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Abstract In this paper, a retrieval methodology for 3D
articulated objects is presented that relies upon a graph-
based object representation. The methodology is com-
posed of a mesh segmentation stage which creates the
Attributed Relation Graph (ARG) of the object along
with a graph matching algorithm which matches two
ARGs. The graph matching algorithm is based on the
Earth Movers Distance (EMD) similarity measure calcu-
lated with a new ground distance assignment. The supe-
rior performance of the proposed retrieval methodology
against state of the art approaches is shown by extensive
experimentation that comprise the application of various
geometric descriptors representing the components of the
3D objects that become the node attributes of the ARGs
as well as alternative mesh segmentation approaches for
the extraction of the object parts. The performance eval-
uation is addressed in both qualitative and quantitative
terms.
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1 Introduction

Recent advances in 3D object digitization have created a
plethora of 3D objects available for processing in various
contexts like game industry, cad, medicine, cultural her-
itage, etc. The wide availability and continuous increase
of bandwidth to access the Internet is making feasible
to widely share these objects leading to a tendency to-
wards constructing large 3D databases. The continuous
increase of those databases’ size have made a necessity
the construction of retrieval algorithms that enable effi-
cient and effective 3D object retrieval from either public
or proprietary 3D databases. 3D object retrieval is the
process which retrieves 3D objects from a database in a
ranked order so that the higher the ranking of an object
the better the match to a 3D object query is by using
a measure of similarity. Most of the approaches which
address this problem use descriptors which express the
object’s global shape [7,10,11,14,17,21-24, 30]. However,
most of these approaches fail to consistently compensate
for the intra-class variability of articulated objects. This
occurs because it is not evident how a global descriptor
will become invariant to non-rigid transformations like
bending or stretching, thus, resulting in an erroneous
matching.

In this paper, a retrieval methodology is presented
which is based upon a graph-based representation that
is built after a 3D mesh segmentation. The motivation of
this approach originates from object recognition where
the object is described in terms of its components that
are characterized by geometric features and relational
connections with each other. This description is referred
to as the structural description of the object [5]. In order
to recognize an object, its structural description is com-
pared with the structural descriptions of already classi-
fied objects and the object is classified to the class of the
best match. This recognition process can be naturally
adopted for 3D object retrieval. Meaningful components
of the object can be extracted using a segmentation algo-
rithm. The structural description of the object is created
by using the Attributed Relational Graph (ARG) con-
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cept, i.e. the components of the object are represented
as the nodes of a graph and the relationship of the com-
ponents with each other are represented as the edges of
the graph. To each node unary attributes are assigned
which describe the geometric characteristics of the com-
ponent and to each edge binary attributes are assigned
which describe the relationship of the connected nodes.

Eventually, the problem of matching a query object
with the objects stored in the database is transformed
into the problem of matching their ARGs [18,27]. The
proposed graph matching algorithm is based on the Earth
Mover’s Distance (EMD) similarity measure.

In this paper, the contribution consists of a complete
methodology for retrieval of 3D articulated objects that
relies upon a graph-based representation which is pro-
duced after a meaningful new mesh segmentation as well
as a similarity measure that is based on EMD for which
a new ground distance assignment is introduced.

The paper is organized as follows. Section 2 discusses
the related work. Section 3 is dedicated to the detailed
description of the proposed methodology. In Section 4,
the experimental evaluation is presented while in Sec-
tion 5 conclusions are drawn.

2 Related Work

Among the existing 3D object retrieval methods, two
main categories can be distinguished :

i. Methods with global shape representations;
ii. Methods with graph-based shape representations.

The first category can be further classified according to
the spatial dimensionality of the information used for
retrieval, i.e. 2D, 3D and their combination.

Methods that use 2D information for retrieval use de-
scriptors that are generated from image-projections that
may be contours, silhouettes, depth buffers, etc. Chen et
al. [8] introduce the light field descriptor. This descrip-
tor is constructed by combining a region shape descriptor
and a contour shape descriptor computed on a set of or-
thogonal projections of the model with viewpoints taken
on the vertices of a dodecahedron enclosing the object.
Retrieval is achieved by comparing the descriptors of all
pair of images generated by the different projections of
the query’s object with the ones of each of the object
stored in a database. Vranic [30] proposed a shape de-
scriptor that is constructed by calculating the Fourier
coefficients on the depth buffers derived by projecting
the object on the four sides of the cube which surrounds
the 3D object. Similarity between the query’s object and
each of the object stored in the database is judged by
comparing their corresponding descriptor fourier coeffi-
cients with a suitable metric. In the method proposed
by Ohbuchi et al. [21] multiscale features are computed
from a set of projections that are taken from the vertices
of a polyhedron enclosing the object. All the features of

the objects in the Database construct a visual codebook
using k-means. The descriptor of the object is derived
by quantizing all the features of the object using the vi-
sual codebook into a vector containing the frequencies of
the visual words. Retrieval is achieved by computing the
Kullback-Leibler divergence between the descriptors of
the objects. Passalis et al. [24] constructed a descriptor
by calculating and weighting appropriately the Fourier
coefficients derived from the depth buffers acquired after
projecting the object on the four sides of the cube which
surrounds the 3D object.

Methods that use 3D information derive their de-
scriptors from the geometry of the 3D object. Vranic
[30] introduced a descriptor which describes an object
by a spherical extent function which captures the fur-
thest intersection points of the object’s surface with rays
emanating from the origin of the sphere enclosing the ob-
ject. The spherical extent is represent by spherical har-
monics in the frequency domain. Jain and Zhang [14]
created a descriptor which is based on spectral analy-
sis using geodesic and Euclidian distances. The spectral
analysis creates a set of eigenvalues for each object. In
their retrieval process the querys eigenvalues are com-
pared against the eigenvalues of each of the model stored
in the database. In [11] Gal et al. constructed a density
function using a pose oblivious shape diameter function
and is combined with the centricity function in order
to construct histograms which describe the shape of the
object. Ben-Chen and Gotsman [3] introduced a discrete
conformal scaling factor which identifies the extrusions
of the object. In this work, the histogram of the confor-
mal map is used as the descriptor of the mesh which was
shown to be pose invariant. Bronstein et al. [6] uses in-
trinsic and extrinsic metrics in order to calculate the dis-
tance of two surfaces. The extrinsic metric calculates the
rigid difference of two surfaces while the intrinsic metric
expresses the similarity of two object disregarding the ar-
ticulations that the different part perceive. Papadakis et
al. [22] introduces a volumetric spherical function based
representation of the object which is expressed by spher-
ical harmonics. Methods that combine both 2D and 3D
information have also been developed in order to improve
the retrieval performance [7,10,23,30,29].

