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Abstract Surface reconstruction from cross cuts usually re-
quires curve reconstruction from planar noisy point samples.
The output curves must form a possibly disconnected 1-
manifold for the surface reconstruction to proceed. This ar-
ticle describes an implemented algorithm for the reconstruc-
tion of planar curves (1-manifolds) out of noisy point sam-
ples of a self-intersecting or nearly self-intersecting planar
curve C. C : [a, b] ⊂ R → R2 is self-intersecting if C(u) =
C(v), u �= v, u,v ∈ (a, b) (C(u) is the self-intersection
point). We consider only transversal self-intersections, i.e.
those for which the tangents of the intersecting branches at
the intersection point do not coincide (C′(u) �= C′(v)). In the
presence of noise, curves which self-intersect cannot be dis-
tinguished from curves which nearly self-intersect. Existing
algorithms for curve reconstruction out of either noisy point
samples or pixel data, do not produce a (possibly discon-
nected) Piecewise Linear 1-manifold approaching the whole
point sample. The algorithm implemented in this work uses
Principal Component Analysis (PCA) with elliptic support
regions near the self-intersections. The algorithm was suc-
cessful in recovering contours out of noisy slice samples of a
surface, for the Hand, Pelvis and Skull data sets. As a test for
the correctness of the obtained curves in the slice levels, they
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were input into an algorithm of surface reconstruction, lead-
ing to a reconstructed surface which reproduces the topolog-
ical and geometrical properties of the original object. The al-
gorithm robustly reacts not only to statistical non-correlation
at the self-intersections (non-manifold neighborhoods) but
also to occasional high noise at the non-self-intersecting (1-
manifold) neighborhoods.
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Glossary
PL: Piecewise Linear.
C: Planar open or closed, possibly self-intersecting or

nearly self-intersecting, curve.
S = {p0,p1, . . . , pn}: An unorganized noisy point sample

of C.
ε: Stochastic component of the point sample.
B(p, r): The disk of radius r centered at point p.
L(λ) = p + λ ∗ v̂: Parametric form of the straight line

passing through p, directed by the unit vector v̂ with
signed distance parameter λ.

f1, f2: Foci of an ellipse in R2.
E(f1, f2, α): Ellipse {p ∈ R2 : d(p,f1) + d(p,f2) = 2α}.
ρX,Y : Linear regression correlation coefficient between

variables Y and X.
[ρ,p, v̂] = pca(SE): Principal Component Analysis of the

point set SE , rendering as a result the linear trend
L(λ) = p + λ ∗ v̂ with correlation coefficient ρ.

Q: Queue whose elements are pairs [p,v] formed by a
vector v anchored at point p.

PL_Curve_Set = {c1, c2, . . . , cm}: Set of PL pairwise
disjoint curves c1, c2, . . . , cm.
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Fig. 1 Cut of the hyperbolic paraboloid z = x2 − y2 with the plane z = 0 forms contours which self-intersect at the saddle point (0,0,0)

1 Introduction

This paper discusses the implementation and results of an
algorithm to reconstruct Piecewise Linear (PL) approx-
imations for a possibly self-intersecting or nearly self-
intersecting planar curve C sampled with a noisy point set.

By C we mean a function C : [a, b] ⊂ R → R2 that is
continuously differentiable and regular (i.e. C′(u) �= 0 for
all u ∈ [a, b]). C will be said to be self-intersecting if there
is a finite set {u1, . . . , un} ⊂ (a, b) such that for each i there
is a j �= i such that C(ui) = C(uj ) (the C(ui)’s are the
self-intersection points). We consider only transversal self-
intersections, i.e. those for which the tangents of the inter-
secting branches at the intersection point do not coincide
(C′(ui) �= C′(uj )).

The cross cuts of a surface might be self-intersecting con-
tours as shown in Fig. 1. Figure 2(a) shows a non-transversal
self-intersection with a sample. An ε-near self-intersecting
curve is one for which there exists a point sample with noise
ε being identical to the ε sample of some self-intersecting
curve. In the rest of the article we will simply refer to these
as nearly self-intersecting curves (omitting the ε). The cross
section of an object might have a configuration as in the up-
per or lower parts of Fig. 2(b). A typical noise sample of
such cross sections is the set of points S = {p0,p1, . . . , pn}
with pi ∈ R2 as in Fig. 2(c). Notice that the curves might
have any of the forms in Fig. 2(b) or be actually self-
intersecting as in Fig. 2(d), and the point sample still looks
as in Fig. 2(c).

Notice that for curves as in Fig. 2(d) there is no Nyquist-
compliant sample, since the local characteristic dimension δ

is zero.
The input to the algorithm implemented in this work is

presented in Fig. 2(c). Either of the results in Fig. 2(b) is
acceptable for our algorithm, as a legal 1-manifold. Such

Fig. 2 Ambiguous noise sample of nearly self-intersecting curves

contours may then be processed for surface reconstruction
as in [21] to get an approximation of a closed surface.
This process is also conducted in the present work. Fig-
ure 2(d) shows a PL approximation of C, although it is ob-
viously non-acceptable because it is a non-manifold. How-
ever, reaching it is an important achievement for any curve
reconstruction algorithm, and can be easily corrected to ob-
tain either situation in Fig. 2(b).

