
Keywords affordance, egocentric, steering, space-time planning

2 M. Kapadia et al.

Noname manuscript No.
(will be inserted by the editor)

Parallelized Egocentric Fields for Autonomous

Navigation

Mubbasir Kapadia1,2 Shawn Singh1,4

William Hewlett1 Glenn Reinman1

Petros Faloutsos1,3

1University of California, Los Angeles
2University of Pennsylvania
3York University
4Google Inc.

the date of receipt and acceptance should be inserted later

Abstract In this paper we propose a general framework for local path-planning
and steering that can be easily extended to perform high-level behaviors.
Our framework is based on the concept of affordances: the possible ways an
agent can interact with its environment. Each agent perceives the environ-
ment through a set of vector and scalar fields that are represented in the
agent’s local space. This egocentric property allows us to efficiently compute
a local space-time plan and has better parallel scalability than a global fields
approach. We then use these perception fields to compute a fitness measure
for every possible action, defined as an affordance field. The action that has
the optimal value in the affordance field is the agent’s steering decision. We
propose an extension to a linear space-time prediction model for dynamic col-
lision avoidance and present our parallelization results on multi-core systems.
We analyze and evaluate our framework using a comprehensive suite of test
cases provided in SteerBench and demonstrate autonomous virtual pedestri-
ans that perform steering and path planning in unknown environments along
with the emergence of high-level responses to never seen before situations.

email: mubbasir@cs.ucla.edu

email: shawnsin@cs.ucla.edu

email: billyh@cs.ucla.edu

email: reinman@cs.ucla.edu

email: pfal@cs.ucla.edu

Address(es) of author(s) should be given

Egocentric Fields for Autonomous Navigation 3

1 Introduction

Research in the area of pedestrian simulation has seen a dramatic rise in
recent years. With the potential for this work being realized in a wide variety of
areas, ranging from urban planning and training simulations to games, life-like
steering motions for each individual have become critical for a truly immersive
and realistic experience.

There are two major components involved in pedestrian navigation: path
planning and a steering mechanism. They are often tackled as separate prob-
lems that need to be interfaced for a fully functional navigation system [10,42].
Approaches such as A* [16] and potential fields [61,45] are popular planning
methods for pedestrian simulations. Given a target location and an obstacle-
laden environment, these techniques compute a global path to the target.
Then, a steering mechanism (e.g., [38,28,36]) tries to follow the planned path
while avoiding dynamic objects.

However, an important feature of realistic steering is missing in traditional
approaches: humans constantly compute a local short-term space-time plan
to steer through their immediate environment which includes dynamic ob-
jects and other agents. This short-term plan is essential for natural steering in
crowded environments, as well as for resolving deadlock situations, for example
two people arriving at a doorway from opposite directions. Most agent-based
approaches do not perform space-time planning. Some works use space-time
predictions (e.g. [33]) with an explicit time dimension and basic linear predic-
tion. Most field-based approaches (e.g., [45]) do compute plans on the required
scale, but do not take into account time or dynamic obstacles. One notable
fields-based method uses continuum dynamics to achieve dynamic collision
avoidance [56], but at the expense of removing individuality in behaviors. In
general, field-based approaches require storing large high-resolution fields for
the entire environment. Updating these global fields cannot be easily paral-
lelized, and spends storage and computation cost in places that may not affect
any agents.

This paper presents a novel technique that bridges the gap between steer-
ing and planning by using information fields in an egocentric fashion, where
the origin of the field is centered about the agent at all times. This allows us to
implicitly account for time when planning, removes the storage and computa-
tion problems of global field-based approaches, and achieves linear scalability
when parallelized.

Our approach is based on the concept of affordances – the ways in which
an agent can interact with its environment [13]. Affordances have been applied
to agent systems [30,59], but not explicitly for steering. We define fitness to
be a measure of how appropriate the associated affordance (associated action)
will be. An affordance field is a scalar field that has a fitness associated with
every affordance in the space of all possible actions. A final decision is the
affordance associated with the optimal fitness.

To evaluate our approach, we report extensive benchmarking results us-
ing SteerBench [47]. Testing, evaluating, and analyzing steering simulations

4 M. Kapadia et al.

is known to be a difficult task, primarily due to the lack of automated tools.
SteerBench proposes a transparent method of objectively evaluating and com-
paring the quality of steering solutions. We present these results for analysis
and as a basis for evaluation and comparison to other steering methods.

This paper presents a novel egocentric fields steering framework with the
following contributions:

- We represent the fields in an egocentric local-space, as opposed to a global
world-space, gaining the benefits described above.

- We propose affordance fields as a powerful way to combine sensory infor-
mation, giving more meaningful data than potential fields.

- Our discretized model has variable resolution, where information accuracy
decreases with increase in distance from the origin. This avoids wasteful
computation and storage cost further away, where a plan would be recom-
puted before it is used.

- Our approach performs short-term planning, accounting for dynamic ob-
jects, making it possible to steer naturally in challenging agent-agent in-
teractions such as deadlocks.

- We discuss the issues involved in parallelizing our algorithm using inter-
agent communication and present our performance results exhibiting near-
linear speedup on multi-core architectures.