In the second category of retrieval methods, a de-
scriptor is constructed based on the structural descrip-
tion of the object which in most of the cases is repre-
sented by a graph structure. Hilaga et al. [12] proposed
a descriptor based on Reeb graph theory, specifically the
object is described by a multiresolution reeb graph stuc-
ture and matching is achieved by the comparison of the
reeb graph structures on different resolution levels. Tung
and Schmitt [28] enhanced the retrieval performance of
[12] by augmenting the multiresolution Reeb graph struc-
ture with geometrical and visual information. Biasotti et
al. [4] constructed a descriptor based also on Reeb graph
theory with the difference of being created by a finite
set of contour levels. They call their representation Ex-
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tended Reeb Graph with the aid of which they create a
directed acyclic graph structure attributed with the ge-
ometric properties of each of the patches that each of
the nodes represent. Retrieval is achieved by matching
the directed acyclic graphs. Cornea et al. [9] extract the
skeletons of the 3D objects from their volumetric repre-
sentations using a generalized potential field generated
by charges placed on the surface of the object. Retrieval
is achieved by matching the skeletal graphs using an ex-
tension of the EMD similarity measure. Sundar et al.
[26] extract also the skeletons of the 3D objects from
their volumetric representation using a volumetric thin-
ning approach. Using information from their volumetric
thinning they direct the skeletons creating by this way
directed graphs. Retrieval is achieved by matching the
directed graphs using a recursive, depth first formula-
tion of bipartite graph matching. In [18], the object is
first voxelized and then segmented using a morphologi-
cal structure. The extracted components create an At-
tributed Relational Graph. The query’s ARG is matched
against the ARGs stored in the database using an EMD-
based approach. In [27] the mesh is decomposed into its
meaningful components and the ARG of the object is
constructed based on their decomposition. Retrieval is
achieved by matching the query’s ARG with the ARGs
of the objects stored in the database using an error cor-
recting graph isomorphism algorithm. In [20], the struc-
tural description of the object in the form of a graph is
also used. Their methodology comprises two steps: first,
they compute a common subgraph for each class of the
database and then they define a set of editing operations
based on the subgraph. These two steps allow them to
construct a prototype for each class to which the query
object is matched.

Considering the retrieval of articulated objects few
algorithms that belong in the first category can provide
efficient results [14,21,11,3,6]. On the other hand, algo-
rithms that belong to the second category can efficiently
handle articulated objects since the representation used
to describe them is pose invariant in most of the cases.
The only drawbacks that the latter algorithms exhibit
are that in some cases complicated graph structures are
constructed with the consequence of making their match-
ing complexity high thus decreasing the time efficiency
of retrieval, also the graph structures in some cases are
susceptible to geometrical or topological noise.

The proposed retrieval algorithm belongs to the sec-
ond category. A new meaningful mesh segmentation al-
gorithm extracts the main components of the 3D ob-
ject creating its ARG. The retrieval is going to be ac-
complished by matching the ARGs with an EMD-based
matching algorithm.

| 3D Object Structural Description |

% Segmentation :

=D

Components ARG
(a) (b)

3D Object Matching

3D Object: Q
Bty EEEARG — D(ARG? ARGPB) = EM D(ARG®, ARGPE)

Database 3D Object: ARGPE

Fig. 1 The stages of the proposed retrieval methodology

3 The proposed methodology

The proposed retrieval methodology comprises three dis-
tinct stages, as shown in Fig. 1.

i. The query object is segmented into its constituent
meaningful components using the proposed 3D mesh
segmentation methodology (Fig. 1(a))

ii. The segmented components of (i) are used to build
the ARG of the query’s object (Fig. 1(b));

iii. The query’s ARG is compared against each ARG of
the distinct 3D objects that comprise the Database
using an EMD-based graph matching algorithm.

It should be noted that the ARGs of the database are
constructed in the same manner as the ARG of the query
model in an off-line stage. The matching between the
query’s ARG and the ARG of an object in the database
provides a distance measure (denoted as D in Fig. 1)
which measures the similarity of the two objects and is
computed based on the EMD.

A detailed description of all the aforementioned stages
will be given in the sequel.

3.1 3D Mesh Segmentation

In this section, the basic principles of the first stage in the
proposed retrieval methodology will be given, i.e. the 3D
mesh segmentation stage where the object is segmented
into its constituent meaningful components. This is a
critical stage since the components extracted from the
segmentation algorithm define the ARG of the object.
A detailed description of the mesh segmentation scheme
used in this paper is given in [1].

When dealing with articulated objects, an efficient
segmentation algorithm should be insensitive to the var-
ious poses that the mesh may take. The proposed seg-
mentation algorithm can meet this requirement. An ex-
ample is shown in Fig. 2, wherein although a ‘human’
3D object takes different poses, the acquired segmenta-
tion in both cases is compatible, i.e. the segmentation
algorithm is consistent in always segmenting the human
object into its main body, legs, arms and head.
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The proposed segmentation algorithm is based on the
premise that the 3D object consists of a main (core) body
and its constituent protrusible components. It can be
summarized in the following stages. Initially the salient

Fig. 2 (a), (b) Example of the proposed segmentation of a
‘human’ 3D object at different poses

points of the mesh which characterize the protrusions of
the mesh are extracted. These points are further clus-
tered according to their geodesic proximity where each
cluster represents a main component of the object and
each of them is assigned a unique representative point.
In the next stage, the core (main body) of the mesh is
approximated using the minimum cost paths that the
aforementioned representatives create with each other.
In the sequel, the boundary between the core and each of
the protrusions (Partitioning Boundary) is approximated
using closed boundaries which span the area contain-
ing the partitioning boundary. Finally the approximated
partitioning boundary is refined using the minimum cut
algorithm of Katz et al. [16].

