
Hypertextured Implicit Surfaces for Ray Casting

Abstract Hypertextures are a useful modelling tool in that
they can add three-dimensional detail to the surface of other-
wise smooth objects. Hypertextures can be rendered as im-
plicit surfaces, resulting in objects with a complex but well
defined boundary. However, representing a hypertexture as
an implicit surface often results in many small parts being
detached from the main surface, turning an object into a dis-
connected set. Depending on the context, this can detract
from the realism in a scene, where one usually does not ex-
pect a solid object to have clouds of smaller objects floating
around it. We present a topology correction technique, integ-
rated in a ray casting algorithm for hypertextured implicit
surfaces, that detects and removes all the surface compon-
ents that have become disconnected from the main surface.
Our method works with implicit surfaces that areC2 con-
tinuous and uses Morse theory to find the critical points of
the surface. The method follows the separatrix lines joining
the critical points to isolate disconnected components.

Keywords Morse Theory· Implicit Surface· Hypertextur-
ing · Ray Casting

1 Introduction

Hypertexturing is a procedural technique proposed by Per-
lin & Hoffert to add three-dimensional small-scale detail to
the surface of smooth objects [18]. It can be used to model

The first author is supported by grant SFRH/BD/16249/2004 from the
Fundação para a Ciência e a Tecnologia, Portugal.

Manuel N. Gamito
Department of Computer Science
The University of Sheffield
211 Portobello Street
Sheffield S1 4DP
E-mail: M.Gamito@dcs.shef.ac.uk

Steve C. Maddock
Department of Computer Science
The University of Sheffield
211 Portobello Street
Sheffield S1 4DP
E-mail: S.Maddock@dcs.shef.ac.uk

a large collection of materials such as fur, fire, glass, fluids
and eroded rock. As a procedural modelling and texturing
tool, hypertexturing can be regarded as an improvement over
solid texturing [16]. Using hypertextures, it becomes pos-
sible to actually deform the surface of an object instead of
merely modifying its material shading properties. Hypertex-
tures were initially presented as a technique to modelfuzzy
objectsrather than implicit surfaces, i.e. objects such as a
cloud that are represented by a density function and which
do not have a well-defined boundary. Hypertextures, how-
ever, can also be applied to implicit surfaces.

In the original definition of hypertexture, an object is
defined in three-dimensional space with anobject density
function f0 : R

3 → [0,1], which associates a density value
f0(x) with every pointx in space. A density of 0 means total
transparency while a density of 1 means total opacity. The
shape of the object can then be deformed through the com-
position of f0 with one or moredensity modulation functions
fi : [0,1]×R

3 → [0,1], i = 1, . . .n such that the final object
density f is given by:

f ( f0(x),x) = fn(. . . f2( f1( f0(x),x),x), . . . ,x). (1)

It is possible to apply (1) similarly to implicit surfaces
by consideringf0 : R

3 → R to be a function such thatf0 = 0
signals the surface andf0 > 0 signals the inside of the sur-
face. After this change,f ( f0(x),x) also becomes a function
that generates ahypertextured implicit surface. The restric-
tion that density modulation functions return opacity values
in the range[0,1] is no longer necessary and we can define
them as functionsfi : R×R

3 → R for i = 1, . . . ,n.
Compared to displacement mapping, hypertexturing is

a more flexible technique for adding geometric detail to an
otherwise smooth implicit surface [1,20]. Hypertextures can
generate surface overhangs and arches, which the displace-
ment mapping technique is incapable of producing. Figure 1
illustrates the difference between the two techniques. Al-
though it is not demonstrated here, any displacement map
can also be expressed as a particular form of hypertexture.
If f0 generates a sphere of unit radius, for example, any hy-
pertexture written asf ( f0(x),x/‖x‖) is equivalent to a dis-
placement mapped sphere. Furthermore, it is possible to add



2 Manuel N. Gamito, Steve C. Maddock

Fig. 1 Comparison between the displacement map (top) and hypertex-
turing (bottom) techniques when adding detail to a horizontal plane.

hypertexturing details on top of a displacement mapped sur-
face, all within the framework expressed by equation (1).

One drawback of the modelling flexibility provided by
hypertextures is that a surface can also become fragmen-
ted into several disconnected parts (this is illustrated inFig-
ure 1). Depending on the context, this surface splitting effect
may be desirable or not. If one is using hypertextured impli-
cit surfaces to model splashing fluids, for example, then the
surface splitting effect is actually beneficial. If, on the other
hand, one is trying to model a solid object with a complex
surface structure, e.g. a rock, the disconnected state of the
surface leads to physically non-plausible results.

This paper presents a solution to the surface splitting ef-
fect of hypertextures that are defined withC2 continuous
functions. Disconnected surface parts are detected in an ini-
tial connectivity analysis step and then removed during ren-
dering. To achieve this goal we rely on Morse theory to ana-
lyse the topology of the surface. The surface connectivity,
in particular, can be completely determined by studying the
critical points of the functionf and the way they are joined
together. We apply our technique as part of a ray casting al-
gorithm for hypertextured implicit surfaces.

We make a distinction betweenglobal methodsandlocal
methodsfor querying surface connectivity. Global methods
must analyse the entire surface as a pre-processing step be-
fore they can determine the connectivity state of any arbit-
rary surface point. Local methods, by contrast, can performa
localised connectivity analysis for every point. In this paper
we concentrate on global methods. Our proposed method is
global because it needs to locate all the critical points of the
surface as a first step. We also give suggestions of how a
local topology correction method may be implemented and
show initial results in that direction.

