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Topological Correction of
Hypertextured Implicit Surfaces for Ray Casting

Abstract Hypertextures are a useful modelling tool in thad large collection of materials such as fur, fire, glass, $luid
they can add three-dimensional detail to the surface of-othand eroded rock. As a procedural modelling and texturing
wise smooth objects. Hypertextures can be rendered as towol, hypertexturing can be regarded as an improvement over
plicit surfaces, resulting in objects with a complex butwesolid texturing [16]. Using hypertextures, it becomes pos-
defined boundary. However, representing a hypertexturesatsle to actually deform the surface of an object instead of
an implicit surface often results in many small parts beingerely modifying its material shading properties. Hyperte
detached from the main surface, turning an object into a diares were initially presented as a technique to méalety
connected set. Depending on the context, this can detrabjectsrather than implicit surfaces, i.e. objects such as a
from the realism in a scene, where one usually does not eloud that are represented by a density function and which
pect a solid object to have clouds of smaller objects floatinip not have a well-defined boundary. Hypertextures, how-
around it. We present a topology correction techniqueginteever, can also be applied to implicit surfaces.

rated in a ray casting algorithm for hypertextured implicit In the original definition of hypertexture, an object is
surfaces, that detects and removes all the surface compaefined in three-dimensional space with @ject density
ents that have become disconnected from the main surfdcmction § : R — [0, 1], which associates a density value
Our method works with implicit surfaces that a8 con-  fo(x) with every pointx in space. A density of 0 means total
tinuous and uses Morse theory to find the critical points gfansparency while a density of 1 means total opacity. The
the surface. The method follows the separatrix lines jginirshape of the object can then be deformed through the com-
the critical points to isolate disconnected components.  position of fo with one or moredensity modulation functions

fi 1 [0,1] x R® — [0,1], i = 1,...n such that the final object
densityf is given by:

f(fo(x),x) = fn(... f2(f1(fo(X),X),X),...,X). 1)

It is possible to apply (1) similarly to implicit surfaces
by consideringfo : R — R to be a function such thdp = 0
pnals the surface ang > 0 signals the inside of the sur-
ace. After this changef,(fo(x),x) also becomes a function
Bf"t generates hypertextured implicit surfacél'he restric-
10n that density modulation functions return opacity esu
The first author is supported by grant SFRH/BD/16249/206mfthe  in the rangel0, 1] is no longer necessary and we can define
Fundacao para a Ciéncia e a Tecnologia, Portugal. them as functiond; : R x R3 S Rfori= 1,...,n.

Keywords Morse Theory Implicit Surface- Hypertextur-
ing - Ray Casting

1 Introduction

Hypertexturing is a procedural technique proposed by P
lin & Hoffert to add three-dimensional small-scale detail t
the surface of smooth objects [18]. It can be used to moq
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Compared to displacement mapping, hypertexturing is
a more flexible technique for adding geometric detail to an
otherwise smooth implicit surface [1,20]. Hypertexturaa ¢
generate surface overhangs and arches, which the displace-
ment mapping technique is incapable of producing. Figure 1
illustrates the difference between the two techniques. Al-
though it is not demonstrated here, any displacement map
can also be expressed as a particular form of hypertexture.
If fo generates a sphere of unit radius, for example, any hy-
pertexture written a$ (fo(x),x/||X||) is equivalent to a dis-
placement mapped sphere. Furthermore, it is possible to add
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face polygonisers. Finally, Appendix A presents formulae
for evaluating the gradient and the Hessian of the procédura
noise functions used in this paper. Evaluation of these-func

tions is a common task but the same does not happen with
their gradients or Hessians. These, however, are essiéntial
Q one wants to apply Morse theory to noise functions.

0 2 The Surface Splitting Effect

We illustrate the splitting effect of hypertextured sugac

Fig. 1 Comparison between the displacement map (top) and hypert th an example. Figure 2 shows three implicit surfaces that

turing (bottom) techniques when adding detail to a horiabpiane. ave been generated by adding increasing amounts of hyper-
texture. The function that generates these surfaces is:

hypertexturing details on top of a displacement mapped SLf“(fo(x),x) = fo(X) +&n(4x), (2)