All of the stages of the proposed segmentation method-
ology will be detailed in the following sections.

8.1.1 Salient Points Extraction and Clustering stage

In this section, the salient points of the mesh will be
extracted and a clustering methodology to group them
into clusters representing a main protrusion of the mesh
will be presented.

Intuitively, the salient points of the mesh should re-
side on the tips of its protrusions. A possible solution for
finding them is to use a function which takes high values
at the protrusions of the mesh and its local maxima are
the tips of the protrusions.

A function which can achieve the requirements set
above was first introduced by Hilaga et al. [12] and is

Fig. 3 Example of the ‘human’ 3D mesh with its correspond-
ing salient points at the (a) extraction stage (red dots) and
(b) clustering stage - each color represents a different cluster

defined for each point v of the surface S of a 3D object

as:
g(v,p)dS
/peS

pf(v) =
where g(v, p) denotes the geodesic distance between v, p.
This function is called in [2] protrusion function, pf().
From the function’s definition it can be observed that
small values correspond to points of the mesh which are
near the center of the mesh while large values correspond
to points that are at the protrusions of the mesh. Thus,
the protrusion function meets the necessary requirements
for the calculation of the salient points.
This function for a 3D mesh is approximated using a
tessellation of its surface into compact regions, such that
(1) is transformed to:

pF@) = 3 glo.b)area(V)

(1)

(2)

where b; denotes the center of the region V;.
Also, another approximation of the protrusion func-
tion might alternatively be used as in [15]:

pf) =Y glv,v)

’L)iES

3)

where v; denotes the vertices of the mesh.
For every v € S a neighborhood of points N, is de-
fined which can be either:

— a k-ring neighborhood defined as the set of vertices
within £ edges away from vertex v;

— a geodesic neighborhood defined as the set of vertices
for which the geodesic distance from vertex v is less
than a threshold. This threshold is called the radius
of the geodesic neighborhood.
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The salient point of a mesh is formally defined as:
pf(v) > pf(vi) Vv €Ny

v is a salient point <=
pf(v) > 0.45

pf(v) normalized in [0, 1]

Definition (4) ensures that the salient point will reside at
the tip of a protrusion. In our implementation, N,, is set

4)

as a geodesic neighborhood with radius 1/5 - 10~3 - area(S)

as also proposed in [19].

It often happens that the extracted salient points be-
long to sub-components of the objects. For example, in
Fig. 3(a) there exist salient points that correspond to the
fingers of the ‘human’ model. Since the salient points are
used in the proposed segmentation algorithm to repre-
sent a single protrusion it is necessary to cluster them,
each one of the clusters representing a single protrusion
of the object. Thus the fingers of the ‘human’ model in
Fig. 3(a) need to be grouped in one cluster in order to
represent the arms of the object.

The salient points that are required to be clustered
are those which are close to each other in terms of geodesic
distance. Once the salient points are grouped the salient
point with the largest protrusion value is chosen as the
representative of each cluster and is called the represen-
tative salient point.

In Fig. 3(b), the result of the clustering of the salient
points in the ‘human’ object is shown. As it can be ob-
served each cluster represents a unique protrusible com-
ponent of the object.

3.1.2 Core Approzimation

As already mentioned, the proposed segmentation algo-
rithm assumes that the mesh approximating the 3D ob-
ject consists of a main body (its core) and its protrusi-
ble parts. An effective algorithm which approximates the
core of the mesh should acquire all the elements (vertices
or faces) of the mesh except those that belong to its pro-
trusions. Towards this concept an algorithm is proposed
that uses the minimum cost paths between the represen-
tative salient points found in Section 3.1.1.

Specifically, let assume S = {4;,1=1,..., N¢} be
the set of representative salient points, where N¢ denote
the number of clusters found in section 3.1.1 and 3; the
representative of the it cluster.

Also, let P = {P,;,i,j € {1,...,N¢c}} be the set of
all minimum cost paths of the points of S , where P;; de-
note the minimum cost path between §;, ;. The idea of
the core approximation algorithm is to expand a set of
vertices in ascending order of protrusion function value
until the set contains a certain percentage of all elements
of P. The pseudo-code of the proposed core approxima-
tion algorithm is shown in Fig. 4. Initially, the vertices of
the mesh M are inserted in a priority queue PFHeap in
which the vertex with the minimum protrusion function
is extracted first. The algorithm proceeds by extracting
points from the priority queue which incrementally ex-
pands the list CoreList where the approximation of the

5
1: for all vertices v € M do
2:  insert v in PFHeap with priority
pf(v)
3: end for
4: StopGrowing = false
5: while !StopGrowing do
6: pop a vertex v from PFHeap
7: if v CanBeAdded then
8: CoreList.add(v)
9:  end if
10: for all P;; € P do
11: if Pjj.active then
12: ifve Pi]' then
13: increment P;;.counter
) . P;;.counter
14: if P;;.SizeOfPath = te
then
15: P;j.active = false
16: end if
17: end if
18: end if
19:  end for )
20: for all 5, € S do
21: if 3;.active then
22: §;.active = f:}lse
23: for all 5; € S —35; do
24: if P;j.active then
25: §;.active = true
26: end if
27: end for
28: end if
29:  end for
30: //StopGrowing becomes true if
all 3; become non active
31: end while

Fig. 4 The pseudo-code of the proposed core approximation
algorithm

core is stored. A path P;; in P remains active if the ra-
tio of the number of vertices in the path FP;; which have
been visited during expansion over the total number of
vertices that the path contains is less than tc which is
equal to 0.15. A salient point §; € S remains active if
3P;; for some j € {1,...,N¢} # i: P;; active. A vertex
v of the Mesh CanBeAdded in CoreList if its geodesic
nearest salient point in S is active. Stop Growing becomes
‘TRUE’ when all salient points become non-active.