The sample of the curve C in Fig. 2(c) must respect the
Nyquist or Shannon [16, 17, 23, 24] criterion for digital sam-
pling to be able to retain the topology of C. This means that
the effective sampling interval δ = δn + ε (nominal plus sto-
chastic components) must be smaller than half of the mini-
mal detail that the sampling is supposed to preserve.
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1.1 1-Manifolds in R2

M is a 1-manifold in R2 if for each point p ∈ M there exists
a δ > 0 such that M ∩ B(p, δ) is homeomorphic to the real
interval (0,1). M is said to be a 1-manifold with border if
for each point p ∈ M there is a δ > 0 such that M ∩ B(p, δ)

is homeomorphic to either of the real intervals (0,1) or
[0,1). A set of mutually disjoint closed non-self-intersecting
curves is a 1-manifold. A set of mutually disjoint non-self-
intersecting curves with at least one of them open is a 1-
manifold with border. Informally, a small neighborhood of
a point at which a curve ceases to be a 1-manifold looks
like three or more semi-arcs emanating from the point. For
example, in Fig. 2(d), a small neighborhood of the non-
manifold point looks like four semi-arcs emanating from the
point.

1.2 PL reconstruction of self-intersecting curves sampled
with noise

An nth order PL approximation of a curve C out of a noisy
sample of it is a polygonal curve P = [q0, q1, . . . , qn] which
resembles the original curve C up to its nth derivative.
A by-product of the process producing P is a parameter-
ization of the contour so recovered, which is fundamental
in downstream applications, such as surface reconstruction
from cross cuts.

In P the concept of a sequence is central. Many al-
gorithms for curve reconstruction fail to establish such a
sequence when they approach the self-intersections of C,
exactly because the concept of order is destroyed at such
neighborhoods. Our algorithm is able to find the sequence
of points forming P , even at the self-intersections. A post-
processing is then used to break down P into manifold com-
ponents.

In the present article the authors attack the problem of
self-intersecting or nearly self-intersecting curves (which in
the presence of noise are indistinguishable) by using a mu-
tating elliptic support region for the PCA calculation. Infor-
mally speaking, near the self-intersections the support re-
gion for PCA becomes an ellipse, and far away it is circular.
This variation makes the algorithm more robust when facing
low correlation coefficients at the intersections.

This article is organized as follows. Section 2 presents a
taxonomy of the existing approaches addressing the prob-
lem, including previous algorithms developed by the au-
thors. Section 3 proposes improvements to existing algo-
rithms to take into consideration self-intersecting curves,
along with the necessary mathematical facts supporting
such algorithms. Section 4 addresses the application of the
methodology to non-trivial topological cases and presents
the results of surface reconstruction from planar slice sam-
ples. Section 5 concludes the article and discusses possible
future work directions.

2 Literature review

The reconstruction of a curve C out of a noiseless point
sample is addressed by relatively abundant literature, rely-
ing mostly on graph synthesis techniques. However, since
we are interested in Design and Manufacturing applications
we must address noisy point samples.

The strategies for the reconstruction of C mainly found
in the reviewed literature are: (1) Medial axis calculation;
(2) Scalar field calculation, with: (2.1) Radial basis func-
tions, (2.2) Differential equations (e.g. level sets); (3) Statis-
tical estimation by Principal Component Analysis, includ-
ing: (3.1) Noising/de-noising of the point set, (3.2) Straight
segment synthesis, (3.3) Parametric curve synthesis (Bézier,
Spline, NURBS); (4) Probabilistic estimation of topological
properties; (5) Probabilistic estimation of geometrical prop-
erties.

Techniques transversal to many of the approaches men-
tioned above are: (a) minimization techniques, (b) graph the-
ory, (c) probabilistic and statistical estimation,
(d) Delaunay–Voronoi based methods.

In the reviewed literature, the vast majority of the articles
do not address the issue of (nearly) self-intersecting curve
reconstruction out of point samples. The two references re-
porting such advance do not explain how their methods ef-
fectively deal with such a feature.

In the consulted literature there is a general absence of
formal analysis for the computational complexity of the pro-
posed algorithms. When present, such a discussion only ad-
dresses average cases and central time expenses, ignoring
the space complexity of the collateral data structures and
the time spent in building them.

2.1 Medial axis

[10] and [8] explore the recovery of a Principal Graph un-
derlying a 2D point sample (e.g. a character meant to by pen
strokes). The authors set up a numerical optimization algo-
rithm that balances two competing criteria: (i) the inclusion
in the graph of as many pixels as possible of the ones present
in the stroke, and (ii) the minimization of the medial axis
curvature. Since this algorithm aims at character recogni-
tion, its final result is not required to be a 1-manifold. There-
fore, self-intersections are permitted (like in the “H” or “8”
characters). In our case, the final result of the reconstruc-
tion must be a set of disjoint non-self-intersecting curves,
and therefore one must meet higher requirements than the
ones met by [8] and [10]. The algorithm implemented in
[10] and [8] finds an approximation to the medial axis of
the black pixel region. The complexity of the algorithm is
estimated by the authors in O(N), where N is the number
of black pixels in the image. This estimation must be care-
fully interpreted since it only takes into account a part of the
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process. For example, only finding a medial axis approxima-
tion has a minimal complexity of O(N2). In addition, the
proposed strategy requires collateral data structures whose
time and memory expenses significantly increase the cost of
the whole process of curve reconstruction.

[25] discusses the synthesis of the skeleton of a 2-
manifold sampled with oriented points. An oriented point
contains the (x, y, z) coordinates and the vector normal to
the surface at such point. The manifold is constructed with
cylindrical branches meeting at joint neighborhoods. The
point sample might be incomplete, according to the authors.
The point sample is partitioned in quasi-planar sections.
Each point subset of the partition must look like the section
of a cylinder, according to the basic assumptions on the man-
ifold being sampled. Each cross section of the cylinder has
a statistical center. The sequence of such centers contributes
to the skeleton. At the joints, there are no such skeletons. At
such regions several processes are applied to obtain a line-
like structure: smoothing, thinning, re-centering, joint col-
lapsing and redistribution of point samples. This process re-
quires intensive user control. Notice that the skeleton is not
a manifold in general. Therefore, the proposed algorithm is
not required to neutralize the non-manifold neighborhoods.
The authors do not discuss the complexity of their algorithm.