face, all within the framework expressed by equation (1). where fo(x) = 1— ||| defines an implicit sphere of unit ra-
One drawback of the modelling flexibility provided bydius andn is Perlin’s improved gradient noise function [17].
hypertextures is that a surface can also become fragm&hne amplitudes of the hypertexture takes values oil00.3
ted into several disconnected parts (this is illustrateféign  and 08 for the three surfaces in Figure 2. The case 0.1
ure 1). Depending on the context, this surface splittingaff shows a surface with a small amount of perturbation relat-
may be desirable or not. If one is using hypertextured implive to the initially smooth sphere. This type of surface doul
cit surfaces to model splashing fluids, for example, then thgore easily have been modelled as a procedural displace-
surface splitting effect is actually beneficial. If, on thb&r ment map [9]. The case = 0.3 generates an object with
hand, one is trying to model a solid object with a complexore pronounced surface features but which, from a topolo-
surface structure, e.g. a rock, the disconnected stateeof gfical point of view, is still homeomorphic to a sphere. The
surface leads to physically non-plausible results. casee = 0.8 generates an object with the interesting over-
This paper presents a solution to the surface splitting éfanging and arching features that only the implicit surface
fect of hypertextures that are defined witR continuous approach can give. At the same time, it also causes the sur-
functions. Disconnected surface parts are detected inian face to split, generating a cloud of small objects that are
tial connectivity analysis step and then removed during reseen floating at fixed locations around the main object in the
dering. To achieve this goal we rely on Morse theory to aneentre.
lyse the topology of the surface. The surface connectivity, The splitting effect places an upper bound on the amount
in particular, can be completely determined by studying tluf hypertexture that can be added to an object while keeping
critical points of the functiorf and the way they are joinedit as a topologically connected set. It can occur for any hy-
together. We apply our technique as part of a ray casting pertexture and not just the additive hypertexture given by
gorithm for hypertextured implicit surfaces. function (2). The only exceptions consist of hypertextures
We make a distinction betwegobal methodsindlocal that, by construction, are equivalent to displacement maps
methoddor querying surface connectivity. Global method$he maximum amount of hypertexture depends on the par-
must analyse the entire surface as a pre-processing steptisedar function f that generates the surface and, without
fore they can determine the connectivity state of any arbiecourse to the Morse theory used in this paper, can only
rary surface point. Local methods, by contrast, can perfornibe found by trial and error. For solid modelling purposes,
localised connectivity analysis for every point. In thippa one would often like to use stronger hypertexturing effects
we concentrate on global methods. Our proposed methodrian those allowed if a surface is to remain simply connec-
global because it needs to locate all the critical pointdef tted. It is not an uncommon practice, when excessive hy-
surface as a first step. We also give suggestions of hovpertexturing has been applied over a solid object, to digit-
local topology correction method may be implemented ardly remove disconnected parts from the final rendering as a
show initial results in that direction. post-processing step. This simple trick can only be applied
Section 2 demonstrates the surface splitting effect ah@wever, provided that no disconnected component occludes
shows why it is hard to control in a general way. SectiontBe main surface.
presents two simple global methods that can be used to solve
the surface connectivity problem and explains their limita
tions. Section 4 explains the necessary concepts from Mo&alternative Approaches
theory that will be required in Section 5, where we present
our proposed algorithm. Section 6 shows results and Sécsimple but inaccurate way to perform topological correc-
tion 7 presents our conclusions. Section 8 suggests an #xA on hypertextured surfaces is to employ a voxel grid,
tension of our algorithm that can be applied to implicit suwhere the functiorf (fp(x),x) is sampled at the corners of
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Fig. 2 A sphere rendered with increasing amounts of hypertexture@.1, 0.3 and 08).

ing algorithm for implicit surfaces that is guaranteed te-pr
serve surface topology [24]. Once the polygonal mesh has
L been generated, one can perform region growing by jump-
ing across the edges shared by neighbouring polygons to ob-

\ I tain a set of disjoint polygonal objects. One of these olsject

| approximates the main implicit surface and the others rep-
) . e resent the outliers that should be eliminated. One objectio
4

—
| /
1 / against this approach is that it cannot be used for direet ren
dering of implicit surfaces with ray casting — it is only mean
ingful for applications where implicit surfaces are cortedr

to polygonal meshes and subsequently rendered on a GPU
board. Another objection is that it is wasteful of CPU cycles
since it takes time to correctly polygonise surface compon-

ents that are later found to be disconnected and which must

Fig. 3 Two surface components incorrectly determined to be part tfien be removed. Topology correction should occur before

the main surface. The arrows show the region growing segqustart- ne meshing process rather than after
ing from the voxel on the bottom left. '

o_—._’-—

—/

the voxels. A voxel is known to straddle the surface when teMorse Theory and the CW-Complex

function changes sign at some of the voxel's eight corners.