Section 2 demonstrates the surface splitting effect and
shows why it is hard to control in a general way. Section 3
presents two simple global methods that can be used to solve
the surface connectivity problem and explains their limita-
tions. Section 4 explains the necessary concepts from Morse
theory that will be required in Section 5, where we present
our proposed algorithm. Section 6 shows results and Sec-
tion 7 presents our conclusions. Section 8 suggests an ex-
tension of our algorithm that can be applied to implicit sur-

face polygonisers. Finally, Appendix A presents formulae
for evaluating the gradient and the Hessian of the procedural
noise functions used in this paper. Evaluation of these func-
tions is a common task but the same does not happen with
their gradients or Hessians. These, however, are essentialif
one wants to apply Morse theory to noise functions.

2 The Surface Splitting Effect

We illustrate the splitting effect of hypertextured surfaces
with an example. Figure 2 shows three implicit surfaces that
have been generated by adding increasing amounts of hyper-
texture. The function that generates these surfaces is:

f ( f0(x),x) = f0(x)+ ε n(4x), (2)

where f0(x) = 1−‖x‖ defines an implicit sphere of unit ra-
dius andn is Perlin’s improved gradient noise function [17].
The amplitudeε of the hypertexture takes values of 0.1, 0.3
and 0.8 for the three surfaces in Figure 2. The caseε = 0.1
shows a surface with a small amount of perturbation relat-
ive to the initially smooth sphere. This type of surface could
more easily have been modelled as a procedural displace-
ment map [9]. The caseε = 0.3 generates an object with
more pronounced surface features but which, from a topolo-
gical point of view, is still homeomorphic to a sphere. The
caseε = 0.8 generates an object with the interesting over-
hanging and arching features that only the implicit surface
approach can give. At the same time, it also causes the sur-
face to split, generating a cloud of small objects that are
seen floating at fixed locations around the main object in the
centre.

The splitting effect places an upper bound on the amount
of hypertexture that can be added to an object while keeping
it as a topologically connected set. It can occur for any hy-
pertexture and not just the additive hypertexture given by
function (2). The only exceptions consist of hypertextures
that, by construction, are equivalent to displacement maps.
The maximum amount of hypertexture depends on the par-
ticular function f that generates the surface and, without
recourse to the Morse theory used in this paper, can only
be found by trial and error. For solid modelling purposes,
one would often like to use stronger hypertexturing effects
than those allowed if a surface is to remain simply connec-
ted. It is not an uncommon practice, when excessive hy-
pertexturing has been applied over a solid object, to digit-
ally remove disconnected parts from the final rendering as a
post-processing step. This simple trick can only be applied,
however, provided that no disconnected component occludes
the main surface.

3 Alternative Approaches

A simple but inaccurate way to perform topological correc-
tion on hypertextured surfaces is to employ a voxel grid,
where the functionf ( f0(x),x) is sampled at the corners of



Topological Correction of Hypertextured Implicit Surfaces 3

Fig. 2 A sphere rendered with increasing amounts of hypertexture (ε = 0.1, 0.3 and 0.8).

Fig. 3 Two surface components incorrectly determined to be part of
the main surface. The arrows show the region growing sequence, start-
ing from the voxel on the bottom left.

the voxels. A voxel is known to straddle the surface when the
function changes sign at some of the voxel’s eight corners.
One can perform a discrete three dimensional region grow-
ing process to segment the voxel space into disjoint volumes,
each enclosing a particular disconnected component of the
surface. If the original data is already discrete, e.g. a series
of MRI scans, then this is probably the best approach to take.
When generating an isosurface from the volume data, this
voxel-based method can be used to remove outlying surface
components that may be the result of measurement error. In
our case, we are interested in performing topological correc-
tion of procedurally defined surfaces. Samplingf ( f0(x),x)
onto a grid implies loss of information unless the function
happens to be bandlimited and the sampling frequency is
above the Nyquist limit. This loss of information leads to in-
correct connectivity results, as shown in Figure 3, which can
occur for surface components that are too small or too close
to the main surface, relative to the sampling distance.

Another possible approach is to first convert the impli-
cit surface into a polygonal mesh before performing any to-
pology correction. Stander & Hart have presented a mesh-

ing algorithm for implicit surfaces that is guaranteed to pre-
serve surface topology [24]. Once the polygonal mesh has
been generated, one can perform region growing by jump-
ing across the edges shared by neighbouring polygons to ob-
tain a set of disjoint polygonal objects. One of these objects
approximates the main implicit surface and the others rep-
resent the outliers that should be eliminated. One objection
against this approach is that it cannot be used for direct ren-
dering of implicit surfaces with ray casting – it is only mean-
ingful for applications where implicit surfaces are converted
to polygonal meshes and subsequently rendered on a GPU
board. Another objection is that it is wasteful of CPU cycles
since it takes time to correctly polygonise surface compon-
ents that are later found to be disconnected and which must
then be removed. Topology correction should occur before
the meshing process rather than after.

4 Morse Theory and the CW-Complex

Morse theory studies the behaviour of functions over a mani-
fold [13]. The theory was first introduced to computer graph-
ics by Shinagawa et al. and was later shown by Hart to be
relevant for the topological study of implicit surfaces [21,
6]. When the theory is applied to implicit surfaces, the man-
ifold becomes the entireR3 space and the function defined
over this space is our functionf that generates the surface.
Central to the Morse theory is the notion of acritical point
of f . A critical pointxC is such that:

∇ f ( f0(xC),xC) = 0. (3)

A critical point can be further classified by studying the
eigenvalues of the Hessian matrix off at xC. The Hessian
matrix H { f} collects all the second partial derivatives of
the functionf :

H { f} =

[

∂ f 2

∂xi∂x j

]

i, j∈{1,2,3}
. (4)



4 Manuel N. Gamito, Steve C. Maddock

λ1 λ2 λ3 Type
− − − Maximum
− − + 2-saddle
− + + 1-saddle
+ + + Minimum

Table 1 Distinct types of critical points are determined by combina-
tions of the signs of the eigenvalues of the Hessian matrixH { f }.