2.2 Scalar fields

2.2.1 Radial basis functions

[20] presents a method to establish a likelihood map or
scalar function in R2 around a noisy point sample. The
scalar function records a high value for (x, y) if it is close to
a sampled 2D curve C. After a likelihood map is calculated
(similar to Fig. 3(b)), a PL approximation is initialized in the
form of a topological circle on R2, and then allowed to drift
to settle on the highest values of the likelihood map. The pa-
per does not discuss self-intersecting curve point samples,
disconnected curves, initial size or position of the circle, or
computational complexity of the method.

[9] presents a definition of an implicit surface over a
noisy point cloud using weighted least squares based on
a geometric proximity graph. Self-intersections are not ad-
dressed. In this reference, computing a Close Pair Shortest
Paths (CPSP) table among N points in R3 is reported to con-
sume O(N) computing time and O(N) storage space. Such
predictions do not count the time in building the collateral
(breath-first, depth-first) data structures. No accounting is
devoted to the administration of collateral data structures or
pre-processing time.

2.2.2 Fitting of y = f (x)

[1] fits polynomials h(x) to a series of points {(x1, y1),

(x2, y2), . . . , (xm, ym)} such that h(xi) ∈ [yi − δ, yi + δ].

Important limitations of this reference are: (1) the major-
ity of applications in applied computational geometry deal
with curves in R2 which are not the graphs of functions.
For example, a closed contour in R2 cannot be expressed as
y = h(x). (2) No applications are given in the article. (3) The
authors do not discuss the complexity and scope of their so-
lution.

2.2.3 Reconstruction by differential equations and level
sets

Consider a noisy point set S in R2 sampled on a regular
curve C. There is abundant literature that seeks to recover an
approximation to C as a solution of a differential equation
stated on a domain � which contains S. The goal of such
methods is to synthesize an implicit function f : R2 → R,
solution of a differential equation, and the sought curve C is
the implicit curve f (x, y) = 0.

From the reviewed literature [13, 18, 19, 30, 31] we may
conclude the following: (1) The definition of the � region
covering the set S is already an open problem. However,
a convenient informal definition of � would be the tape-
shaped polygon covering S (see Fig. 3). (2) To solve the
differential equation it is essential to draw geometric infor-
mation from the point sample itself. For example, level set
methods require a vector field v : R2 → R2 normal or tan-
gent to C at every point to be able to reconstruct C. As an
effect, self-intersecting curves cannot be recovered in this
manner since in such curves the tangent/normal fields are
undefined at the self-intersections. (3) Whichever solution
f : R2 → R can be found by solving differential equations,
it must be kept in mind that any curve C recovered as an
iso-level set of f will be a closed one. This implies that
open curves C cannot be recovered by differential equation
methods, unless additional manipulations on the domain �

(not reported yet) are introduced. (4) Once a function f has
been estimated by solving the differential equation, the value
k representing the iso-curve f (x, y) = k that approaches C

must be guessed (Fig. 3(c)), and such an iso-curve might not
be a 1-manifold. (5) f (x, y) = k might contain disconnected
curves even if C was originally connected. (6) The compu-
tationally obtained solution to a differential equation f is a
function whose domain is a grid of points. Passing from f to
iso-curves f (x, y) = k clearly requires an additional process
[2–4]. For all these reasons, finding f as a solution to a dif-
ferential equation still needs a significant effort before it can
be considered as a reliable tool for building 1-manifolds out
of the point set S.

2.3 Statistically based methods

2.3.1 Noising/de-noising of point set

[5] attack the problem of fitting PL curves to noisy point
samples by computing a sequence of new point sets having



Ellipse-based principal component analysis 215

Fig. 3 Curve reconstruction with differential equations [22, 27]

less noise than the initial point set and less points. This is
done by searching thin rectangles normal to the local curve
tangent for sample points and by driving the sample to the
expected value of the curve. When the point set is suffi-
ciently thin, the actual PL approximation to C is computed
using a crust algorithm (in this case the NN Crust by [6]).
The algorithm is guaranteed to converge if a sufficiently
good point sample of C is available. We must point out that
such a sample does not exist for self-intersecting curves, as
the Nyquist criterion cannot be met. This algorithm is misled
when the curve gets close to itself because the thinning of
the point set about the likely curve locus has two or more at-
tractors. [5] discusses the probabilities of the obtained curve
being homeomorphic to the original one. The authors nei-
ther discuss computational complexity nor present applica-
tion examples.

[14] presents an algorithm that takes a noise-free sample
of a non-self-intersecting curve in R2. The algorithm adds
noise in the point sample, in the direction perpendicular to
the originally sampled curve. The algorithm eliminates the
noise by replacing the points falling in a circle by the center-
point of a segment joining the most extreme points inside
the circle. After the noise is removed, the point set is fed to
a Relative Neighborhood Graph, derived from the Delaunay
triangulation. Shortcomings of this approach are: (1) Noise
is added to a point set that is originally noise-free. (2) The
original point set is filtered, with high frequencies removed.
(3) The noise removal pre-processing costs O(N3) compu-
tation time. (4) The article presents results for the enlarge-
ment of the point set but it does not do so for the curve recon-
struction itself. (5) The article does not discuss complexity
at any point.

2.3.2 Synthesis of straight segments

[11] presents a least-squares algorithm to approximate a set
of unorganized points with a simple 3D curve without self-

intersections. This algorithm uses an Euclidean Minimum
Spanning Tree (EMST). The algorithm performs thinning
on the point cloud before calculating its PL approximation.
No discussion of computational complexity is presented.