One can perform a discrete three dimensional region groorse theory studies the behaviour of functions over a mani-
ing process to segment the voxel space into disjoint volymé&yd [13]. The theory was firstintroduced to computer graph-
each enclosing a particular disconnected component of {f& by Shinagawa et al. and was later shown by Hart to be
surface. If the original data is already discrete, e.g. serrelevant for the topological study of implicit surfaces [21
of MRI scans, then this is probably the best approach to takd. When the theory is applied to implicit surfaces, the man-
When generating an isosurface from the volume data, tifigld becomes the entir&* space and the function defined
voxel-based method can be used to remove outlying surf@€r this space is our functiohthat generates the surface.
components that may be the result of measurement errorQ@ntral to the Morse theory is the notion otatical point

our case, we are interested in performing topological cerredf f. A critical pointxc is such that:

tion of procedurally defined surfaceSamplingf (fo(x),x)

onto a grid implies loss of information unless the functioh! f (fo(Xc),xc) = 0. 3)
happens to be bandlimited and the sampling frequency is

above the Nyquist limit. This loss of information leadste in A critical point can be further classified by studying the
correct connectivity results, as shown in Figure 3, whiah c&igenvalues of the Hessian matrix bfat xc. The Hessian
occur for surface components that are too small or too cloz@trix 7°{f} collects all the second partial derivatives of
to the main surface, relative to the sampling distance.  the functionf:

Another possible approach is to first convert the impli- )
cit surface into a polygonal mesh before performing any t%{ fl= of
pology correction. Stander & Hart have presented a mesh- 0%0% | jer123) '

(4)
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AL A Az Type
— — — | Maximum
- -  + 2-saddle
— +  + 1-saddle

+ 4+ + | Minimum

Table 1 Distinct types of critical points are determined by combina
tions of the signs of the eigenvalues of the Hessian ma#fikf }.

If f is C2 continuous then we have thatf?/dxdx; =
0 fz/dxjdxi and the Hessian is symmetric. The spectral the-
orem then guarantees that all three eigenvalues/dff }
will be real. Depending on the signs of the eigenvaldgs _. L -
A2 and s, sorted in increasing order, a critical point can biie"g'&?ggi’r:gtasnuéf&c&f?;gﬁdn:;?kmsttwhg ggt;fi;g& signs mark
classified as shown in Table 1. The type of a critical point

gives an indication of the topology of the surface around

that point. For example, the maxima occur near the 103l ¢\nilinear. Knowing the positioxs of the 2-saddle, it is
centroids of the surface while the 2-saddles occur at poinfSssiple to locate the two maxima sharing this critical poin

where two surface components are join_ed together. In tli‘}ﬁintegrating equation (5) backwards and forwards fren
paper, we only need to be concerned with the maxima agfiowing a direction that is initially coincident with thes

the 2-saddles in order to characterise the connectivithef teigenvector of the 2-saddle. It is also possible to detezmin
surface. _ . the connectivity of the two blobs by checking the sign of

The case where one or more of the eigenvalues is z1q x4 x). If this sign is positive, the blobs are connected
leads to adegenerate critical pointMorse theory breaks 4nq the separatrix is known to travel exclusively throug th
down in these circumstances. However, degenerate critiggbrior of the surface. If the sign is negative, the two lslob

points are unstable and can easily be removed by introduclj gisconnected and the separatrix must exit and enter the
a small perturbation in the parameters defining the functiag),it5ce again at some points.

A function f that contains no degenerate critical points is
then said to be #Morse function Morse functions need to
beC? continuous, considering that both first and second p

The separatrices defined Hyform a network of lines
that partition theR3 space into a topological entity called

the CW-compleX7]. The CW-complex is a data structure

tial d%rllv?tlvels oftL_are r(taqutl_red b%the a/loréffthe?_ry. It 1Shat encodes all the topology of the implicit surface. Itcon
possible 1o refax this restriction and work with TUNCUons, - gigts of 5 disjoint partitioning of the space into curvedsel

provided that second derivatives are continuous at least %¥he maxima are located at the corners of these cells and the

the critical points [8]. separatrices form the edges of the same cells. Connectivity

By taking the gradieril , one obtains a vector flow field ., mation can be obtained by following only the network

.Who.s‘? structure is intimatel_y related to th? topol_ogy of tl’H’} separatrices that are interior to the surface. This m®ce
implicit surface. From equation (3), the critical pointstioé ill partition the maxima into a number of separate sets,

surface_are als_o t_he stagnation points Of. the flow f'eld.' ich reflects the number of disconnected components of
streamline of this field is a path that is obtained by follogvmthe surface

the local gradient vector, according to the ordinary défer

tial equation:
ax
Fri Of (fo(x),X). (5) 5 The Topology Correction Method

A streamline is called aeparatrixif it separates two The method for correcting the topology of hypertextured im-
regions of the flow with different characteristics [10] Sei;biicit surfaces proceeds by identifying all disconnectexhe
aratrices are important as they also give information abqsinents of the surface. Of all the components detected, the
the topology of the surface. All the separatrices originalgrger one is considered to be the main surface, which is
and terminate at maxima df. For every separatrix there isrendered as part of the ray casting algorithm. The remaining
always a 2-saddle somewhere along its path. The separadiidace components are ignored during ray-surface interse

is locally tangent to thes eigenvector (associated with thejon tests. The detection of disconnected surface comgsnen
Az eigenvalue) at the 2-saddle. proceeds in two steps:

Figure 4 shows a simple case of two implicit blobs con-
nected as a single surface. There are two maxima close to theBuild a set of all maxima and 2-saddles that are located
centroids of each blob and a 2-saddle at the junction of the inside the surface.
two blobs. The separatrix, in this simple case, is a straight Segment the previous set into disjoint subsets by follow-
line segment joining the two maxima and passing through ing the separatrices from the 2-saddles towards the max-
the 2-saddle. In a more general situation the separatri\dvou ima.
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push bounding box/ onto stack; points is achieved by obtaining an interval vector estimate
while stack not empty of the function gradient, using again tKg interval extent:
pop voxelV from stack;

let Xy = interval extent o¥/: Of(fo(Xv),Xv) > 0. (7)
if f(fo(Xv),Xv) <0 If the null vectorO is contained inside the interval vec-
continue, tor for OF, there is the possibility that one or more critical
if Of (fo(Xv),Xv) 70 points may be contained in the voxel. The voxel is then either
continue; _ subdivided or an explicit test is made for the presence of
let r = radius of bounding sphere fuf; maxima and 2-saddles, once a minimum voxel size has been
ifr<e reached. Figure 5 shows in pseudo-codettiedivision
TestV; algorithm that implements the sequence of tests for each
continue; . . f e
o voxel. The voxels are kept in a stack, which is initialised
subdivideV; with the bounding bo¥/ for the object.

push children onto stack; Due to the conservative properties of interval arithmetic,

_ ) it often happens that voxels neighbouring a voxel that con-
Fig. 5 TheSubdivision algorithm. tains critical points are also incorrectly flagged by theint
val arithmetic tests to contain such points. et routine,
Otgla}t is invoked in the listing of Figure 5, performs the fi-
nal stage in the search for critical points, weeding out the

Ise positives output by the interval tests. We assumeésat th

Steps 1 and 2 are performed before any surface ren
ing occurs. The outcome of step 2 is a sequence of$ets

withi=1,2,...,N, where each set contains all the maximrs age that a voxel is small enough to contain only one crit-
that exist inside some particular component. The nurhber, | point. This should be true provided that the threstld

of sets is equal to the total number of surface compone I' the minimum voxel size is appropriately chosen. Startin
One of these sets is the main set, corresponding to the main pprop y - >t

surface to be rendered. During a ray-surface interseaiin t from f[he v_oxel centray, the following sequence (_)f Newton
the sef§ that corresponds to the surface component to whidffrations s performed towards the critical point:
the intersection point belongs is identified. If this is roe t L F18x; = —Of

main set, the intersection point is ignored and anothertpoin ’
is searched further along the ray. The following sections deXi+1=

scribe the relevant steps of the topology correction method Both the Hessian matrix{ f} and the gradier f are

evaluated at the point; to solve fordx;. The iteration is

stopped if the sequence of pointsgoes outside the voxel.

Otherwise, the sequence will converge to some pajnt-

.  critical DOINLS | de b . bdivisi side the voxel where a critical point is known to exist. If the

Location of critical points is made by recursive SUbdIMIBIO e point is inside the surface such thdtfo(Xc),Xc) >

of an initial bounding box that surrounds the surface. and if it is a maximum or a 2-saddle (which is found after

employ the teqhnique that was first proposed by Standertﬁé eigenvalues of#{f} atxc have been computed), the

Lboint is added to a s&of critical points interior to the sur-

face. Each element i stores the following information re-
arding a critical point:

X + OX;. ®)

5.1 Locating Critical Points

bical voxel resulting from the subdivision, a series ofsést

made to determine, first, if the voxel contains part of the s

face and, second, if a critical point may be contained with

it. If these tests pass, the voxel is subdivided and theghild — The positionxc.

are tested in turn, down to a minimum specified voxel size.— The valuef (fo(xc),%c), which must be positive.
Interval arithmetic is used to check if a voxel is part of— A flag indicating ifxc is a maximum or a 2-saddle.

any of the components of the surface [14,22]. An interval The eigenvectovs if Xc is a 2-saddle.

estimate for the variation df inside the voxel is used in

the following test to determine if the voxel lies complete%iII

outside the surface:

When theSubdivision algorithm completes, the s&t
contain all the maxima and 2-saddles that were found
inside every disconnected component of the surface.

