Skip to main content
Log in

Cyclic animation using partial differential equations

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This work presents an efficient and fast method for achieving cyclic animation using partial differential equations (PDEs). The boundary-value nature associated with elliptic PDEs offers a fast analytic solution technique for setting up a framework for this type of animation. The surface of a given character is thus created from a set of pre-determined curves, which are used as boundary conditions so that a number of PDEs can be solved. Two different approaches to cyclic animation are presented here. The first of these approaches consists of attaching the set of curves to a skeletal system, which is responsible for holding the animation for cyclic motions through a set mathematical expressions. The second approach exploits the spine associated with the analytic solution of the PDE as a driving mechanism to achieve cyclic animation. The spine is also manipulated mathematically. In the interest of illustrating both approaches, the first one has been implemented within a framework related to cyclic motions inherent to human-like characters. Spine-based animation is illustrated by modelling the undulatory movement observed in fish when swimming. The proposed method is fast and accurate. Additionally, the animation can be either used in the PDE-based surface representation of the model or transferred to the original mesh model by means of a point to point map. Thus, the user is offered with the choice of using either of these two animation representations of the same object, the selection depends on the computing resources such as storage and memory capacity associated with each particular application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Alaskari, H.: Cyclic animation user interface in Maya, 2005

  2. Allard, G.: Control of a free-swimming fish using fuzzy logic. Int. J. Virtual Real. 6(3), 23–28 (2003)

    Google Scholar 

  3. Baran, I., Popović, J.: Automatic rigging and animation of 3d characters. ACM Trans. Graph. 26(3), 72 (2007)

    Article  Google Scholar 

  4. Bertalmio, M., Cheng, L., Osher, S., Sapiro, S.: Variational problems and partial differential equations on implicit surfaces. J. Comput. Phys. 174(2), 759–780 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proc. of SIGGRAPH, New Orleans, USA, 2000, pp. 417–424

  6. Bloor, M.I.G., Wilson, M.J.: Generating blend surfaces using partial differential equations. Comput. Aided Des. 21(3), 165–171 (1989)

    Article  MATH  Google Scholar 

  7. Du, H., Qin, H.: Dynamic PDE surfaces with flexible and general geometric constraints. In: Proc. of Pacific Graphics, Hong Kong, 2000, pp. 213–222

  8. Du, H., Qin, H.: Dynamic PDE-based surface design using geometric and physical constraints. Graph. Models 67, 43–71 (2005)

    Article  MATH  Google Scholar 

  9. Gleicher, M.: Retargetting motion to new characters. In: SIGGRAPH ’98: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, USA, pp. 33–42. ACM, New York (1998)

    Chapter  Google Scholar 

  10. González Castro, G., Ugail, H., Willis, P., Palmer, I.J.: A survey on partial differential equations in geometric design. Vis. Comput. 24, 213–225 (2008)

    Article  Google Scholar 

  11. Hecker, C., Raabe, B., Enslow, R.W., DeWeese, J., Maynard, J., van Prooijen, K.: Real-time motion retargeting to highly varied user-created morphologies. In: SIGGRAPH ’08: ACM SIGGRAPH 2008, New York, NY, USA, pp. 1–11. ACM, New York (2008)

    Chapter  Google Scholar 

  12. James, D.L., Twigg, C.D.: Skinning mesh animations. In: SIGGRAPH ’05: ACM SIGGRAPH 2005, New York, NY, USA, pp. 399–407. ACM, New York (2005)

    Chapter  Google Scholar 

  13. Kalra, P., Magnenat-Thalmann, N., Moccozet, L., Sannier, G., Aubel, A., Thalmann, D.: Real-time animation of realistic virtual humans. IEEE Comput. Graph. Appl. 18(5), 42–56 (1998)

    Article  Google Scholar 

  14. Lee, H., Kim, E., Joo, N., Hur, G.: Development of real time virtual aquarium system. IJCSNS Int. J. Comput. Sci. Netw. Secur. 6(7), 58–63 (2006)

    Google Scholar 

  15. Leronutti, L., Chittaro, L.: Employing virtual humans for education and training in x3d/vrml worlds. Comput. Educ. 49(1), 93–109 (2007)