[28] presents a PL approximation of a planar curve C

whose sample S has noise. A set of straight segments is
accommodated on the region defined by the sample, with
each segment being locally tangent to C. A second part of
the algorithm defines an order on the straight segments and
threads the tail of one with the head of the next one. This
approach cannot define how a self-intersecting curve is han-
dled, since no straight segment and no tail, head or next seg-
ment can be defined at the self-intersection, due to the lack
of correlation in the local point set. No discussion of com-
putational complexity is presented.

2.3.3 Synthesis of parametric curves

[29] fits B-Splines to a set of noisy point sets using
curvature-based squared distance minimization. The control
points qi of a Spline curve P(t) = ∑M

i=1 Bi(t) ∗ qi are set
such that the summation of square distances between P(t)

and the point sample is minimized (Square Distance Min-
imization, SDM). Limitations of this algorithm are: (1) It
specifically excludes self-intersecting curves. (2) A (time or
space) complexity discussion is absent. (3) Both the sam-
pled curve and the recovered curve are required to be twice
differentiable. (4) Calculation of the distance from a point
to a parametric curve is expensive since the latter normally
has parametric degree larger or equal than three. This makes
the SDM an expensive method.

[12] presents an algorithm which seeks to fit B-Spline
curves to a set of noisy points in R2 on which a Euclid-
ean Minimal Spanning Tree (EMST) is calculated. The al-
gorithm uses a band-shaped support region to collect point
subsets whose Principal Component Analysis trend deter-
mines the local tangents to the sought B-Spline curve. The
authors claim that the algorithm handles sharp features and
self-intersections of the curves. However, no clear algorithm
is given to handle such situations. A fundamental flaw of
such an algorithm is that a point sample of a 2D curves does
not in general have the topology of a tree since cycles exist
naturally in such sets. In addition, the algorithm uses a sig-
nificant amount of heuristic constants that are not discussed
in the paper and whose set values are not specified. The B-
Splines are naturally smooth in spite of the fact that the point
set is sampled from a non-smooth 2D curve. The paper does
not discuss the computational complexity of the algorithm.

2.4 Probability of topological properties of the curve

[15] proposes (without actual implementation or tests on
data) an algorithm to probabilistically estimate topological
properties of a manifold out of a noisy sample of it. [15]
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specifically avoids the estimation of topological properties
in the case of self-intersections. In this reference there is no
comment on the computational expenses of the proposed al-
gorithm.

2.5 Probability of geometrical properties of the curve

In [26] the local neighborhood of 3D curves in the space is
sampled with noise σ and sampling density ρ. A local coor-
dinate frame is associated with each neighborhood and the
point sample is used to diagnose the curvature κ and tor-
sion τ of the 3D curve. The angle between the actual tan-
gent vector and the PCA-estimated tangent vector is found
and plotted as a function of the radius r of the PCA sup-
port region. The value of the deviation angle varies with re-
spect to the local curvature κ , noise σ , sampling density ρ

and support region radius r . The article does not give a self-
tuning algorithm (the radius is given as an absolute num-
ber), making the results unusable when the scale of the point
set changes. The article does not discuss the computational
complexity of the algorithm.

2.6 Conclusion of literature review

The reviewed literature presents some salient features:
(1) Implicit function calculations require large computa-
tional expenses. (2) Medial axes’ methods produce inher-
ently non-manifold constructs. (3) Curve synthesis as solu-
tion of Differential Equations is not adequate for the reasons
given in Sect. 2.2.3. (4) The fitting of higher degree para-
metric curves (Bézier, Spline, NURBS) requires non-linear
minimizations at every stage of the construction, which im-
plies large computation costs.

We conclude that an explicit form of C, in Piecewise
Linear form, is cheaper to determine and is acceptable for
subsequent applications (in contrast with implicit forms). To
find an explicit PL form of C we implement a method which
is sensitive to the proximity of the self-intersection. In such
a locality the point set to be fed to a PCA algorithm is the
one included in ellipses rather than in disks. As it will be
shown, such a variant allows the overcoming of the intersec-
tion neighborhood in a more robust manner.

Our ellipse-PCA algorithm will be tested on slice sam-
ples of C2 2-manifolds. As shown in Fig. 1, this is one
of the many possible scenarios where self-intersecting or
nearly self-intersecting curves are present. As such cases are
compounded by noise (present in all industrial sensors), we
consider that efforts in this area are useful for the computer-
aided design and manufacturing communities.

3 Methodology

The algorithm implemented in this article is based on statis-
tical approximation of the local tangent of a curve C sam-

Fig. 4 Execution of ellipse-based PCA algorithm

pled with a noisy point set. The algorithms based on Princi-
pal Component Analysis do not perform well in curve self-
intersection regions because the linear trend is lost there. To
avoid this effect, we used a directional (elliptic) support re-
gion for the PCA algorithm. The ellipse becomes sharper as
the linear trend of the point sample degenerates (for exam-
ple, at self-intersections). The elliptical support region has
major axis in the direction of the last reliable vector tangent
to the curve. This region excludes point samples in the di-
rection perpendicular to such a tangent, thus ignoring the
confusing trends at the self-intersection. In this manner the
algorithm overcomes self-intersection regions and continues
with the PL approximation of C.