In Fig. 5 the core approximation of the ‘human’ 3D
object is presented. It can be observed that the proposed
algorithm approximates consistently the core of the ob-
ject and that its boundaries are near the partitioning
boundaries of the object.

3.1.3 Partitioning Boundary Detection

In this section, the stage of the segmentation algorithm
that finds the partitioning boundary is presented. This
boundary separates a protrusion from the main body
of the 3D object. At the area which divides the main
body from the protrusion, it is considered that a sud-
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Fig. 5 Example of core approximation for the ‘human’ 3D
object. The vertices representing the core are coloured in yel-
low

den change of object volume should occur, delimiting the
partitioning boundary. The proposed algorithm aims to
detect this abrupt change by examining the perimeter of
closed boundaries placed at an area which contains the
partitioning boundary.

These closed peripheries are constructed using a dis-
tance function D which is associated to the salient point
of the cluster representing the protrusion (section 3.1.1).
Formally, for a salient point §, which is the representa-
tive of a cluster representing the protrusion, the distance
function D is defined for every point v of the mesh as the
shortest distance between v and 3. The shortest distance
is computed using the Dijkstra algorithm with source §
while each of the edges (u,v) is assigned the following
cost term:

length(u, v) prot(u,v)

t = 1-9
cost(u, v) avg_length +( ) avg_prot (5)

where prot(u,v) = |pf(u)—pf(v)| and avg_length, avg_prot

denote the average values of the length and protrusion
difference of the edges of the mesh, respectively. This
distance function was introduced in [19]. In our imple-
mentation, we set § equal to 0.4.

Using the distance function D the closed boundaries
are constructed by interpolating on the mesh isocon-
tours generated by setting constant values on the func-
tion D. Taking also advantage of the proximity between
the core approximation boundaries and the mesh parti-
tioning boundaries, the area that should contain the par-
titioning boundary is the part of the mesh whose values
of D lie in the interval [(1 — d1) Deoremin,(1+d2) Deoremin] -
Deoremin denotes the value of the distance function be-
tween the nearest point of the core approximation and
the representative §, while d;, do denote the extent of
the interval (0 < d; < 1, d2 > 0). In this work, we set
d; =0.1,ds = 0.4.

In order to approximate the partitioning boundary,
this area is swept by the closed boundaries in fixed steps
(d1+d2)Dcoremm

per

equal to , where lpe, = 12 and the sweep-

ing is terminated when the ratio of the perimeters be-

tween successive closed boundaries exceeds a certain thresh-

old equal to 1.3. When the ratio between successive perime-
ters becomes greater than the threshold then the abrupt
change in the volume of the object is signified and the
closed boundary where this occurs is considered to be
the approximation of the protrusion boundary.
Choosing the representative of the cluster represent-
ing the protrusion as a source of the distance function
D may lead to the creation of skewed closed boundaries.
This choice is refined by properly selecting as source the
point that has the minimum protrusion value on an area
enclosing the salient points of the cluster. This source
point leads to the creation of closed boundaries that are
positioned near to the true partitioning boundary.

3.1.4 Partitioning boundary refinement

The partitioning boundary detected in section 3.1.3 is an
iso-contour of the distance function D approximating the
true partitioning boundary. In most of the cases, this ap-
proximation is rough, i.e. it deviates from the true parti-
tioning boundary. As mentioned in section 3.1.3, the par-
titioning boundary is delimited at the area where there is
a sudden change in the volume between the main body
and the protrusion while taking into account Hoffman
and Richards [13] it should reside at the concavities of
the object. The partitioning boundary approximation of
section 3.1.3 is not constrained to the concavities wherein
the true partitioning boundary pass through, thus, there
is a need to refine the partitioning boundary approxima-
tion so that it passes through the concavities.

To this end, a Region C is constructed that con-
tains the true partitioning boundary, as in the follow-
ing. First, the calculation of the average geodesic dis-
tance (AvgGeodDist)is addressed, between the partition-
ing boundary approximation and the refined representa-
tive that have both been detailed in section 3.1.3. Then,
region C is defined as the set of mesh triangles whose
vertices geodesic distance from the refined representative
lies in the interval [0.9-AvgGeodDist, 1.1-AvgGeodDist].
Fig. 6(a) illustrates this region in the ‘human’ model. As
it can be observed, this region contains the true parti-
tioning boundary. For segmenting the object at the exact
partitioning boundary the minimum-cut methodology of
Katz and Tal [16] is used. Specifically, a flow network
graph is constructed using the dual graph of the mesh [2].
In order to construct the network of [16], two additional
regions are defined; Region A containing the triangles of
the protrusion of the mesh (yellow triangles of fig. 6(a))
and region B containing the faces of the remainder of
the mesh (green triangles of fig. 6(a)). Region C plays
the role of the fuzzy region explained in [16].

Taking into account all three aforementioned regions,
a flow network as in [16] is constructed in order that
the application of the minimum cut algorithm on this
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network will lead to the mesh segmentation on the true
partitioning boundary (Fig. 6(b)).

(b)

Fig. 6 Example of the partitioning boundary refinement
stage: (a) region A is shown with yellow, region B is shown
with green and region C is shown with red; (b) The final
segmentation of the protrusion from its main body after the
application of the minimum cut algorithm

3.2 EMD-based Matching

As has already been mentioned from the very beginning
of the description of the proposed retrieval methodology
in order to match the query object with those objects
contained in a database, a graph matching algorithm is
required to match the query’s ARG with each of the cor-
responding object ARG in the database. In this section,
the creation of the object’s ARG will be described along
with the proposed graph matching algorithm between
two ARGs.