- We present the analysis results of our steering framework using SteerBench
to serve as the basis of comparison with related work.
The rest of this paper is organized as follows: Section 2 provides a brief

overview of the current state of the art in the field of crowd simulation. Then,
Section 3 gives a theoretical overview of our approach, including our egocen-
tric information representation and the concept of affordance fields. Section 4
describes the discretization of these fields for implementation, and Section 5
describes the specific fields that we use to demonstrate our approach. Sec-
tion 6 discusses the integration of our field-based steering technique into our
complete pedestrian simulation framework. We then provide extensive results
of our method running on many different benchmark scenarios in Section 7,
and evaluate the parallelization of our framework on multi-core architectures
in Section 8. Finally, Section 9 concludes and discusses future work.

2 Related Work

Since the seminal work of [39,38], there has been a growing interest in crowd
simulation with a wide variety of techniques being tested and implemented.
Excellent reviews of prior work can be found here [54,35]. We broadly classify
steering approaches into the following two categories:

Centralized Approaches. Centralized techniques such as continuum dy-
namics [8,56], regression [31], route choice models [21] and markov chains [29]
model the macroscopic phenomena exhibited in crowds (e.g. stadium evacua-
tion scenarios, urban simulations etc). However, these approaches are unable

Egocentric Fields for Autonomous Navigation 5

to model specific agent-agent interactions which are crucial in a microscopic
view of crowd simulations that are prevalent in todays applications.

De-centralized Approaches. These approaches model the agent as an inde-
pendent entity which performs collision avoidance with static obstacles, reacts
to dynamic threats in the environment while steering towards the target. Par-
ticle dynamics [39,38], social force models [20,19] and cellular automata mod-
els [53,7,55] are simple and efficient but cannot simulate realistic pedestrian
behaviors. Rule based systems [24,28,41,36,50,4] limit the steering functional-
ity to conditions that have been foreseen and do not react well to irregularities
in the environment that inevitably arise in a high density crowd simulation.
Predictive approaches [33,11,3,32] steer in complex environments by predic-
tively avoiding dynamic threats. The work in [48] presents a hybrid approach
that combines reaction, prediction, and planning into a single steering frame-
work. Example based approaches [25,26] use video segments of real pedestrian
crowds as input to a learning system that generates natural looking crowd
behaviors. The work of [42,43] integrates motor, perceptual, behavioral, and
cognitive components within a comprehensive model of pedestrians as indi-
viduals. [5] offers the ability of reaching a goal with a prescribed direction by
extending the funneling behavior.

There are two popular methods to path planning in crowd simulation. The
A* algorithm and its derivatives [16,17,9,57] tend to produce non-realistic
routes and require smoothing techniques in addition to a steering mechanism
for dynamic collision avoidance. The approach of potential fields [60,61,45,
14,2] generates a global field for the entire landscape where the potential
gradient is contingent upon the presence of obstacles and distance to goal.
Since a change in target or environment requires significant re-computation,
these navigation methods are generally confined to systems with non-changing
goals and static environments. A solution is proposed by [51] in which path-
finding data is pre-computed and stored in a connectivity table which offsets
this issue at the cost of a considerable memory overhead. [27] uses a segregated
local and global planner to perform path planning in a layered environment.
The work of [52] employs the notion of attractiveness of objects for path
planning and its use in human animation.

Space-time models (e.g., [22,58,44]) combine space and time into a single
construct by representing space as three dimensions and time as the fourth
dimension. Space time planning exploits the inherent advantage of having in-
formation in time to predict collisions in the future. These models improve
steering behaviors at the cost of an additional dimension which greatly in-
creases the search space, incurring a considerable overhead.

There has been previous work in the realm of egocentric based naviga-
tion [1,6,12]. These techniques use egocentric maps for simple static obstacle
avoidance but do not address the issue of larger environments where the goal
falls outside the local egocentric map. Moreover, this egocentric model does

6 M. Kapadia et al.

not address space-time planning for dynamic object avoidance or real-time
performance.

In most crowd simulation approaches, the underlying steering framework
offers parameters that can be used by a higher lever framework to implement
group behaviors. For example, in force based approaches [19], properly de-
signed attractive forces can keep a group of people together or make them
follow a leader. The work in [40] demonstrates realistic group behaviors using
a biologically-motivated space colonization algorithm previously used in gen-
erating leaf venation patterns. Our framework allows group behaviors to be
implemented by simply setting intermediate dynamic or static goals for the
agents.

Comparison to previous work. Our work is most similar to centralized
field-based approaches [60,56] and de-centralized predictive approaches [33,3].
However, the affordance fields in our method are represented in an egocentric
manner with variable resolution, giving us the following benefits: (1) they are
no longer bound to the resolution and scaling problems associated with global
fields and continuum methods. (2) We can dynamically scale the resolution
of our egocentric fields to get the highest resolution possible for the scale we
need. (3) The computational cost of our approach is not dependent on the
complexity of the environment. (4) Our approach naturally supports efficient
space-time planning, which is difficult to integrate into global fields and pre-
dictive approaches.