f(fo(xV),X\/) < 0, (6)

whereXy is an interval vector that spans the spatial extebt2 Locating Disconnected Components

of the voxel. Because interval arithmetic is a conservative

range estimation technique, this test is always guaranteed he setSis segmented into the sequergewhere each set

return a correct result for outside voxels. S contains the maxima for one surface component. The al-
A voxel is checked for the existence of critical pointgorithm Segmentation is shown in Figure 6. Each critical

once it is known from test (6) that it may be either inside groint xc of Sis considered at a time, by decreasing order of

straddling the surface. The test for the existence of alfiticf (fo(xc),Xc). If Xc is @ maximum then a new s8t= {xc}
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for everyxc € Sby decreasing
order of f(fo(xc),Xc)

if Xc is a 2-saddle
let x;,x; be the maxima reached froxa;
let § > x andS; > xj;
if S #S
create§, = SUS;;
discard § andS;;

else
create§ = {xc}; s
Fig. 7 The intersection between a ray and the surface. The streamli
Fig. 6 TheSegmentation algorithm. originating at the intersection point is shown as a dottee. li

is created. If, on the other hank; is a 2-saddle, the two between the ray and the surface, sorted by increasing dis-
maximax; andx; connected to it are determined by integtance along the ray. The sphere tracing method, by compar-
rating the separatrix backwards and forwards with equatits®n, can only find the first intersection point with reliabil
(5), starting fromxc and going initially along the direction ity [5]. Once an intersection poing has been found along a
of the vz eigenvector for the 2-saddle. Because the criticédy, a testis performed to determine if it belongs to the main
points are evaluated by decreasing ordeff pft is certain surface or not. To that effect, a streamline is followed with
that by the time a 2-saddle is considered, the two maximaeguation (5), starting from, which will converge towards
andx; to which it connects will already have been processé@me maximunxy interior to the surface. _
by the algorithm. The se§ andS; that containx; andx;, Figure 7 shows an example. The streamline starts off
respectively, are then joined together to form a new set. TA@Ng a direction that is initially orthogonal to the implic
2-saddle is ignored, however, if bothandx; are found to surface and converges towards the paigt Having found
be part of the same set already. the maximumnxy, the set§ to which it belongs is retrieved.
Once Segmentation completes, all disconnected surlfthis is the main sey, the intersection poin; is rendered,
face components will have been identified through $he otherwise intersection testing continues along the rayyto t
sets. The main surface is identified by the Sgtthat con- to find another intersection point further along. Following

tains the largest number of maxima, where the ines: every intersection that is found not to be part of the main
surface, the connectivity test need not be performed again

m= max #S. (9) for the next intersection point, given that this will be théte
point of the ray from a disconnected component.
This criterion for selecting the main surface that is to
be rendered may fail for objects with an excessively large ) )
amount of hypertexture. If there is too much hypertexture;4 Tracking Streamlines

the object will break into a cloud of many smaller objects )

of approximately equal size. It is not clear in these condle path of a streamline needs to be tracked as part of the
tions which of these smaller objects should be selected f@¥-surface intersection procedure of Section 5.3 andrs pa
rendering. Our purpose is to study hypertextured functioRstheSegmentation algorithm of Section 5.2 where, in the

f (fo(x),X) where the geometry of the original objéatx) is latter case, the streamline is also a separatrix of thecirfa
still discernible after the hypertexture has been appliée. Special care needs to be taken when performing this path
criterion (9) will then identify the correct surface comon  tracking procedure because the endpoint of the streamline
for rendering since the majority of the maxima will be cont@nd also the starting point, in the case of a separatrix) is a
tained inside the main surface — only a smaller number @fitical point wherellf = 0 occurs.

maxima will exist outside the main surface, being respons- When tracking a separatrix, the path originates from a
ible for the disconnected fragments. 2-saddle located at some poiy. If one were to integrate

equation (5) with the initial conditiox(0) = xs, the path
would never leavexs since this is a stagnation point of the

5.3 Computing Ray Intersections flow. To start off the integration from a 2-saddle, the follow
ing initial condition must be used instead:
The computation of ray intersections with the implicit sur)—((o) — X+ £Va, (10)

face is performed with an affine arithmetic range estima-

tion algorithm [4]. Affine arithmetic is an extension of thevheree is a small displacement. The displacements-ef
simpler interval arithmetic and provides tighter bounds f@long thevs eigenvector will enable the integrator to move
the estimation of unknown quantities [2]. This affine arithaway fromxs and to converge towards the two maxima that
metic intersection algorithm, like all interval based istec- connect with the 2-saddle through the separatrix. The max-
tion algorithms, is capable of finding every intersectiompo ima, however, are also stagnation points and path tracking
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would have to proceed from= 0 up tot = + if the two
maxima were to be reached exactly. In practice, one pro-
ceeds with the integration for as long as possible and then
finds the maxima that are nearest to the points where the in-
tegrator left off.

We use thé sodar ordinary differential equation solver
from the ODEPACK Fortran package to perform path integ-
ration [11]. Thelsodar solver is able to select between a
stiff and a non-stiff integration method, depending on the
local conditions of the flow. When given an upper limit of
400 Or —o0, 1sodar inevitably finishes with an error status
asittries to get close to one of the maxima. It also retures th
farthest poink(t) that could be computed along the path. By
controlling the numerical precision requested frogodar,
it is possible forx(t) to be as close to the correct maximum
point as desired. We then search among all the maxima of all
the S sets for the one that is closest¢(), thus identifying
the particular se§ to which the separatrix has converged.
The procedure is similar when tracking streamlines as part
of the ray-surface intersection tests except that we are now
only interested in following the path from= 0 tot = +oo
and the starting conditiox(0) = X, is used, instead of equa-Fig. 8 The network of separatrices and maxima interior to a hygerte
tion (10). tured surface.