The proposed segmentation algorithm is capable to
segment an object into its core (main body) and its pro-
trusible parts. Taking advantage of this capability a sim-
ple ARG can be constructed, its nodes are the segmented
components and each of the nodes representing a pro-
trusible part is connected with the node representing the
core of the object forming by this way the edges of the
ARG. A segmented ‘Human’ object and its correspond-
ing graph structure is shown in Fig. 7. Unary and binary
attributes will be assigned to the nodes and edges of the
ARG respectively. In this manner, the two ARGs that

Core (Main Body)

Fig. 7 The graph structure of the segmented ‘Human’ model

need to be matched are constructed. The matching algo-
rithm will find the correspondences of the nodes between
the two ARGs and will provide a distance measure which
quantifies the degree of similarity of the two graphs.

Formally, let G = (V, E,U,B), G = (V,E,U,B) be
the attributed relational graphs that need to be matched,
where V' = {v;};,, V = {9;}]_, are the nodes (vi,
01 represent the core component of the two objects re-
spectively), E = {ri;}_,, £ = {flj};nzz are the edges,
U= {u},, U= {1;}72, are the unary attributes
of the nodes and B = {b;}7_,, B = {Bj} are the

j=2

binary attributes of the edges of the two graphs, respec-
tively. Let assume that n > m. As already mentioned, it
is assumed that the nodes vy, 01 represent the core com-
ponent of the two models, respectively. These nodes are
considered as fized and are always matched in the match-

ing algorithm. Also additional n —m nodes, {?; };l:m 41

are inserted in G which are called in this work delete
nodes. The reason for doing this is to penalize the n —m
nodes of G that are not mapped to any of the nodes
of G. All other nodes are considered as normal. Unary
attributes ﬂd = {ﬁdj }?:m L are assigned to the delete

nodes that correspond to components with no informa-
tion.

In this paper, the similarity of the two ARGs is mea-
sured by the Earth Mover’s Distance (EMD) [25]. In
general, the EMD computes the distance between two
distributions, which are represented by two signatures.
The signatures are sets of weighted features that capture
the distributions. The EMD expresses the least amount
of work needed to transform one signature to another.

In our case, the two ARGs are considered as the dis-
tributions and the two signatures are the set of nodes
V = {vi}iy, V = {0;}]_, of each of the graphs G, G,
respectively. A uniform distribution of weights {w;};,,
{w; };.L:l are assigned to the nodes, respectively, and each

of them is equal to % In this manner, the signatures
S = {vi,w;}i,, S = {0;,w;};_, are constructed.

Intuitively, the set of weights {w;}.—; can be consid-
ered as piles of earth that needs to be transferred to the
holes that the other set of weights create in the feature
space. Each unit of earth is transferred from pile 4 to hole
J with cost d(v;,v;) (called ground distance). This trans-
fer symbolizes the matching of node v; to node 9; under
a certain cost (distance measure). The total amount of
earth (weight) that is transferred from pile ¢ (node v;) to
hole j (node ©;) is denoted as f("/) and is called the flow
of weight. The transportation problem is solved with a
linear programming optimization approach that finds the
optimal flow of weight between the two distributions [25].
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Fig. 8 The proposed matching scheme between two ARGs

The optimal cost of the optimization process is the
EMD that is defined as follows:

EMD = i i FEDd(v;, 05)

i=1 j=1

(6)

As can be seen in Equation (6), the EMD is a distance
measure between the two signatures since it is a weighted
sum of the ground distances and expresses the simi-
larity of the two signatures, thus the similarity of the
two ARGs. It can also be observed that the ground dis-
tances are the definitive terms of the EMD thus the
whole matching process is based on their proper defi-
nition because they indicate how the nodes are matched.
In our case the ground distances depend upon the unary
and binary attributes of the ARGs since these attributes
should define how the matching between the nodes of the
graphs should be addressed.

In the matching process, the fixed nodes of the two
graphs that indicate the core elements (vy, ¥1) should
always be matched, thus, there is a need to constrain the
optimization process for the calculation of the EMD in
order to always match the fixed nodes. All other nodes
can be matched without any constraint. In Fig. 8, the
proposed matching between two ARGs in the form of
signatures is shown, wherein the first ARG consists of
five and the other of three nodes.

In order to achieve the aforementioned matching the
following ground distance is defined:

3 Dormal (vi ;)

> if v;, 0; normal
1+Dnor'rnal(vivvj) v

3 Dyized(vi, ;)

1+Dfi.7:ed(v17777]) lf Ui’ U‘j ﬁxed

d(v;, 05) = (7)
5 Dactere(vi0;) 3¢V normal,
0.1+ Dagetete (Vi 05) @j delete
00 otherwise
where,

Dnormal (Uiv Uj

- mui — |2+ [[bi — by 2

Dyigea(vi; 05) = \/[lwi — 0]

Ddelete ”U“’U] Hul - ud] ”2

As can be seen in equation (7), in the case of matching
a normal node with a delete node there exists a ground
distance for which its derivative is much steeper than
the derivative of the ground distances in the cases when
the fixed nodes and the normal nodes are matched (see
Fig. 9). This occurs in order to avoid the matching of
normal nodes that hold significant information with the
delete nodes that hold no information.

It can also be observed in equation (8) that the binary
attributes are considered only in the normal nodes since
we want to exploit the relation that they have with the
fixed node (core). When the fixed nodes are matched
only the unary attributes are considered since the core
relation with the other nodes is already considered when
the normal nodes are matched.

d3

05/ 8

| Dnormal
% 1 2 s 4 5 s T s ERY
(a)
d¢ - — — -
45-
4
35
3|
25}
Al
154
T
0.5}
Ddelete
G!! 1 2 3 4 5 8 7 & ] 10
(b)

Fig. 9 Indicative ground distance plots in the case of (a) the
normal node matching and, (b) the delete node matching

Note also that with the selected ground distance the
fixed nodes are always going to be matched.