If f is C2 continuous then we have that∂ f 2/∂xi∂x j =

∂ f 2/∂x j∂xi and the Hessian is symmetric. The spectral the-
orem then guarantees that all three eigenvalues ofH { f}
will be real. Depending on the signs of the eigenvaluesλ1,
λ2 andλ3, sorted in increasing order, a critical point can be
classified as shown in Table 1. The type of a critical point
gives an indication of the topology of the surface around
that point. For example, the maxima occur near the local
centroids of the surface while the 2-saddles occur at points
where two surface components are joined together. In this
paper, we only need to be concerned with the maxima and
the 2-saddles in order to characterise the connectivity of the
surface.

The case where one or more of the eigenvalues is zero
leads to adegenerate critical point. Morse theory breaks
down in these circumstances. However, degenerate critical
points are unstable and can easily be removed by introducing
a small perturbation in the parameters defining the function.
A function f that contains no degenerate critical points is
then said to be aMorse function. Morse functions need to
beC2 continuous, considering that both first and second par-
tial derivatives of f are required by the Morse theory. It is
possible to relax this restriction and work withC1 functions,
provided that second derivatives are continuous at least over
the critical points [8].

By taking the gradient∇ f , one obtains a vector flow field
whose structure is intimately related to the topology of the
implicit surface. From equation (3), the critical points ofthe
surface are also the stagnation points of the flow field. A
streamline of this field is a path that is obtained by following
the local gradient vector, according to the ordinary differen-
tial equation:

dx
dt

= ∇ f ( f0(x),x). (5)

A streamline is called aseparatrix if it separates two
regions of the flow with different characteristics [10]. Sep-
aratrices are important as they also give information about
the topology of the surface. All the separatrices originate
and terminate at maxima off . For every separatrix there is
always a 2-saddle somewhere along its path. The separatrix
is locally tangent to thev3 eigenvector (associated with the
λ3 eigenvalue) at the 2-saddle.

Figure 4 shows a simple case of two implicit blobs con-
nected as a single surface. There are two maxima close to the
centroids of each blob and a 2-saddle at the junction of the
two blobs. The separatrix, in this simple case, is a straight
line segment joining the two maxima and passing through
the 2-saddle. In a more general situation the separatrix would

100 200 300 400 500 600

300

350

400

450

500

550

600

650

700

Fig. 4 An implicit surface formed from two blobs. The “+” signs mark
the two maxima and the “×” sign marks the 2-saddle.

be curvilinear. Knowing the positionxS of the 2-saddle, it is
possible to locate the two maxima sharing this critical point
by integrating equation (5) backwards and forwards fromxS,
following a direction that is initially coincident with thev3
eigenvector of the 2-saddle. It is also possible to determine
the connectivity of the two blobs by checking the sign of
f ( f0(xS),xS). If this sign is positive, the blobs are connected
and the separatrix is known to travel exclusively through the
interior of the surface. If the sign is negative, the two blobs
are disconnected and the separatrix must exit and enter the
surface again at some points.

The separatrices defined byf form a network of lines
that partition theR3 space into a topological entity called
the CW-complex[7]. The CW-complex is a data structure
that encodes all the topology of the implicit surface. It con-
sists of a disjoint partitioning of the space into curved cells.
The maxima are located at the corners of these cells and the
separatrices form the edges of the same cells. Connectivity
information can be obtained by following only the network
of separatrices that are interior to the surface. This process
will partition the maxima into a number of separate sets,
which reflects the number of disconnected components of
the surface.

5 The Topology Correction Method

The method for correcting the topology of hypertextured im-
plicit surfaces proceeds by identifying all disconnected com-
ponents of the surface. Of all the components detected, the
larger one is considered to be the main surface, which is
rendered as part of the ray casting algorithm. The remaining
surface components are ignored during ray-surface intersec-
tion tests. The detection of disconnected surface components
proceeds in two steps:

1. Build a set of all maxima and 2-saddles that are located
inside the surface.

2. Segment the previous set into disjoint subsets by follow-
ing the separatrices from the 2-saddles towards the max-
ima.



Topological Correction of Hypertextured Implicit Surfaces 5

push bounding boxV0 onto stack;

while stack not empty

pop voxelV from stack;

let XV = interval extent ofV;

if f ( f0(XV),XV) < 0
continue;

if ∇ f ( f0(XV),XV) 6∋ 0
continue;

let r = radius of bounding sphere forV;

if r < ε
Test V;
continue;

subdivideV;
push children onto stack;

Fig. 5 TheSubdivision algorithm.

Steps 1 and 2 are performed before any surface render-
ing occurs. The outcome of step 2 is a sequence of setsSi ,
with i = 1,2, . . . ,N, where each set contains all the maxima
that exist inside some particular component. The numberN
of sets is equal to the total number of surface components.
One of these sets is the main set, corresponding to the main
surface to be rendered. During a ray-surface intersection test,
the setSi that corresponds to the surface component to which
the intersection point belongs is identified. If this is not the
main set, the intersection point is ignored and another point
is searched further along the ray. The following sections de-
scribe the relevant steps of the topology correction method.

5.1 Locating Critical Points

Location of critical points is made by recursive subdivision
of an initial bounding box that surrounds the surface. We
employ the technique that was first proposed by Stander &
Hart and later improved by Hart et al. [24,8]. For every cu-
bical voxel resulting from the subdivision, a series of tests is
made to determine, first, if the voxel contains part of the sur-
face and, second, if a critical point may be contained within
it. If these tests pass, the voxel is subdivided and the children
are tested in turn, down to a minimum specified voxel size.

Interval arithmetic is used to check if a voxel is part of
any of the components of the surface [14,22]. An interval
estimate for the variation ofF inside the voxel is used in
the following test to determine if the voxel lies completely
outside the surface:

f ( f0(XV),XV) < 0, (6)

whereXV is an interval vector that spans the spatial extent
of the voxel. Because interval arithmetic is a conservative
range estimation technique, this test is always guaranteedto
return a correct result for outside voxels.