Currently, the search for the maximum point nearest to
x(t) is performed exhaustively by computing the squared Ii =14 304 -
distance to every possible maximum. This search method 2 1006 1585 182
has linear time complexity and can become slow for a sur- 3 8408 4567 418
face W'th,a large numk_)er of maxima 'r_ls_'de' Alt_hOUgh Weable 2 Statistics for a hypertextured sphere with an increasimg-nu
have not implemented it for this paper, it is possible to peger of layers of noise.
form the search for a maximum in average logarithmic time
with the help of &d-tree [3,23].

Maxima 2-saddles Components

only the separatrices that are inside the surface are shown.
Maximum points are also shown as dots and are located at
6 Results the endpoints of one or more separatrices. Several of these

points, however, are isolated and correspond to small dis-
We demonstrate the application of the topology correcti@mnnected surface components that can be seen surrounding
algorithm with hypertextures that are generated from scalghe main surface.

sums of a basis procedural noise function. The hypertexture Table 2 lists the number of maxima, 2-saddles and dis-

function is: connected components of the surface as the number of noise
L1 layers increases. These numbers follow a roughly geomet-
f(fo(x),x) = fo(x) +0.8 3 2708in(2+2x) (11) rical progression with., which causes thgubdivision al-
’ ' i; ' gorithm to become increasingly less efficient as it needs to

identify an ever denser cloud of critical points. The apglic

The functionfg generates a sphere of unit radius, as ition of the topology correction method to a fractal hypertex
the example of Figure 2, amtis a sparse convolution noiseture is, therefore, impractical since a surface needs te hav
function [12]. The summation in (11) models a fractiondlve or more layers of noise to become recognisably fractal.
Brownian motion process with a Hurst parameter given ijigure 9 shows the casés= 1 andL = 3 of the hypertex-
H = 0.8 [19]. The number of layers of noise that are addddre generated from equation (11). The original surface is
to the sphere is given bly. As this number increases, thdirst shown, without any topological correction. The discon
surface of the sphere becomes increasingly more irregut@cted components are then identified and visualised in red.
and, in the limit, attains a fractal dimension of3H = 2.2.  Finally, the same disconnected components are ignored dur-

Figure 8 shows the network of separatrices for a hypeng the ray-surface intersection procedure.
textured object computed from equation (11), with= 1, A more efficient method than spatial subdivision for the
after theSubdivision andSegmentation algorithms have localisation of critical points was proposed for implicitrs
been applied. The network is shown superimposed overfanes that are made from sums of radial basis functions by
image of the object. This network represents a partial viswu & de Gomensoro Malheiros [25]. With their method,
alisation of the CW-complex for the object’s surface sincgmple heuristics are used to estimate the position of tihe cr
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ical points. The application of several relaxation stegnthbecause it must first locate all surface critical points assa fi
causes the critical points to converge towards their corretep. Clearly, this method, when applied to the surface of
positions. Sparse convolution noise is an example of a hypEigure 10, would be intractable, given the extreme range of
texturing function that could use the improved localisatioscales that is present and the consequently large number of
method by Wu & de Gomensoro Malheiros since it consistsitical points that would have to be located. A Morse-based
of the sum of an infinite number of radial basis functions th&dcal method finds critical points on demand and only in-
follow a Poisson distribution in space. The same methaside a small neighbourhood centred at the ray-surface inter
however, cannot be applied to Perlin noise functions. Fsection point for which a query is made about surface con-
that reason, we have adopted spatial subdivision as our anigctivity. The size of the neighbourhood is progressively e
ical point localisation method, which, although being ledarged, and more critical points are located, until a dedinit
efficient, is quite general and can be applied to @3yor answer can be given about the connectivity state of the-inter
evenC! function. Spatial subdivision is also an easily pasection point. Critical points can then be cached and reused
allelisable algorithm where disjoint regions of space can fior nearby ray intersection points on the surface. The local
assigned to different CPUs. method for topological correction is more flexible but the