    Article  Google Scholar 

  16. Lighthill, M.J.: Hydromechanics of aquatic animal propulsion. Annu. Rev. Fluid Mech. 1(1), 413–446 (1969)

    Article  Google Scholar 

  17. Models. http://toucan.web.infoseek.co.jp (2008)

  18. Multon, F., France, L., Cani-Gascuel, M.P., Debunne, G.: Computer animation of human walking: a survey. J. Vis. Comput. Animat. 10(1), 39–54 (1999)

    Article  Google Scholar 

  19. Ormoneit, D., Black, M.J., Hastie, T., Kjellstrom, H.: Representing cyclic human motion using functional analysis. Image Vis. Comput. 23(14), 1264–1276 (2005)

    Article  Google Scholar 

  20. Ormoneit, D., Black, M.J., Sidenbladh, H., Hastie, T.: Learning and tracking cyclic human motion. Technical report. In: A. Kent, C.M. Hall (Eds.), Encyclopedia of Library and Information Science (2001)

  21. Park, S. II, Hodgins, J.K.: Capturing and animating skin deformation in human motion. ACM Trans. Graph. 25(3), 881–889 (2006)

    Article  Google Scholar 

  22. Pratscher, M., Coleman, P., Laszlo, J., Singh, K.: Outside-in anatomy based character rigging. In: SCA ’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, New York, NY, USA, pp. 329–338. ACM, New York (2005)

    Chapter  Google Scholar 

  23. Stephens, K., Pham, B., Wardhani, A.: Modelling fish behaviour. In: GRAPHITE ’03: Proceedings of the 1st International Conference on Computer Graphics and Interactive Techniques in Australasia and South East Asia, pp. 71–78 (2003)

  24. Terzopoulos, D.: Artificial life for computer graphics. Commun. ACM 42(8), 32–42 (1999)

    Article  Google Scholar 

  25. Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. Comput. Graph. 21, 205–214 (1987)

    Article  Google Scholar 

  26. Tost, D., Pueyo, X.: Human body animation: a survey. Vis. Comput. 3(5), 254–264 (1988)

    Article  Google Scholar 

  27. Tu, X., Terzopoulos, D.: Artificial fishes: physics, locomotion, perception, behaviour. In: SIGGRAPH ’94: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, pp. 43–50. ACM, New York (1994)

    Chapter  Google Scholar 

  28. Ugail, H.: On the Spine of a PDE Surface. In: Wilson, M.J., Martin, R.R. (Eds.), Mathematics of Surfaces, pp. 366–376. Springer, Berlin (2003)

    Google Scholar 

  29. Ugail, H., Bloor, M.I.G., Wilson, M.J.: Manipulation of pde surfaces using an interactively defined parameterisation. Comput. Graph. 23(4), 525–534 (1999)

    Article  Google Scholar 

  30. Ugail, H., Bloor, M.I.G., Wilson, M.J.: Techniques for interactive design using the PDE method. ACM Trans. Graph. 18(2), 195–212 (1999)

    Article  Google Scholar 

  31. Xu, G., Pan, Q., Bajaj, C.L.: Discrete surface modelling using partial differential equations. Comput. Aided Geom. Des. 23, 125–145 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Yang, X., Petriu, D.C., Whalen, T.E., Petriu, E.M.: Hierarchical animation control of avatars in 3d virtual environments. IEEE Trans. Instrum. Meas. 54(3), 1333–1341 (2005)

    Article  Google Scholar 

  33. You, L., Comninos, P., Zhang, J.J.: PDE blending surfaces with C2 continuity. Comput. Graph. 28(6), 895–906 (2004)

    Article  Google Scholar 

  34. Yu, Q., Terzopoulos, D.: Synthetic motion capture: implementing an interactive virtual marine world. Vis. Comput. 15(7/8), 377–394 (1999)

    Article  Google Scholar 

  35. Zhang, J.J., You, L.: Fast Surface Modelling using a 6th Order PDE. Comput. Graph. Forum 23(3), 311–320 (2004)

    Article  Google Scholar 

  36. Zhu, Q., Wolfgang, M.J., Yue, D.K.P., Triantafyllou, M.S.: Three-dimensional flow structures and vorticity control in fish-like swimming. J. Fluid Mech. 468, 1–28 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. González Castro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González Castro, G., Athanasopoulos, M. & Ugail, H. Cyclic animation using partial differential equations. Vis Comput 26, 325–338 (2010). https://doi.org/10.1007/s00371-010-0422-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-010-0422-5

Keywords

Navigation