A voxel is checked for the existence of critical points
once it is known from test (6) that it may be either inside or
straddling the surface. The test for the existence of critical

points is achieved by obtaining an interval vector estimate
of the function gradient, using again theXV interval extent:

∇ f ( f0(XV),XV) ∋ 0. (7)

If the null vector0 is contained inside the interval vec-
tor for ∇F , there is the possibility that one or more critical
points may be contained in the voxel. The voxel is then either
subdivided or an explicit test is made for the presence of
maxima and 2-saddles, once a minimum voxel size has been
reached. Figure 5 shows in pseudo-code theSubdivision

algorithm that implements the sequence of tests for each
voxel. The voxels are kept in a stack, which is initialised
with the bounding boxV0 for the object.

Due to the conservative properties of interval arithmetic,
it often happens that voxels neighbouring a voxel that con-
tains critical points are also incorrectly flagged by the inter-
val arithmetic tests to contain such points. TheTest routine,
that is invoked in the listing of Figure 5, performs the fi-
nal stage in the search for critical points, weeding out the
false positives output by the interval tests. We assume at this
stage that a voxel is small enough to contain only one crit-
ical point. This should be true provided that the thresholdε
for the minimum voxel size is appropriately chosen. Starting
from the voxel centrexV , the following sequence of Newton
iterations is performed towards the critical point:

H { f}δxi = −∇ f ,

xi+1 = xi +δxi .
(8)

Both the Hessian matrixH { f} and the gradient∇ f are
evaluated at the pointxi to solve forδxi . The iteration is
stopped if the sequence of pointsxi goes outside the voxel.
Otherwise, the sequence will converge to some pointxC in-
side the voxel where a critical point is known to exist. If the
critical point is inside the surface such thatf ( f0(xC),xC) >
0, and if it is a maximum or a 2-saddle (which is found after
the eigenvalues ofH { f} at xC have been computed), the
point is added to a setSof critical points interior to the sur-
face. Each element inSstores the following information re-
garding a critical point:

– The positionxC.
– The valuef ( f0(xC),xC), which must be positive.
– A flag indicating ifxC is a maximum or a 2-saddle.
– The eigenvectorv3 if xC is a 2-saddle.

When theSubdivision algorithm completes, the setS
will contain all the maxima and 2-saddles that were found
inside every disconnected component of the surface.

5.2 Locating Disconnected Components

The setS is segmented into the sequenceSi , where each set
Si contains the maxima for one surface component. The al-
gorithmSegmentation is shown in Figure 6. Each critical
point xC of S is considered at a time, by decreasing order of
f ( f0(xC),xC). If xC is a maximum then a new setSi = {xC}



6 Manuel N. Gamito, Steve C. Maddock

for everyxC ∈ Sby decreasing
order of f ( f0(xC),xC)

if xC is a 2-saddle

let xi ,x j be the maxima reached fromxC;
let Si ∋ xi andSj ∋ x j ;

if Si 6= Sj

createSk = Si ∪Sj ;
discard Si andSj ;

else
createSi = {xC};

Fig. 6 TheSegmentation algorithm.

is created. If, on the other hand,xC is a 2-saddle, the two
maximaxi andx j connected to it are determined by integ-
rating the separatrix backwards and forwards with equation
(5), starting fromxC and going initially along the direction
of the v3 eigenvector for the 2-saddle. Because the critical
points are evaluated by decreasing order off , it is certain
that by the time a 2-saddle is considered, the two maximaxi
andx j to which it connects will already have been processed
by the algorithm. The setsSi andSj that containxi andx j ,
respectively, are then joined together to form a new set. The
2-saddle is ignored, however, if bothxi andx j are found to
be part of the same set already.

OnceSegmentation completes, all disconnected sur-
face components will have been identified through theSi
sets. The main surface is identified by the setSm that con-
tains the largest number of maxima, where the indexm is:

m= max
i

#Si . (9)

This criterion for selecting the main surface that is to
be rendered may fail for objects with an excessively large
amount of hypertexture. If there is too much hypertexture,
the object will break into a cloud of many smaller objects
of approximately equal size. It is not clear in these condi-
tions which of these smaller objects should be selected for
rendering. Our purpose is to study hypertextured functions
f ( f0(x),x) where the geometry of the original objectD(x) is
still discernible after the hypertexture has been applied.The
criterion (9) will then identify the correct surface component
for rendering since the majority of the maxima will be con-
tained inside the main surface – only a smaller number of
maxima will exist outside the main surface, being respons-
ible for the disconnected fragments.

5.3 Computing Ray Intersections

The computation of ray intersections with the implicit sur-
face is performed with an affine arithmetic range estima-
tion algorithm [4]. Affine arithmetic is an extension of the
simpler interval arithmetic and provides tighter bounds for
the estimation of unknown quantities [2]. This affine arith-
metic intersection algorithm, like all interval based intersec-
tion algorithms, is capable of finding every intersection point

xI

xM

Fig. 7 The intersection between a ray and the surface. The streamline
originating at the intersection point is shown as a dotted line.

between the ray and the surface, sorted by increasing dis-
tance along the ray. The sphere tracing method, by compar-
ison, can only find the first intersection point with reliabil-
ity [5]. Once an intersection pointxI has been found along a
ray, a test is performed to determine if it belongs to the main
surface or not. To that effect, a streamline is followed with
equation (5), starting fromxI , which will converge towards
some maximumxM interior to the surface.

Figure 7 shows an example. The streamline starts off
along a direction that is initially orthogonal to the implicit
surface and converges towards the pointxM. Having found
the maximumxM, the setSi to which it belongs is retrieved.
If this is the main setSm, the intersection pointxI is rendered,
otherwise intersection testing continues along the ray to try
to find another intersection point further along. Following
every intersection that is found not to be part of the main
surface, the connectivity test need not be performed again
for the next intersection point, given that this will be the exit
point of the ray from a disconnected component.