Figure 4(a)–(c), displays an intuitive functioning of the
algorithm implemented, applied to the point sample of an
open, self-intersecting curve C (Fig. 4(a)). To simplify the
drawing, the point sample is suppressed from some figures,
showing only the pursued PL approximation for C. Fig-
ure 4(a) shows that the algorithm starts in the neighborhood
t0, with the direction v0, with a circular PCA-support re-
gion. The local approximation travels following the neigh-
borhoods t4, . . . , t9, . . . , t73 (subscripts only indicate a sup-
posed number of iterations). At the self-intersection, the
PCA-support region becomes elliptical, so the algorithm is
capable of crossing this zone, whose correlation coefficient
ρ is fundamentally low if a circular support region had been
used. The algorithm proceeds until it reaches t73, where it
finds a dead end, meaning that a connected subset of C

has been found. The algorithm then revisits t0 with direc-
tion −v0, rendering the sequence t0, . . . , t74, . . . , t87, . . . , t96

(Fig. 4(b)).
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The post-processing part of the algorithm is fully known
in computational geometry: it merges the PL approxima-
tions [t0, . . . , t73] and [t0, . . . , t96] into L = [t73, . . . , t0, . . . ,

t96], and then splits the self-intersecting PL curves deter-
mined by L as per the decisions in Fig. 4(d), resulting in the
1-manifolds in Figs. 4(e) or 4(f). Either, right or left splitting
produces topologically correct and geometrically different
results. Since the (noisy, self-intersecting) sample does not
allow for a canonical choice of either splitting (left or right),
such a decision in the post-processing stage is one of mere
convention.

3.1 Measure of goodness-of-fit for principal component
analysis

If a curve C has local curvature radius r and is point-
sampled, there are upper and lower bounds in the length
of a linear segment ab which statistically approaches C at
the point C(u). If ab is too long, the segment will not cor-
rectly approach the curve C at C(u). If ab is too small, only
few sample points will be available to fit the segment ab.
In both cases, goodness-of-fit of the linear approximation is
degraded. If C is planar, the Principal Component Analy-
sis may be evaluated by using the linear regression cor-

relation coefficient ρ = cov(X,Y )
σXσY

= E((X−μX)(Y−μY ))
σXσY

with

ρ ∈ [−1,1]. |ρ| ≈ 1.0 and |ρ| ≈ 0.0 are associated with
good and poor linear correlation, respectively. Caution must
be exercised because linear regression parameters (m,b in
y = mx + b) are dependent on the particular coordinate sys-
tem. Figure 6 shows that for the same level of noise the cor-
relation coefficient ρ2 between x and y varies as m does. If
we wish to compare linearity of point sets using the ρ2 val-
ues, we should first achieve a fixed m (for example m = 1)
by rotating the point set and only then calculate its ρ2 value.
In this manner we compare m-constant ρ2 values of differ-
ent point sets. On the other hand, an advantage of using
the correlation coefficient to grade the linear regression is
that the ρ2 value is bounded (ρ2 ≤ 1). Our approach is to
use the linear regression with its correlation coefficient by
following these steps: (a) Calculate a tentative linear trend
y = m0.x + b0 for the local point set; (b) Rotate the lo-
cal point set to get a slope of 45◦ (m ≈ 1); (c) Calculate ρ

with the standard linear regression formulas; (d) Rotate back
the measured m if needed. A number of iterations (limited
to 10) is used to improve the value ρ by varying the shape
of the ellipse enclosing the local point set. In this manner,
we use the advantages of 2D linear regressions and neutral-
ize its dependence on m. This heuristic worked correctly, as
discussed in the Results section.

3.2 Circular vs. elliptical support regions

Previous algorithms for curve reconstruction avoid address-
ing the topic of self-intersecting curves due to the effect

Fig. 5 Points and ellipses in a self-intersection region

shown in Fig. 5(a). At the self-intersection neighborhood,
the identification of the local tangent becomes difficult and
the curve reconstruction goes astray. This happens because
the PCA analysis applied to a star-shaped point set will ren-
der lines in any direction of the R2 plane, accompanied of
the correlation coefficient ρ being very low.

The algorithm reported in this article detects such low
correlation regions and varies the shape of the support re-
gion for the PCA from round to elliptic (see Fig. 5(b)), thus
incrementing the correlation coefficient ρ. In our algorithm,
ellipticity increases together with least square fitting error.
The elliptic region has the major axis in the direction of the
last reliable curve tangent v identified in the previous iter-
ation (Fig. 5(d)). This support region has the advantage of
ignoring distracting points by having a tight span in the v⊥
direction, orthogonal to v. The ellipse is defined as the lo-
cus of points p such that |p − f1| + |p − f2| = 2α. Our
algorithm sets α = 5 ∗ δ, where δ is the effective sampling
interval of the device. This value is set to approximately in-
clude 10 sampled points in each local Principal Component
Analysis. Such a heuristic has worked in a stable manner in
our implementations. Therefore α is a known value that is
fixed in the algorithm.

3.3 The heuristic to overcome intersection places

In general, an ellipse in R2 can be specified by the posi-
tion of its foci f1 and f2 (Fig. 5) and the length of its
major semi-axis α as E(f1, f2, α) = {p ∈ R2 : |p − f1| +
|p − f2| = 2α}. In any ellipse, if d is the distance between
the foci, then β2 = α2 − ( d

2 )2.
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Fig. 6 Dependency of
correlation coefficients with
slope m

Fig. 7 Heuristic rule which increases d (i.e., flattening the ellipse,
d → 2α) as the correlation coefficient deteriorates (ρ → 0).

Our claim is that in a well-defined curve point sample a
PCA circular support region would work fine. If the point
set deteriorates, the support region must become an ellipse.
If the linear correlation of the point set is poor (ρ2 = 0),
we would like to have a strongly elliptical support region
(large d , Fig. 7(a)). If the linear correlation is good (ρ2 = 1),
a circular disk (d = 0, Fig. 7(b)) would provide a con-
venient support region. We propose a decreasing function
d = 2α(1−ρ2), as in Fig. 7(c). Therefore, d ranges between
0 (good PCA correlation) and 2α (poor PCA correlation).