The Unary attributes that need to be defined for the
nodes of the ARG should carry the geometric proper-
ties of the component they represent. These properties
may, for example, be the relative size, the convexity of
the components or they can be described in the fre-
quency domain using spherical harmonics. The binary
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attributes should express the relationship that the neigh-
boring components have, e.g., the distance of the cen-
troids of the neighboring components. In this paper the
following unary and binary attributes are used :

i. The unary and binary attributes of Kim et al. [18].
The purpose of this assignment is to compare the
proposed matching methodology with that used in
[18] in order to show the efficiency of the proposed
segmentation and matching algorithms.

ii. Unary attributes defined by Papadakis et al. [22] de-
scriptor. The descriptor consists of spherical harmonic
coeflicients derived from the object’s component after
pose normalization. The spherical harmonics provide
a description of the component’s geometry in the fre-
quency domain. For further details see [22].

Considering Kim et al. [18] attribute assignment, the
unary attributes that are assigned to the nodes of the
ARG representing the object components are the rela-
tive size (rs) of the component, the convexity (c) of the
component and the eccentricities (ej, es) of the ellipsoid
approximating the component. The relative size of the
component is approximated by its area, the convexity is
approximated by first voxelizing the component and then
dividing the number of voxels of the component by the
number of voxels of its convex hull while the eccentrici-
ties are approximated by the variances of the component
mesh points along the axes created by principal compo-
nent analysis. The binary attributes that are assigned to
the edges of the ARG are the distance () of the centroids
of the components connected by an edge of the graph and
the angles (a1, ag) that the two most significant princi-
pal axes of the connected components create with each
other. All of the attributes are normalized in the interval
[0, 1]. By this way, the vector [rs,c,eq, es] is assigned to
the normal and fixed nodes and the vector [I,aq,as] is
assigned to the edges of the graphs. All delete nodes are
assigned the vector [0,1,1,1]. In equation (8), the norm
| - || denotes the Ly norm of the attribute vectors.

Considering Papadakis et al. [22] attribute assign-
ment, we set to the normal and fixed nodes their spher-
ical harmonic descriptor vector. The descriptor consists
of two sets of coefficients corresponding to two aligned
versions of the model using two methodologies based on
principal component analysis, namely CPCA and NPCA.
CPCA aligns the component according to the surface
area distribution and NPCA aligns the component ac-
cording to the surface orientation distribution, see [22].
To the delete nodes the vector with zero entries is as-
signed whose dimension is the same as their descriptor.
Please note that in this case we do not assign any binary
attributes to the graphs, thus in equation (8) there exist
no binary term and the norm || - || denotes the L; norm
of the spherical harmonic vectors which is defined as in
[22].

Considering both the aforementioned ground distance
assignment and ARG definition, the EMD measure is

computed between the two ARGs which denotes the de-
gree of similarity between the two objects that need to
be matched. In order to compute the EMD, the imple-
mentation of Rubner et al. [25] is used.

4 Experimental Results

The evaluation of the proposed retrieval methodology for
3D articulated objects was run on the standard McGill
3D object database [31] and the ISDB database [11]
which encounters objects with articulations. In partic-
ular the McGill Database contains ten classes that com-
prise a total of 255 articulated objects, namely, ‘Ants’,
‘Crabs’, ‘Spectacles’, ‘Hands’, ‘Humans’, ‘Octopuses’, ‘Pli-
ers’, ‘Snakes’, ‘Spiders’ and ‘Teddy-bears’ each one of
them containing approximately twenty to thirty models.
The ISDB Database contains nine classes that comprise
a total of 106 articulated objects, namely ‘Cats’, ‘Dinos’,
‘Dogs’, ‘Frogs’, ‘Hands’, ‘Horses’, ‘Humans’, ‘Lions’ and
‘Wolfs’.

Since the proposed mesh segmentation algorithm re-
quires that the objects should be manifolds, a transfor-
mation for each object to manifolds has been applied.

The experiments addressed in this paper aim to reach
a threefold goal. First, the superior performance of the
proposed retrieval methodology will be shown against
two other state of the art 3D object retrieval method-
ologies, namely Kim et al. [18] and Papadakis et al. [23].
The former is based on a graph-based representation us-
ing a descriptor and similarity measure that have been
adopted by MPEG-7 standardization while the latter
uses a global hybrid shape descriptor.

Second, the improved performance of the proposed
segmentation algorithm will be shown in terms of re-
trieval accuracy against the segmentation algorithm used
in Kim et al. [18] retrieval methodology. This is achieved
by accommodating the ARG created by the proposed
segmentation algorithm using Kim et al. [18] attributes
enabling a fair comparison with the original retrieval
methodology presented by Kim et al.

Finally, the impact of the proposed retrieval method-
ology for improving the retrieval accuracy in the case
of intra-class variability will be shown. In particular, a
refinement of the results achieved by Papadakis et al.
[23] method will be addressed. It is shown that if we
encounter the first n retrieved objects achieved by a re-
trieval method that takes into consideration global shape
descriptors like Papadakis et al. [23], this portion of the
ranked results can be used to apply the proposed re-
trieval methodology resulting in an updated re-ranking
with improved retrieval accuracy.

In the sequel, we will use the following abbreviations:

— The graph-based retrieval methodology that encoun-
ters the proposed mesh segmentation and the EMD-
based matching using Papadakis et al. [22] attributes
is denoted as EMD-PPPT.
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Fig. 10 Precision-Recall curves of the examined retrieval
methodologies for the McGill Database
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Fig. 11 Precision-Recall curves of the examined retrieval
methodologies for the ISDB Database

— The graph-based retrieval methodology that encoun-
ters the proposed mesh segmentation and EMD-based
matching using Kim et al. [18] attributes is denoted
as EMD-MPEG?T.

— The graph-based retrieval methodology that encoun-
ters the proposed mesh segmentation and the graph
matching of Kim et al. [18] is denoted as SMPEG?T.

— The graph-based retrieval methodology that encoun-
ters the segmentation and matching of Kim et al. [18]
is denoted as MPEGT.

— The retrieval methodology of Papadakis et al. [23]
that encounters a global shape representation is de-
noted as Hybrid.