5.4 Tracking Streamlines

The path of a streamline needs to be tracked as part of the
ray-surface intersection procedure of Section 5.3 and as part
of theSegmentation algorithm of Section 5.2 where, in the
latter case, the streamline is also a separatrix of the surface.
Special care needs to be taken when performing this path
tracking procedure because the endpoint of the streamline
(and also the starting point, in the case of a separatrix) is a
critical point where∇ f = 0 occurs.

When tracking a separatrix, the path originates from a
2-saddle located at some pointxS. If one were to integrate
equation (5) with the initial conditionx(0) = xS, the path
would never leavexS since this is a stagnation point of the
flow. To start off the integration from a 2-saddle, the follow-
ing initial condition must be used instead:

x(0) = xS± εv3, (10)

whereε is a small displacement. The displacements of±ε
along thev3 eigenvector will enable the integrator to move
away fromxS and to converge towards the two maxima that
connect with the 2-saddle through the separatrix. The max-
ima, however, are also stagnation points and path tracking



Topological Correction of Hypertextured Implicit Surfaces 7

would have to proceed fromt = 0 up tot = ±∞ if the two
maxima were to be reached exactly. In practice, one pro-
ceeds with the integration for as long as possible and then
finds the maxima that are nearest to the points where the in-
tegrator left off.

We use thelsodar ordinary differential equation solver
from the ODEPACK Fortran package to perform path integ-
ration [11]. Thelsodar solver is able to select between a
stiff and a non-stiff integration method, depending on the
local conditions of the flow. When given an upper limit of
+∞ or −∞, lsodar inevitably finishes with an error status
as it tries to get close to one of the maxima. It also returns the
farthest pointx(t) that could be computed along the path. By
controlling the numerical precision requested fromlsodar,
it is possible forx(t) to be as close to the correct maximum
point as desired. We then search among all the maxima of all
theSi sets for the one that is closest tox(t), thus identifying
the particular setSi to which the separatrix has converged.
The procedure is similar when tracking streamlines as part
of the ray-surface intersection tests except that we are now
only interested in following the path fromt = 0 to t = +∞
and the starting conditionx(0) = xI is used, instead of equa-
tion (10).

Currently, the search for the maximum point nearest to
x(t) is performed exhaustively by computing the squared
distance to every possible maximum. This search method
has linear time complexity and can become slow for a sur-
face with a large number of maxima inside. Although we
have not implemented it for this paper, it is possible to per-
form the search for a maximum in average logarithmic time
with the help of akd-tree [3,23].

6 Results

We demonstrate the application of the topology correction
algorithm with hypertextures that are generated from scaled
sums of a basis procedural noise function. The hypertexture
function is:

f ( f0(x),x) = f0(x)+0.8
L−1

∑
i=0

2−0.8in(2i+2x). (11)

The function f0 generates a sphere of unit radius, as in
the example of Figure 2, andn is a sparse convolution noise
function [12]. The summation in (11) models a fractional
Brownian motion process with a Hurst parameter given by
H = 0.8 [19]. The number of layers of noise that are added
to the sphere is given byL. As this number increases, the
surface of the sphere becomes increasingly more irregular
and, in the limit, attains a fractal dimension of 3−H = 2.2.

Figure 8 shows the network of separatrices for a hyper-
textured object computed from equation (11), withL = 1,
after theSubdivision andSegmentation algorithms have
been applied. The network is shown superimposed over an
image of the object. This network represents a partial visu-
alisation of the CW-complex for the object’s surface since

Fig. 8 The network of separatrices and maxima interior to a hypertex-
tured surface.

L Maxima 2-saddles Components
1 214 304 58
2 1006 1585 182
3 8408 4567 418

Table 2 Statistics for a hypertextured sphere with an increasing num-
ber of layers of noise.

only the separatrices that are inside the surface are shown.
Maximum points are also shown as dots and are located at
the endpoints of one or more separatrices. Several of these
points, however, are isolated and correspond to small dis-
connected surface components that can be seen surrounding
the main surface.

Table 2 lists the number of maxima, 2-saddles and dis-
connected components of the surface as the number of noise
layers increases. These numbers follow a roughly geomet-
rical progression withL, which causes theSubdivision al-
gorithm to become increasingly less efficient as it needs to
identify an ever denser cloud of critical points. The applica-
tion of the topology correction method to a fractal hypertex-
ture is, therefore, impractical since a surface needs to have
five or more layers of noise to become recognisably fractal.
Figure 9 shows the casesL = 1 andL = 3 of the hypertex-
ture generated from equation (11). The original surface is
first shown, without any topological correction. The discon-
nected components are then identified and visualised in red.
Finally, the same disconnected components are ignored dur-
ing the ray-surface intersection procedure.

A more efficient method than spatial subdivision for the
localisation of critical points was proposed for implicit sur-
faces that are made from sums of radial basis functions by
Wu & de Gomensoro Malheiros [25]. With their method,
simple heuristics are used to estimate the position of the crit-



8 Manuel N. Gamito, Steve C. Maddock

ical points. The application of several relaxation steps then
causes the critical points to converge towards their correct
positions. Sparse convolution noise is an example of a hyper-
texturing function that could use the improved localisation
method by Wu & de Gomensoro Malheiros since it consists
of the sum of an infinite number of radial basis functions that
follow a Poisson distribution in space. The same method,
however, cannot be applied to Perlin noise functions. For
that reason, we have adopted spatial subdivision as our crit-
ical point localisation method, which, although being less
efficient, is quite general and can be applied to anyC2 or
evenC1 function. Spatial subdivision is also an easily par-
allelisable algorithm where disjoint regions of space can be
assigned to different CPUs.