3.4 Reconstruction algorithm

The implemented algorithm takes a point set as in Fig. 4(a)
and returns a set of PL curve fragments as in Fig. 4(b). This
result is the fundamental one, because joining the PL frag-
ments of C in PL_Curve_Set in a manifold manner is a
standard procedure.

The algorithm is based on the heuristic proposed in
Sect. 3.3, which gradually mutates a circular into an ellip-
tical support region for the Principal Component Analysis.
A simplified version of it is presented as Algorithm 1.

The algorithm contains three nested WHILE iterations.
The invariant of the WHILE in line 8 is that a set of PL curve
fragments (PL_Curve_Set) has been synthesized and that
there exist neighborhoods of unused points which have not
been considered yet (Q �= ∅). The invariant of the WHILE
in line 12 is that a local PL fragment (local_C) is being
threaded as long as a well-defined tangent is identified along
it. The invariant of the innermost WHILE (line 18) indicates
that in a particular neighborhood, a PCA based on circular
support regions has produced a low ρ indicator. Therefore,
the support region is gradually flattened until either ρ sur-
passes a threshold or a specified number of trials is reached.
In the first case, the algorithm proceeds to the next (in the
direction of v) neighborhood. In the second case, the algo-
rithm recognizes the fact that no clear tangent has been iden-
tified and declares the local curve as finished. This WHILE
iteration implements the heuristic discussed in Sect. 3.3.

The elements of the queue Q (line 5) have the form [p,v]
where p is a point near C and v is a (unit) vector tangent to
C near p. Notice that −v is also tangent to C at p. Each el-
ement of Q indicates a place and direction for traversing the
sample S for the recovery of a portion of C. If the queue
Q is empty, the algorithm finishes. The built-in function
[ρ,p, v] = pca(S) is used in order to perform the Princi-
pal Component Analysis of the point set S giving as a result
the trend v, the center of mass p, and the correlation coeffi-
cient ρ.

The algorithm builds each curve fragment or local curve
local_C as long as there is a clearly computable vector tan-
gent to C at each point p. If the tangent is clear, a circular-
supported PCA calculation is sufficient (lines 15, 16) to
determine it. Otherwise, an ellipse-supported PCA is at-
tempted (lines 18–24). If the ellipse-based PCA manages
to overcome the self-intersection, the algorithm continues
(lines 26, 27) completing the curve fragment local_C. If the
elliptic support regions at both extremes of local_C lead the
PCA to fail identifying a clear tangent vector, the algorithm
stops processing the current fragment local_C (line 29). In
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Algorithm 1 PCA-based reconstruction algorithm using el-
lipses.

1: Comment: S is the sample of C with noise.
2: Comment: r is set to the sampling noise plus sampling

distance.
3: Let p be any point in S such that S ∩ B(p, r) presents a

correlation coefficient ρ ≈ 1.
4: [ρ,pt , vt ] = pca(S ∩ B(p, r))

5: Q = queue([pt , vt ])
6: Q = add(Q, [pt ,−vt ])
7: PL_Curve_Set = [ ]
8: while Q �= ∅ do
9: [p,v] = discharge(Q)

10: local_Cu = [ ]
11: clear_tangent=TRUE
12: while clear_tangent do
13: local_C = [local_C ,p]
14: pt = p + λ ∗ v

15: local_S = S ∩ B(pt , r)

16: [ρ,pt , vt ] = pca(local_S)

17: Num_Trials = 1
18: while (Num_Trials < Max_Trials) and (ρ <

Lower_Bound) do
19: d = 2α(1 − ρ2)

20: f 1, f 2 = pt ± d
2 ∗ v̂

21: local_S = S ∩ E(f 1, f 2, α)

22: [ρ,pt , vt ] = pca(local_S)

23: Num_Trials = Num_Trials + 1
24: end while
25: if (Num_Trials < Max_Trials) then
26: v = vt

27: p = pt

28: else
29: clear_tangent = FALSE
30: Let p be an unused point in S whose neighbor

point set inside a disk B(p, r) has ρ ≈ 1.
31: if p is found then
32: [ρ,pt , vt ] = pca(S ∩ B(p, r))

33: Q = add(Q, [pt , vt ])
34: Q = add(Q, [pt ,−vt ])
35: end if
36: end if
37: end while
38: PL_Curve_Set = [PL_Curve_Set, local_C]
39: end while
40: Comment: PL_Curve_Set is the set of PL fragments

approximating C.

this situation, the algorithm seeks unused neighborhoods of
the point set that may originate another fragment local_C

when taken as seed in later iterations (line 30). If such neigh-

borhoods are found, they are input into the queue Q (lines
32–34).

3.5 Complexity of the algorithm

Let us assume that the number of points in the sample is N .
In Algorithm 1, either one of lines 21 or 22 contains in-
structions whose worst-case cost is O(N). Since such in-
structions are inside threefold nested WHILE loops whose
worst-case complexity is O(N) each, we conclude that the
worst-case complexity for such an algorithm is O(N4). It
is important to observe that in our approach no additional
memory or time resources are spent in building or maintain-
ing collateral data structures or in pre-processing the data.

In this regard, the literature reviewed is uniformly incom-
plete in that run-time complexities are given without report-
ing resources devoted to (a) collateral data space and (b) pre-
processing. Since our evaluation O(N4) is a worst-case esti-
mate and specifically rules out the need of expenses (a) and
(b) above, it is not comparable with other evaluations which
concentrate on expected cases and neglect to take into ac-
count the expenses caused by (a) and (b) (see the Sects. 2
and 2.6).