A minimum voxel sizes = 108 was used as part of theglobal method is simpler to implement. Research efforts to
Subdivision algorithm to obtain the results shown in Figfinalise a local topology correction method are ongoing: Fig
ure 9. The iterations (8) for the multi-dimensional NewtoHre 10 was obtained with our current implementation of this
root finder were stopped whéix;, 1 —x;|| < 10-12. The nu- local method.
merical precision requested from theodar ODE solver
was also equal to 1. After determining the connectivity
information, the component se§ withi=1,... N, were 7 conclusions
stored to a file so that they could be reused for different

renderings of the same surface. This is especially helpfjbrse theory provides all the connectivity information abo
when performing computer animation as tdivision ap implicit surface that is necessary to determine how many
and thesegmentation algorithms need to be run only onc&omponents it is split into. This property of Morse theory
for each surface. finds application in the hypertexturing of implicit surface
Figure 10 shows results that we have recently achievaglit enables disconnected components other than thedlesire
and is a rendering of the surface of a procedural planet withain surface to be detected and removed during rendering.
overhangs and arches, represented as an implicit surf&ce.lA this way, one can add much greater amounts of hyper-
though the terrain appears to be defined over a flat surfagsture than previously possible to a solid object withbet t
it is actually a sphere seen from a very close range. Proc&ttonvenience of fracturing it into many smaller objectsr O
ural planet modelling is a powerful technique that can getechnique can be applied ©? continuous hypertextured
erate terrain details over the entire surface of a plang¢h wsurfaces generated from equation (1). In the most general
arange of scales similar to the one that exists on Earth [15jfuation, our technique can be applied to @hcontinuous
A function similar to (11) was used that combines two pramplicit surface whenever it may be desirable to identifgd an
cedural noise functions. A Perlin noise function provides t isolate disconnected components of the surface.
basic terrain pattern and is then modulated by a sparse con-The topological correction method is robust and will de-
volution noise function to create the appearance of rociyct any disconnected component, no matter how small or
outcrops over an otherwise smooth terrain. The evaluatigw close it may be to the main surface. This robustness is
of the gradient and Hessian of these two noise functioagain a consequence of the application of Morse theory. The
is presented in Appendix A. The detection of surface colccuracy of the method is only limited by the numerical tol-
nectivity is shown in the middle image of Figure 10 with therance factors and threshold values that are chosen for the
disconnected surface components coloured in green. Thedigorithms described in the paper. We have used values that
moval of these components is then shown in the bottom igre equal to or smaller than 18 giving the topology cor-
age. Itis possible to see that the shadows cast on the grosition method an overall accuracy similar to that of single
by disconnected components, which are visible in the lowgtecision floating point arithmetic.
left corner of the top and middle images, have disappeared The method represents a global approach to topological
in the bottom image due to those surface components ha¥rrection where all the surface critical points must first b
ing been removed. This effectis easily achieved by performgcated in order for connectivity testing to be performed.
ing connectivity testing for shadow rays, similar to what i¥hjs method is suitable for hypertextured surfaces where th
done for view rays. Disconnected components are ignorggio between the size of the hypertexture details and ttee si
for shadow rays and a point is only in shadow if its shadogf the original surface is large. When this ratio is small, as
ray intersects with the main surface. is the case of procedural planets defined as hypertextures, a
The results of Figure 10, when compared with the rekscal topological correction method needs to be used idstea
ults of Figure 9, illustrate the difference between a global Although the proposed method can guarantee that a hy-
method and a local method for the determination of surfapertextured implicit surface is topologically connectéd,
connectivity. The method presented in this paper is globednnot guarantee that it is physically stable. Consider the
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Fig. 9 A hypertextured sphere with one layer (left) and three Isyeight) of a sparse convolution noise function. Top rowvehariginal
surfaces. Middle row shows disconnected components irBttiom row shows surfaces after topological correction.
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Fig. 10 A hypertextured planet featuring terrain overhangs antiemcThe top image shows the original surface. The middigénshows
disconnected components in green. The bottom image shewsrtain after topological correction.
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case of a surface component that is attached to the main sur-The value of a procedural noise functionat some poinix in
face by a very thin bridge of material. If the rigidity of theR® depends on the position afrelative to a discrete but infinite set
material is not sufficient, the application of even the smaf= {x € R®:i=0,1,2,...} of node pointsx; that are distributed

lest force to the component will cause it to break at the junoughout space. BecauSéas an infinite number of node points, the
évaluation ofn(x) is feasible whem(x) is made to depend only on a

tion point. This has consequences if one tries to use hyp§ka) subseS(x) of S At each locatiorx, the subseS(x) is the fi-

textures to model terrain landscapes, for example, as sofi€ set of node points iS that surrounck according to some specified

of the terrain features, although connected, may be urestagiterion. _ _ _

under the action of gravity. The modelling of hypertextured SuVr\éeof‘a}Paﬂgng’:%;gg%fo;ig;ﬁgfﬁ;ﬁ;‘.‘pﬂmﬂiJ:Bg‘r‘“g‘oxnatie

surfaces that are both topologically cqnnected and phys(lfs—ph,mment vectors betwerand the node points (x):

ally stable would require stress analysis tools and goes bey

ond the scope of this paper. nx)= 3% @Xx—x). (A.1)
ieS(x)