— The retrieval methodology of Papadakis et al. [23]
refined by the proposed retrieval methodology using

Total Precision Recall

Precision

0.4 1

0.2 {| ——EMD-PPPT
Hybrid
—=— H-EMD-KIM-R

—+—H-EMD-PPPT-R
0 7 T T r
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Fig. 12 Precision-Recall curves when a refinement of the
ranked results is used in the McGill Database
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Fig. 13 Precision-Recall curves when a refinement of the
ranked results is used in the ISDB Database

Kim et al. [18] attributes is denoted as H-EMD-
KIM-R.

— The retrieval methodology of Papadakis et al. [23]
refined by the proposed retrieval methodology us-
ing Papadakis et al. [22] attributes is denoted as H-
EMD-PPPT-R.

Evaluation of the retrieval results achieved by the afore-
mentioned methodologies is based upon Precision-Recall
(P-R) diagrams wherein the evaluation was performed by
using each model in the dataset as a query on the remain-
ing set of models and computing the average precision-
recall performance over all models. Furthermore, the quan-
titative evaluation was augmented by taking into account
the performance measures in the following :

— Nearest Neighbor (NN): The percentage of queries
where the closest match belongs to the query’s class.
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— First Tier (FT): The recall for the (k-1) closest matches, Table 1 Quantitative measure scores of the examined re-

where k is the cardinality of the query’s class.

— Second Tier (ST): The recall for the 2(k-1) closest
matches, where k is the cardinality of the query’s
class.

— Discounted Cumulative Gain (DCG): A statistic that
weights correct results near the front of the list more
than correct results later in the ranked list under the
assumption that a user is less likely to consider ele-
ments near the end of the list.

These measures range from 0% to 100% and higher val-
ues indicate better performance.

In Fig. 10 and Fig. 11, Precision-Recall curves show
the performance of all methodologies for 3D object re-
trieval used against the proposed methodology (EMD-
PPPT) for the McGill and ISDB 3D database of articu-
lated objects, respectively. It is shown that EMD-PPPT
methodology achieves the best performance. This implies
that the spherical-harmonics attributes set on the com-
ponents of the object can provide a meaningful descrip-
tion that directly leads in high quality retrieval results.
Although the chosen attributes for the segmented parts
of object are being only unary without any complemen-
tary binary attributes, it is shown that EMD-PPPT out-
performs EMD-MPEGT that uses both binary and unary
attributes as described in Kim et al. [18].

Examining the contribution of the proposed mesh
segmentation in the improvement of the performance at
the retrieval pipeline process in terms of retrieval ac-
curacy, we made a comparison between SMPEG7 and
MPEGT methodology. Fig. 10 and Fig. 11 clearly indi-
cates the superiority in performance of SMPEG7 which
differs from MPEGT only at the mesh segmentation stage.

Since the importance of the proposed retrieval method-
ology acquires higher impact in the case of intra-class
variability we made an experiment as in the following.
We first applied a retrieval methodology with high per-
formance that relies upon a hybrid global shape descrip-
tor and then we applied to part of the m top ranked
results the proposed graph-based retrieval methodology
using either the Kim et al. attributes [18], namely ‘H-
EMD-KIM-R’ or Papadakis et al. attributes [22], namely
‘H-EMD-PPPT-R’. Fig. 12 and Fig. 13 shows that the
refinement of the ranked results by a methodology which
can become less error prone to intra-class variability pro-
vides improvement to retrieval accuracy. Again, refine-
ment with the proposed graph-based representation along
with using the Papadakis et al. attributes achieves the
highest performance.

In Table 1 and Table 2 the corresponding scores for
each of the retrieval methodologies for each class of the
database as well as the average scores for the complete
McGill and ISDB databases are shown. As can be ob-
served the EMD-PPPT and H-EMD-PPPT-R method-
ologies perform better in total and in most of the classes
of the databases.