Integration of PL fragments

This part of the algorithm is well known in computational
geometry and it is not dominant in terms of complexity,
as compared with Algorithm 1. The statement of this post-
processing is as follows. Given an unordered set of PL curve
fragments PL_Curve_Set = {c1, c2, . . . , cm} that approx-
imate the point set S (Fig. 4(b)), two steps are required:
(1) the joining of ci and cj when their endpoints are closer
than a distance δs (Fig. 4(c)), and (2) the splitting of the
paths resulting from (1) to avoid self-intersections, by us-
ing the decision criteria in Fig. 4(d). The final result appears
in Figs. 4(e) and (f). The processes (i) and (ii) considered
together have complexity O(N2).

4 Results

Figure 8 shows the functioning of the proposed algorithm,
applied to a closed curve with self-intersections. It can be
seen that the circular support regions (|f1 − f2| → 0) at
manifold neighborhoods become flattened ellipses (|f1 −
f2| → 2α) at non-manifold neighborhoods.

Outliers (points sampled with unusually large sampling
noise) do not participate in the execution. The algorithm is
robust in this sense, since it flattens the ellipse as a response
to the inclusion of such outliers in the PCA. As a result, such
points are expeditiously ignored. The whole algorithm stops
when most of the points (near 100%) have been considered
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in at least one ellipse or disk. The tests run provide strong
evidence that this stopping criterion does not affect the effi-
cacy of the algorithm.

The implemented algorithm was applied to three (Hand,
Pelvis and Skull) data sets. Such data sets correspond to
cross-sectional parallel point samples applied to an object
which might have internal cavities. The point samples are
used as input to the curve reconstruction algorithm discussed
in the present article. The PL curves resulting from our al-
gorithm are then fed to a surface reconstruction algorithm
which accepts parallel planar contour sets ([21] or [7]), as
a means to prove their topological and geometrical correct-
ness.

A precision must be made to explain what a failure of
the implemented algorithm means: we consider that the al-
gorithm fails if it is not able to fit one PL curve in a local
neighborhood of the point sample (e.g. Fig. 16(f)). In con-
trast, if the algorithm implemented fits many disconnected
or non-manifold PL curves to the point sample (Figs. 14(j)
or 16(d)), such situations are corrected by running a post-
processing which joins the individual PL curves (Figs. 4(b)
and 4(c)) and then splits them at the self-intersections, form-

Fig. 8 Ellipse-PCA processing self-intersecting curves

ing disconnected closed contours (Figs. 4(e) and 4(f)). The
final product is a set of PL curves (1-manifolds), perfectly
suitable for downstream applications (for example, surface
reconstruction). Therefore, these two outcomes are not to be
considered as failures of the algorithm.

4.1 Data set 1. Hand

In surface reconstruction from slice samples it is not uncom-
mon to have one or more (usually non-consecutive) missing
slice samples. In such a case, it is appealing to replace the
missing slice sample i by the projection of the point data
from slices i − 1 and i + 1 onto the plane corresponding
to it. An example of such a projected point set is depicted
in Fig. 9(a). It must be pointed out that such a point set
presents the additional difficulty of having noise stemming
from the point projection, besides the basic sampling noise.
Figure 9(b) presents the result of the application of Algo-
rithm 1 to such a point set. A standard algorithm for sepa-
ration of non-manifold curves into manifold ones produces
the separated contours (Jordan curves in R2) in Fig. 9(c).

Figures 10(a) and 10(b) present a zoom on particular
details of Figs. 9(b) and 9(c), respectively. Figure 10(a)
presents a neighborhood of self-intersecting PL curves ob-
tained with Algorithm 1. Such neighborhood with the self-
intersection removed is shown in Fig. 10(b). Additional re-
sults of self-intersecting cross cuts of the Hand data set are
displayed in Fig. 11.

Algorithm 1 was tested on the Hand data set, made of
slice noisy point samples of an object. The result of apply-
ing Algorithm 1 to all slices of such a data set is displayed

Fig. 9 Hand data set. Noisy point set (a) along with its processing (b)
and post-processing into a disconnected 1-manifold (c)
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Fig. 10 Detail of broken self-intersection of Fig. 9

Fig. 11 Additional examples of self-intersecting contours in the Hand
data set

Fig. 12 Algorithm results for the Hand data set. Rendered surfaces

in Fig. 12(a). The slices containing self-intersections are the
darker ones. The PL contours belonging to the slices were
then fed to well-known algorithms ([21] or [7]) to recon-
struct the surface. Fig. 12(b) presents the surface for the
Hand point set including the whole set of cross sections.

Fig. 13 Reconstructed contours and surfaces for the Pelvis data set

4.2 Data set 2. Pelvis

To further illustrate here the robustness of the proposed
method, a nearly self-intersecting contour set was extracted
from the Pelvis data set (Fig. 13) and was added with noise
levels [1δn,2δn,3δn,4δn,5δn,6δn] (δn is the nominal sam-
pling interval). The algorithm was then run using such point
sets (see Fig. 14). The ellipse sequences of our algorithm are
displayed in the left column, while the recovered contours
(before splitting) appear in the right column.

Notice that the algorithm is able to fit one PL curve to
the whole point set at once for noise levels [1δn, . . . ,4δn],
showing stable performance for such cases. For noise levels
5δn or 6δn the performance of the algorithm degrades. It fits
several PL curves to the point set, which must be then inte-
grated as in Figs. 14(b) and 14(c). Such actions are discussed
in the section “Integration of PL Fragments.”