A minimum voxel sizeε = 10−8 was used as part of the
Subdivision algorithm to obtain the results shown in Fig-
ure 9. The iterations (8) for the multi-dimensional Newton
root finder were stopped when‖xi+1−xi‖ < 10−12. The nu-
merical precision requested from thelsodar ODE solver
was also equal to 10−12. After determining the connectivity
information, the component setsSi , with i = 1, . . . N, were
stored to a file so that they could be reused for different
renderings of the same surface. This is especially helpful
when performing computer animation as theSubdivision

and theSegmentation algorithms need to be run only once
for each surface.

Figure 10 shows results that we have recently achieved
and is a rendering of the surface of a procedural planet with
overhangs and arches, represented as an implicit surface. Al-
though the terrain appears to be defined over a flat surface,
it is actually a sphere seen from a very close range. Proced-
ural planet modelling is a powerful technique that can gen-
erate terrain details over the entire surface of a planet, with
a range of scales similar to the one that exists on Earth [15].
A function similar to (11) was used that combines two pro-
cedural noise functions. A Perlin noise function provides the
basic terrain pattern and is then modulated by a sparse con-
volution noise function to create the appearance of rocky
outcrops over an otherwise smooth terrain. The evaluation
of the gradient and Hessian of these two noise functions
is presented in Appendix A. The detection of surface con-
nectivity is shown in the middle image of Figure 10 with the
disconnected surface components coloured in green. The re-
moval of these components is then shown in the bottom im-
age. It is possible to see that the shadows cast on the ground
by disconnected components, which are visible in the lower
left corner of the top and middle images, have disappeared
in the bottom image due to those surface components hav-
ing been removed. This effect is easily achieved by perform-
ing connectivity testing for shadow rays, similar to what is
done for view rays. Disconnected components are ignored
for shadow rays and a point is only in shadow if its shadow
ray intersects with the main surface.

The results of Figure 10, when compared with the res-
ults of Figure 9, illustrate the difference between a global
method and a local method for the determination of surface
connectivity. The method presented in this paper is global

because it must first locate all surface critical points as a first
step. Clearly, this method, when applied to the surface of
Figure 10, would be intractable, given the extreme range of
scales that is present and the consequently large number of
critical points that would have to be located. A Morse-based
local method finds critical points on demand and only in-
side a small neighbourhood centred at the ray-surface inter-
section point for which a query is made about surface con-
nectivity. The size of the neighbourhood is progressively en-
larged, and more critical points are located, until a definite
answer can be given about the connectivity state of the inter-
section point. Critical points can then be cached and reused
for nearby ray intersection points on the surface. The local
method for topological correction is more flexible but the
global method is simpler to implement. Research efforts to
finalise a local topology correction method are ongoing. Fig-
ure 10 was obtained with our current implementation of this
local method.

7 Conclusions

Morse theory provides all the connectivity information about
an implicit surface that is necessary to determine how many
components it is split into. This property of Morse theory
finds application in the hypertexturing of implicit surfaces
as it enables disconnected components other than the desired
main surface to be detected and removed during rendering.
In this way, one can add much greater amounts of hyper-
texture than previously possible to a solid object without the
inconvenience of fracturing it into many smaller objects. Our
technique can be applied toC2 continuous hypertextured
surfaces generated from equation (1). In the most general
situation, our technique can be applied to anyC2 continuous
implicit surface whenever it may be desirable to identify and
isolate disconnected components of the surface.

The topological correction method is robust and will de-
tect any disconnected component, no matter how small or
how close it may be to the main surface. This robustness is
again a consequence of the application of Morse theory. The
accuracy of the method is only limited by the numerical tol-
erance factors and threshold values that are chosen for the
algorithms described in the paper. We have used values that
are equal to or smaller than 10−8, giving the topology cor-
rection method an overall accuracy similar to that of single
precision floating point arithmetic.

The method represents a global approach to topological
correction where all the surface critical points must first be
located in order for connectivity testing to be performed.
This method is suitable for hypertextured surfaces where the
ratio between the size of the hypertexture details and the size
of the original surface is large. When this ratio is small, as
is the case of procedural planets defined as hypertextures, a
local topological correction method needs to be used instead.

Although the proposed method can guarantee that a hy-
pertextured implicit surface is topologically connected,it
cannot guarantee that it is physically stable. Consider the



Topological Correction of Hypertextured Implicit Surfaces 9

Fig. 9 A hypertextured sphere with one layer (left) and three layers (right) of a sparse convolution noise function. Top row shows original
surfaces. Middle row shows disconnected components in red.Bottom row shows surfaces after topological correction.



10 Manuel N. Gamito, Steve C. Maddock

Fig. 10 A hypertextured planet featuring terrain overhangs and arches. The top image shows the original surface. The middle image shows
disconnected components in green. The bottom image shows the terrain after topological correction.



Topological Correction of Hypertextured Implicit Surfaces 11

case of a surface component that is attached to the main sur-
face by a very thin bridge of material. If the rigidity of the
material is not sufficient, the application of even the smal-
lest force to the component will cause it to break at the junc-
tion point. This has consequences if one tries to use hyper-
textures to model terrain landscapes, for example, as some
of the terrain features, although connected, may be unstable
under the action of gravity. The modelling of hypertextured
surfaces that are both topologically connected and physic-
ally stable would require stress analysis tools and goes bey-
ond the scope of this paper.

8 Further Developments

The topology correction method that was here presented in
the context of a ray casting rendering algorithm for impli-
cit surfaces can, with little extra coding effort, be adapted to
work in the context of the topologically correct polygonal
meshing algorithm of Stander & Hart [24]. As a prelimin-
ary step of that algorithm, all the critical points of a surface
are first located. The polygonal mesh that approximates the
surface is then progressively inflated until it reaches its cor-
rect position. Whenever the mesh passes through one of the
critical points, an appropriate mesh correction operationis
performed to account for the topology change that has just
occurred.