What distinguishes gradient noise and sparse convolutiesens the

8 Further Developments shape of the kernep, the criterion used to defin®x) and the distri-
bution of thex; in space to forns. The gradient and Hessian are then

The topology correction method that was here presentediiven by:

the context of a ray casting rendering algorithm for impli-

cit surfaces can, with little extra coding effort, be adajite On() :iggx) Dp0x =), (A.22)

work in the context of the topologically correct polygonal

meshing algorithm of Stander & Hart [24]. As a preliminZZ (N} (¥) = ; A=), (A.2b)

ary step of that algorithm, all the critical points of a seda 1560

are first located. The polygonal mesh that approximates the

surface is then progressively inflated until it reachesats ¢ o 1 Gradient Noise

rect position. Whenever the mesh passes through one of the

critical points, an appropriate mesh correction operai$on For gradient noise, the set of node points forms a cubic éntigtice

performed to account for the topology change that has ju&t {(u,v,w) : u,v,w € Z}. For each locatior, the setS(x) is made

occurred. of the eight node points at the vertices of the lattice celivirich x

To perform topology correction for hypertextures in th{ees'des' The kernelis given by:

context of the method by Stander & Hart, it is necessary §0x) = @(x1, %o, X3) = (E1x1 + ExXo + Eaxa) h(x) )h(x2)h(xs),  (A.3)

include all critical points in the component s&sas part _ , .

of the Segmentation algorithm, together with the maxima\r’:’hse;i%bgﬁt?gfi?ﬂ? ;igﬁgr:u\é?{'tﬁglﬁgj T:hfsﬁggfflﬁ)vi E?Hfi"'al

and the 2-saddles that are already included by our approagfi7]. For compactness, we write the polynomial for cooatiix, as
Just as before, all critical points are considered in deered; = h(x), the first derivative alj = I(x;) and the second derivative

ing order of theirf (fo(x),X) values. To include a 1-saddle@shi = h"(x) and similarly forx, andxs. The gradient vector and
a streamline is followed towards one of the maxima. TH&SSian matrix are given by:
streamline must be initially tangent to some arbitrary ve

tor that is contained in the plane formed by theandvs Bpa.se.x) =

eigenvectors of the 1-saddle. The maximum that is found at g1 h’lh,2h3
the end of the streamline then identifies the $e¢b which = hihohs | &+ (&% +&oxs) (afohs |, (Ada)
the 1-saddle belongs. To include a minimum, a streamline is és hihohy

followed, which can be started along any desired direction
around the minimum. {0} (X1, %2, X5) =
Once all the component sets have been identified, the

main setSy, is chosen, according to any preferred criterion, @ hlzrfl—r:&;Z:Sh, " (Elhlgézzigt;:lhﬂh?; 5?212131;321123;:2

and passed to the meshing algorithm. In this way, a poly- 2h’lh2 1h1h’2 h3 h’hz 1 2h3h’ h 212 H h3h2/ 3/

gonal mesh will only be computed for the main surface com- (&3 s+ &1mig)Ny (£3Mohs + &oNohg)h 283hhohs

ponent. No effort will be wasted polygonising surface com- h{hohg hjh,hs hhohl

ponents that have already been found to be disconnected. +  (Exa+Eaxo +E3x3) [h’lh’zhg hhhs hlh’zhg] . (A.4b)
hyhohly hyhohg hyhoh

A Derivatives of Procedural Noise Functions

A.2 Sparse Convolution Noise
The application of Morse theory to hypertextured impliairfaces
made with procedural noise functions requires that formbla avail- As with gradient noise, a regular lattice placed at integesitions is
able for the evaluation of the gradient vector and the Hassiatrix used. Inside each cell in this lattid¢,node points are uniformly dis-
of such functions. The two widely available procedural adisctions  tributed. This simple scheme generates an infinite Poisstritaition
that are known to b&2 continuous are gradient noise and sparse coof node points. The value ofat each locatiox depends on the node
volution noise [17,12]. This appendix provides analyticnialae to points of the cell that containsplus the node points in the twenty six
evaluate their gradient and Hessian at any point in space. surrounding cells. The s&(x), therefore, always contains R7hode
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points. The kernelp depends only on the distance= ||x|| and on a 17.

single random variablé:

@(x) = &n(r).

18.

(A.5)

For the functiorh, we have used the same degree five polynomia®.

that was used for gradient noise, now evaluated only fortigesar-
guments. Any other function can be used fioprovided that it isC?
continuous and with compact support in the intef@al]. The gradient
vector and Hessian matrix are given by:

H(r)

r

h//(r)
r2

X, (A.6a)

—@)(X-XT) + E@I.

Op(x) = &

A9} = &(

The matrixl is a 3x 3 identity matrix. The Hessian matrix is sym-
metric because the matrix x" is also symmetric.

(A.6b)

23.
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