Notice that the strategy proposed in the present article
further processes the intermediate results for cases 5δn or
6δn, as these results are not considered to be topologically
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Fig. 14 Algorithm performance. Slice data from Pelvis data set

or geometrically erroneous. To get correct 1-manifolds we
apply the already discussed post-processing for integrating
the disconnected PL curves and the left- or right-splitting
actions in Figs. 14(e) and 14(f), if needed.

4.3 Data set 3. Skull

The Skull data set consists of 64 slices. Each slice contains
nested and/or disconnected contours. Some levels have con-
tours which are nearly self-intersecting, as seen in Fig. 15.
A particular slice of such a data set contains a contour as

the one shown in Fig. 15(a). Figures 15(b), 15(c) and 15(d)
show point samples of the contour with sampling noise of
1δn, 3δn and 6δn, respectively. It is evident that the point
samples, even for low noise, reflect a nearly self-intersecting
curve. Likewise, since the mentioned contours contain very
fine geometric detail, the frequency content of them is quite
high. As a consequence of the Nyquist principle, the min-
imal sampling distance needed to recover such contours is
also very small (half of the size of the smallest geometric
feature to be captured). This circumstance immediately re-
flects on the tightness of the sample, noise and the progres-
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Fig. 14 (Continued)

sion of the ellipse evolution, all of them being very different
as compared with the Pelvis data set.

Algorithm 1 is run using the data sets of Figs. 15(b), 15(c)
and 15(d). The evolution of the ellipse algorithm for each
noise level is displayed in Figs. 16(a), 16(c) and 16(e), re-

spectively. The inherent difficulty in the contour processed
produces a much tighter sequence of ellipses than the ones
recorded in Fig. 14 (Pelvis data set). Figures 16(b), 16(d)
and 16(f) illustrate the result of the execution of Algo-
rithm 1. The results of the recovery of individual PL ap-
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Fig. 15 Noisy samples of a contour in the Skull data set

proximations of C from the random noisy point sets are sat-
isfactory for the noise levels 1δn and 3δn but fail for noise
level 6δn.

Notice that the individual PL curves are not exactly man-
ifolds because they are self-intersecting. Moreover, they are
still fragmented. Therefore, the individual PL curves are still
to be appended together as in Figs. 14(b) and 14(c), and as
discussed in section “Integration of PL Fragments.” Next,
the self-intersecting PL curves must be split at the self-
intersections as shown in Fig. 14(d).

Figure 17(a) displays the Skull contour set as obtained
by the iterated application of the algorithm discussed in
the present article. Then, a surface reconstruction algorithm
from parallel planar contours ([21] or [7]) was executed ren-
dering the surface shown in Fig. 17(b).

4.4 Counting of elementary operations

Besides the discussion regarding the complexity of the im-
plemented algorithms, the number of elementary operations
were registered for the Pelvis and Skull runs. By elemen-
tary operation we mean the access to, or query of, any point
by the algorithm. This register avoids working with execu-
tion times, which are not a reliable data, since they become
meaningless after new hardware comes into market.

Figure 18 displays the result of the runs with the fol-
lowing conditions: (1) Two types of elementary operations
recorded: (a) point accesses in ellipse inclusion tests, and
(b) point access in point set decimation. (2) Noise levels
[1δn, . . . ,6δn]. (3) Pelvis and Skull data sets.

Fig. 16 Results. Skull data set

Figure 18(a) deals with the Pelvis data set. The upper
curve represents the number of accesses to the points in
point-in-ellipse queries. The lower curve shows the num-
ber of accesses to the points in point decimation opera-
tions. Decimations are performed to progressively reduce
the search space (point set) after a separate PL curve is
reconstructed. The decimation eliminates from the search
space the points that have just participated in the estimation
of the last PL curve. Fig. 18(b) corresponds to the Skull data
set, with the upper and lower curves having the meaning just
commented. It is evident from Fig. 18 that the Skull data set
is considerably more complex that the Pelvis data set. We
can also notice that the cost of both point access operations
(i.e., point-ellipse inclusions and point decimation) is prac-
tically flat with respect to the level of noise of the data set,
for both data sets.
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Fig. 17 Contours and reconstructed surface for the Skull data set

Fig. 18 Number of elementary operations (point accesses)

The fact that the point decimation is much cheaper than
the point-ellipse inclusion is a somehow positive finding.
It means that this collateral operation (decimation), which
greatly expedites the runing of the main algorithm (point-
ellipse inclusion), can be applied without significant addi-
tional burden.

5 Conclusions and future work

This article has presented an algorithm (test sets Hand,
Pelvis, Skull) for the reconstruction of a planar curve C

out of a noisy sample of it. The algorithm has the follow-

ing characteristics: (1) It constructs a Piecewise Linear ap-
proximation of C. (2) It is able to recover self-intersecting
or nearly self-intersecting curves rendering a decomposi-
tion of them into disjoint 1-manifolds. (3) It performs local
Principal Component Analysis using support regions whose
form mutates from circular disks, in neighborhoods where
there are no self-intersections, to flat ellipses near the self-
intersections. (4) It does not require collateral data structures
or pre-processing, and its worst-case complexity is O(N4)

where N is the number of points sampled on C.
We consider this worst-case complexity as non-compara-

ble with the complexity reported by some authors addressing
the same problem, since they estimate expected cases and
fail to account for the computing time and space spent in
the collateral data structures and pre-processing present in
their algorithms. It must be pointed out that the vast majority
of the literature reviewed does not address computational
expenses of their proposed algorithms.

Future work on the topic of curve reconstruction includes
the reconstruction of non-planar curves, and the lowering of
complexity of reconstruction with implicit forms of higher
degree (Spline, Bézier, NURBS).
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