trieval methodologies for the McGill Database

Class Method NN(%) FT(%) ST (%) DCG(%)
Complete EMD-PPPT 97.6 74.1 91.1 93.3
McGill EMD-MPEGT 93.3 69.2 88.9 90.8
db SMPEG7 91.8 65.2 78.3 89.1
Hybrid 92.5 55.7 69.8 85.0
H-EMD-KIM-R 94.1 70.7 82.9 90.2
H-EMD-PPPT-R 97.3 69.9 75.8 90.5
MPEGT 97.3 73.1 84.0 91.9
Ants EMD-PPPT 96.7 54.9 79.7 88.4
EMD-MPEGT 96.7 58.5 79.9 87.5
SMPEG7 80.0 57.1 75.6 86.7
Hybrid 100 73.6 89.2 94.8
H-EMD-KIM-R 96.7 63.4 83.2 88.9
H-EMD-PPPT-R 96.7 58.3 81.5 89.2
MPEGT 90.0 62.1 75.5 87.1
Crabs EMD-PPPT 100 98.2 99.8 99.9
EMD-MPEGT 100 89.8 98.2 99.2
SMPEG7 100 72.9 90.3 95.9
Hybrid 100 55.2 71.8 88.7
H-EMD-KIM-R 100 87.5 92.9 98.0
H-EMD-PPPT-R 100 92.6 94.3 98.6
MPEGT 90.0 45.9 65.5 82.2
Spectacles EMD-PPPT 100 70.3 99.8 94.0
EMD-MPEGT 96.0 63.7 94.3 89.2
SMPEG7 96.0 55.8 63.7 82.7
Hybrid 96.0 53.5 63.3 85.9
H-EMD-KIM-R 96.0 74.0 80.0 90.5
H-EMD-PPPT-R 96.0 73.8 80.0 91.5
MPEGT 84.0 37.8 50.8 73.6
Hands EMD-PPPT 95.0 83.9 88.9 95.2
EMD-MPEGT 95.0 79.7 88.2 93.4
SMPEG7 95.0 78.7 87.9 93.0
Hybrid 90.0 43.4 57.6 77.8
H-EMD-KIM-R 95.0 77.4 83.7 92.3
H-EMD-PPPT-R 95.0 79.7 83.9 94.0
MPEGT 60.0 30.0 41.3 63.1
Humans EMD-PPPT 96.6 93.5 96.4 98.1
EMD-MPEG7 96.6 86.8 99.3 97.4
SMPEG7 96.6 84.5 98.0 97.3
Hybrid 100 47.0 63.8 83.1
H-EMD-KIM-R 96.6 79.6 85.2 94.3
H-EMD-PPPT-R 96.6 82.0 84.7 94.6
MPEGT 79.3 40.5 59.1 77.9
Octopuses EMD-PPPT 88.0 58.8 81.8 88.1
EMD-MPEG7 80.0 45.2 73.2 79.1
SMPEG7 84.0 42.0 63.0 80.5
Hybrid 56.0 29.5 45.0 68.9
H-EMD-KIM-R 76.0 45.7 71.2 78.1
H-EMD-PPPT-R 88.0 57.8 80.3 87.0
MPEGT 72.0 46.8 76.2 77.8
Pliers EMD-PPPT 100 100 100 100
EMD-MPEGT 100 85.5 100 98.6
SMPEG7 100 86.1 95.5 97.8
Hybrid 100 71.6 87.9 94.6
H-EMD-KIM-R 100 92.4 99.7 99.0
H-EMD-PPPT-R 100 99.7 99.7 99.9
MPEGT 95.0 65.5 77.9 89.5
Snakes EMD-PPPT 100 43.2 95.2 84.7
EMD-MPEGT 80.0 46.2 85.8 83.4
SMPEG7 80.0 44.2 48.0 76.6
Hybrid 80.0 23.7 28.7 62.4
H-EMD-KIM-R 88.0 42.3 47.3 75.7
H-EMD-PPPT-R 96.0 43.7 47.3 75.4
MPEGT 76.0 36.8 40.7 69.3
Spiders EMD-PPPT 100 87.2 100 98.4
EMD-MPEGT 100 85.7 97.3 97.5
SMPEG7 96.8 74.8 86.6 93.9
Hybrid 100 71.5 91.0 93.7
H-EMD-KIM-R 100 85.7 96.9 97.6
H-EMD-PPPT-R 100 87.3 99.0 98.3
MPEGT 90.3 37.3 61.8 77.8
Teddy-bears EMD-PPPT 100 45.3 63.2 83.9
EMD-MPEGT 85.0 42.6 66.3 78.8
SMPEG7 90.0 55.8 70.8 84.6
Hybrid 100 90.3 98.4 99.1
H-EMD-KIM-R 90.0 54.7 87.4 85.5
H-EMD-PPPT-R 100 52.6 87.4 89.1
MPEGT 100 79.2 84.5 93.4
Also in the PR-curves of Figure 15 it can be observed
that in some classes like in ‘Dogs’ and ‘Cats’ the PR-

Curve is low this means that the Retrieval system con-
fuses the models in these classes. This is attributed to the
global alignment problem in Papadakis et al. [22] work,
the parts fail to be consistently aligned.

Although the primary goal of our experimental work
is to show the improvement in retrieval accuracy that is
achieved by the proposed approach against other schemes
that use a part-based representation, we have extended
our experimental framework to include approaches that
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Fig. 14 Precision-Recall curves of each distinct class in the McGill database

deal with 3D articulated objects without taking into ac-
count 3D object partitioning. For this purpose, we en-
countered the ISDB database for which the state-of-the-
art method of Gal et al. [11] was tested against. In Ta-
ble 3, the scores of Gal et al. [11] retrieval methodology is
presented. It can be observed that although the proposed
approach has already achieved a very good performance,
the scores achieved by [11] show a better performance
in the complete ISDB database. To be fair in the final
conclusion, it is imperative that we should also have the
performance of Gal et al. retrieval methodology for the
standard McGill database, for which, unfortunately, has
not been tested yet.

To provide a further qualitative measure for the per-
formance of the proposed methodology ‘EMD-PPPT’
against ‘MPEGT’ the produced ranking is shown in Fig. 16
for particular queries of classes like ‘humans’, ‘octopuses’
and ‘hands’. It can be observed that the proposed re-
trieval methodology clearly outperforms the ‘MPEGT’
methodology.

In the case of perturbation the retrieval methodology
is quite robust and the retrieval results for the query
models of of Fig. 16 undergone strong Gaussian noise
are shown in Fig. 17.

It should be noted that the segmentation methodol-
ogy of Katz et al. [15] could also be used in the exper-
imental results. Our Segmentation methodology though
has many advantages over this methodology in the core
extraction methodology:

— There is no need to do multidimensional scaling, which
is a time consuming process, in order to extract the
core. Instead only the minimum cost paths are used
in order to check whether the core has expanded suf-
ficiently. This implies far less complexity;

— We have introduced a percentage of minimum cost
path traces that should be covered for the termina-
tion of core expansion. Those traces span the pro-
trusible parts at most. Thus, the selection of a per-
centage of the traces provides a high confidence that
the core points will cover areas of the protrusible
parts or being very close to the neighboring areas
in which the real boundary is situated.

5 Conclusions

In this paper a graph-based retrieval methodology is pro-
posed. The method builds the structural description of
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Fig. 15 Precision-Recall curves of each distinct class in the ISDB database

the object using a mesh segmentation algorithm that
produces meaningful results. The produced structural
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Fig. 16 Retrieval results for queries that correspond to ‘humans’, ‘octopuses’ and ‘hands’ classes, respectively, using either
the ‘EMD-PPPT’ or ‘MPEGT’ 3D object retrieval methodology. The query object is shown on the top left side and the
ranking order follows a top-to-bottom and left-to-right sequential arrangement.
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Fig. 17 Retrieval results for queries that correspond to ‘humans’, ‘octopuses’ and ‘hands’ classes, respectively using ‘EMD-
PPPT’. On the left column the mesh under Gaussian noise and its segmentation are shown. On the right column the query
object is shown on the top left side and the ranking order follows a top-to-bottom and left-to-right sequential arrangement.