To perform topology correction for hypertextures in the
context of the method by Stander & Hart, it is necessary to
include all critical points in the component setsSi as part
of theSegmentation algorithm, together with the maxima
and the 2-saddles that are already included by our approach.
Just as before, all critical points are considered in decreas-
ing order of theirf ( f0(x),x) values. To include a 1-saddle,
a streamline is followed towards one of the maxima. The
streamline must be initially tangent to some arbitrary vec-
tor that is contained in the plane formed by thev2 andv3
eigenvectors of the 1-saddle. The maximum that is found at
the end of the streamline then identifies the setSi to which
the 1-saddle belongs. To include a minimum, a streamline is
followed, which can be started along any desired direction
around the minimum.

Once all the component sets have been identified, the
main setSm is chosen, according to any preferred criterion,
and passed to the meshing algorithm. In this way, a poly-
gonal mesh will only be computed for the main surface com-
ponent. No effort will be wasted polygonising surface com-
ponents that have already been found to be disconnected.

A Derivatives of Procedural Noise Functions

The application of Morse theory to hypertextured implicit surfaces
made with procedural noise functions requires that formulae be avail-
able for the evaluation of the gradient vector and the Hessian matrix
of such functions. The two widely available procedural noise functions
that are known to beC2 continuous are gradient noise and sparse con-
volution noise [17,12]. This appendix provides analytic formulae to
evaluate their gradient and Hessian at any point in space.

The value of a procedural noise functionn at some pointx in
R

3 depends on the position ofx relative to a discrete but infinite set
S= {xi ∈ R

3 : i = 0,1,2, . . .} of node pointsxi that are distributed
throughout space. BecauseShas an infinite number of node points, the
evaluation ofn(x) is feasible whenn(x) is made to depend only on a
small subsetS(x) of S. At each locationx, the subsetS(x) is the fi-
nite set of node points inSthat surroundx according to some specified
criterion.

We can define the value of a procedural noise functionn at x as
a sum of translated copies of a kernel functionφ that depend on the
displacement vectors betweenx and the node points inS(x):

n(x) = ∑
i∈S(x)

φ(x−xi). (A.1)

What distinguishes gradient noise and sparse convolution noise is the
shape of the kernelφ , the criterion used to defineS(x) and the distri-
bution of thexi in space to formS. The gradient and Hessian are then
given by:

∇n(x) = ∑
i∈S(x)

∇φ(x−xi), (A.2a)

H {n}(x) = ∑
i∈S(x)

H {φ}(x−xi). (A.2b)

A.1 Gradient Noise

For gradient noise, the set of node points forms a cubic integer lattice
S= {(u,v,w) : u,v,w ∈ Z}. For each locationx, the setS(x) is made
of the eight node points at the vertices of the lattice cell inwhich x
resides. The kernel is given by:

φ(x) = φ(x1,x2,x3) = (ξ1x1 +ξ2x2 +ξ3x3)h(x1)h(x2)h(x3), (A.3)

whereξ1, ξ2 andξ3 are random variables. The degree five polynomialh
has support in[−1,+1] and is such thath(0) = 1 andh(−1) = h(+1) =
0 [17]. For compactness, we write the polynomial for coordinatex1 as
h1 = h(x1), the first derivative ash′1 = h′(x1) and the second derivative
ash′′1 = h′′(x1) and similarly forx2 andx3. The gradient vector and
Hessian matrix are given by:

∇φ(x1,x2,x3) =

= h1h2h3





ξ1

ξ2

ξ3



 + (ξ1x1 +ξ2x2 +ξ3x3)





h′1h2h3

h1h′2h3

h1h2h′3



 , (A.4a)

H {φ}(x1,x2,x3) =

=





2ξ1h′1h2h3 (ξ1h1h′2 +ξ2h′1h2)h3 (ξ1h1h′3 +ξ3h′1h3)h2

(ξ2h′1h2 +ξ1h1h′2)h3 2ξ2h1h′2h3 (ξ2h2h′3 +ξ3h′2h3)h1

(ξ3h′1h3 +ξ1h1h′3)h2 (ξ3h′2h3 +ξ2h2h′3)h1 2ξ3h1h2h′3





+ (ξ1x1 +ξ2x2 +ξ3x3)





h′′1h2h3 h′1h′2h3 h′1h2h′3
h′1h′2h3 h1h′′2h3 h1h′2h′3
h′1h2h′3 h1h′2h′3 h1h2h′′3



 . (A.4b)

A.2 Sparse Convolution Noise

As with gradient noise, a regular lattice placed at integer positions is
used. Inside each cell in this lattice,K node points are uniformly dis-
tributed. This simple scheme generates an infinite Poisson distribution
of node points. The value ofn at each locationx depends on the node
points of the cell that containsx plus the node points in the twenty six
surrounding cells. The setS(x), therefore, always contains 27K node



12 Manuel N. Gamito, Steve C. Maddock

points. The kernelφ depends only on the distancer = ‖x‖ and on a
single random variableξ :

φ(x) = ξh(r). (A.5)

For the functionh, we have used the same degree five polynomial
that was used for gradient noise, now evaluated only for positive ar-
guments. Any other function can be used forh provided that it isC2

continuous and with compact support in the interval[0,1]. The gradient
vector and Hessian matrix are given by:

∇φ(x) = ξ
h′(r)

r
x, (A.6a)

H {φ}(x) = ξ
(h′′(r)

r2 −
h′(r)
r3

)

(

x ·xT)

+ ξ
h′(r)

r
I . (A.6b)

The matrixI is a 3×3 identity matrix. The Hessian matrix is sym-
metric because the matrixx ·xT is also symmetric.

References

1. Cook, R.L.: Shade trees. In: H. Christiansen (ed.) Computer
Graphics (SIGGRAPH ’84 Proceedings), vol. 18, pp. 223–231.
ACM Press (1984)

2. de Figueiredo, L.H., Stolfi, J.: Affine arithmetic: Concepts and ap-
plications. Numerical Algorithms37(1–4), 147–158 (2004)

3. Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for find-
ing best matches in logarithmic expected time. ACM Transactions
on Mathematical Software3(3), 209–226 (1977)

4. Gamito, M.N., Maddock, S.C.: Ray casting implicit fractal sur-
faces with reduced affine arithmetic. The Visual Computer23(3),
155–165 (2007)

5. Hart, J.C.: Sphere tracing: A geometric method for the antialiased
ray tracing of implicit surfaces. The Visual Computer12(9), 527–
545 (1996)

6. Hart, J.C.: Morse theory for implicit surface modeling. In: H.C.
Hege, K. Polthier (eds.) Mathematical Visualization, pp. 257–268.
Springer Verlag, Heidelberg (1998)

7. Hart, J.C.: Using the CW-complex to represent the topological
structure of implicit surfaces and solids. In: Proc. Implicit Sur-
faces ’99, pp. 107–112. Eurographics/SIGGRAPH (1999)

8. Hart, J.C., Durr, A., Arsch, D.: Critical points of polynomial
metaballs. In: Proc. Implicit Surfaces ’98, pp. 69–76. Eurograph-
ics/SIGGRAPH (1998)

9. Heidrich, W., Seidel, H.P.: Ray-tracing procedural displacement
shaders. In: W. Davis, K. Booth, A. Fournier (eds.) Proceedings
of Graphics Interface ’98, pp. 8–16. Canadian Information Pro-
cessing Society, Morgan Kaufmann Publishers (1998)

10. Helman, J.L., Hesselink, L.: Visualizing vector field topology in
fluid flows. IEEE Computer Graphics and Applications11(3), 36–
46 (1991)

11. Hindmarsh, A.C.: ODEPACK: A systematized collection ofODE
solvers. In: R.S. Stepleman (ed.) Scientific Computing, pp.55–
64. North-Holland, Amsterdam (1983). Package available at
www.netlib.org

12. Lewis, J.P.: Algorithms for solid noise synthesis. In: J. Lane (ed.)
Computer Graphics (SIGGRAPH ’89 Proceedings), vol. 23, pp.
263–270. ACM Press (1989)

13. Milnor, J.: Morse Theory,Annals of mathematics studies, vol. 51.
Princeton University Press, Princeton (1963)

14. Moore, R.: Interval Arithmetic. Prentice-Hall (1966)
15. Musgrave, F.K.: Mojoworld: Building procedural planets. In: D.S.

Ebert, F.K. Musgrave (eds.) Texturing & Modeling: A Procedural
Approach, 3rd edn., chap. 20, pp. 565–615. Morgan Kauffman
Publishers Inc. (2003)

16. Perlin, K.: An image synthesizer. In: B.A. Barsky (ed.) Computer
Graphics (SIGGRAPH ’85 Proceedings), vol. 19, pp. 287–296.
ACM Press (1985)

17. Perlin, K.: Improving noise. ACM Transactions on Graphics (SIG-
GRAPH ’02 Proceedings)21(3), 681–682 (2002)

18. Perlin, K., Hoffert, E.M.: Hypertexture. In: J. Lane (ed.) Computer
Graphics (SIGGRAPH ’89 Proceedings), vol. 23, pp. 253–262.
ACM Press (1989)

19. Saupe, D.: Point evaluation of multi-variable random fractals. In:
H. Jüergens, D. Saupe (eds.) Visualisierung in Mathematikund
Naturissenschaften - Bremer Computergraphik Tage, pp. 114–
126. Springer-Verlag (1989)

20. Sclaroff, S., Pentland, A.: Generalized implicit functions for com-
puter graphics. In: T.W. Sederberg (ed.) Computer Graphics
(SIGGRAPH ’91 Proceedings), vol. 25, pp. 247–250. ACM Press
(1991)

21. Shinagawa, Y., Kunii, T.L., Kergosien, Y.L.: Surface coding based
on morse theory. IEEE Computer Graphics and Applications
11(5), 66–78 (1991)

22. Snyder, J.M.: Interval analysis for computer graphics.In: E.E.
Catmull (ed.) Computer Graphics (SIGGRAPH ’92 Proceedings),
vol. 26, pp. 121–130. ACM Press (1992)

23. Sproull, R.F.: Refinements to nearest-neighbor searching in k-
dimensional trees. Algorithmica6, 579–589 (1991)

24. Stander, B.T., Hart, J.C.: Guaranteeing the topology ofan implicit
surface polygonization for interactive modeling. In: T. Whitted
(ed.) Computer Graphics (SIGGRAPH ’97 Proceedings), vol. 31,
pp. 279–286. ACM Press (1997)

25. Wu, S.T., de Gomensoro Malheiros, M.: On improving the search
for critical points of implicit functions. In: Proc. Implicit Surfaces
’99, pp. 73–80. Eurographics/SIGGRAPH (1999)

Manuel N. Gamito is currently
a PhD student at the Univer-
sity of Sheffield. He received a
MSc in Electrotechnical Engineer-
ing from Lisbon Technical Univer-
sity in 1996. His research interests
are in procedural modelling, land-
scape modelling and the visual sim-
ulation of natural phenomena. He is
a member of ACM SIGGRAPH and
Eurographics.

Steve C. Maddockis a senior lec-
turer in computer science at the
University of Sheffield. His re-
search interests are in computer fa-
cial modelling and animation, hu-
man figure animation, procedural
modelling, and surface deformation
techniques. He received a PhD in
computer science from the Univer-
sity of Sheffield in 1999. He is a
member of ACM SIGGRAPH and
Eurographics.