Extension to prior work. This paper is a significant extension of [23]. The
novel contributions over the original work are summarized as follows:

- The related work includes 18 additional references, better reflecting the
current state of the art in relation to the new research extensions.

- Section 4.3 proposes an analytical solution of the discrete field representa-
tion, to dynamically vary the resolution of the fields.

- Section 6 provides a detailed overview of the integration of our steering
technique into a complete pedestrian simulation framework. In particular,
we discuss the following three aspects of our framework: (1) pathfinding,
(2) steering and, (3) animation.

- We perform a rigorous evaluation of our proposal using SteerBench [47]
by demonstrating our steering algorithm on a wide variety of scenarios.
We also provide a detailed comparison between the proposed method and
established prior art [3,48] by reporting and analysing the scores of each
algorithm.

- We harness the advantage of local fields in our framework to parallelize
our steering algorithm. We investigate the use of different decomposition
and scheduling strategies with results of our findings (Section 8).

- We provide additional illustrative examples of our framework successfully
handling complicated scenarios and demonstrating group behaviors.

Egocentric Fields for Autonomous Navigation 7

Fig. 1 Phases of our framework.

3 Overview

Figure 1 presents an overview of our framework, which consists of three phases:
(1) sensory phase, (2) affordance phase and, (3) selection phase. The sensory
phase gathers and interprets sensory information from the environment to
compute perception fields. The affordance phase computes affordance fields
which quantifies the relative strength of all affordances. Finally, the selection
phases chooses the affordances having optimal fitness value, to produce the
control decisions. There are two key aspects of our model. First, the data is
represented using variable-resolution egocentric fields, where the origin is al-
ways the center of focus and the information accuracy decreases with increase
in distance from the origin. Second, we use the concept of affordances, to quan-
tify the different ways in which an agent cant interact with the environment
and other agents. Sections 3.1, 3.2 and 3.3 describe each of these phases in
detail.

3.1 Sensory Phase – Egocentric Perception Fields

The first phase of our method is to gather and interpret sensory information.
An egocentric perception field, P (X), is a vector or scalar field that quantifies a
property of the environment. For example, a traversability field quantifies how
easy it is to occupy a location in space – a high traversability value implies
that it is easy for an agent to occupy that location, while a low traversability
value implies that an agent would not be able to occupy that location, per-
haps because another object already occupies that location. Other examples
of perception fields include: velocity information of nearby objects, planned
trajectories of other agents, or even more abstract quantities like the percep-
tion of other agents’ state and attention. Egocentric perception fields can be

8 M. Kapadia et al.

computed from a robot’s sensors or by querying data structures of a virtual
environment.

Time is naturally taken into account in this model, because of the egocen-
tric representation. The agent is always located at the origin, and therefore
the distance between any point and the origin can be used to estimate the
time it would take to reach that point. We use this property to efficiently pre-
dict collisions and plan in the space-time domain without requiring an explicit
additional dimension in the system.

When appropriate, the raw perception fields are combined to provide a
more intuitive representation of perceptual sensory information:

P ′(X) = g(P1, P2, P3, ...Pn, goal) (1)

where g(·) is a function of one or more perception fields. For example, a linear
combination of static and dynamic perceptual information provides informa-
tion of traversability in the environment. This refined set of perception fields
can then be used to compute the affordance fields.

3.2 Affordance Phase – Affordance Fields

The concept of affordance was introduced by Gibson in 1954 [15]. In our con-
text, affordances describe the various ways that an agent understands that it
can use or interact with its environment. Specifically, we define an affordance
as a component of a possible steering action that an agent could perform at a
given point in time. For example, speed and orientation are two affordances.
A set of such affordances is the control output of our system.

The role of this second phase is to compute the “strength” or “fitness” of all
possible affordances. An affordance field, A(q), quantifies the relative strength
of all affordances of a particular type, based on the desired goals of the agent.
Affordance fields are defined over their respective spaces, such as the space
of possible speeds, or space of possible directions. Intuitively, an affordance
value, A(qi) for a particular action qi indicates how much this action would
help advance the agent towards accomplishing its goals. It is computed as a
function of perception fields:

A(q) = f(P ′

1, P
′

2, P
′

3, ...P
′

m) (2)

where the function f(·) is defined so that A(q) provides a numeric value indi-
cating the strength of a particular affordance. The specific functions that we
use for our implementation of steering are described in Section 5.

3.3 Selection Phase

The final output of our method is the particular affordance qi associated with
the optimal value A(qi). Optimality is defined by maximizing or minimizing

Egocentric Fields for Autonomous Navigation 9

Fig. 2 Visualization of our variable-resolution discretization and the relevant parameters.

f(·). For example, output decisions would be a target speed and desired direc-
tion of an agent. In a discrete setting, the affordance field is a set of sample
affordance values, and so this optimization simplifies to choosing the max or
min value of that set.

4 Discrete Egocentric Fields

We implement a discretization of the model developed in Section 3 as a connec-
tionist architecture that uses nodes arranged in concentric circles to maintain
egocentric spatial information. At all times, the central node represents the
current position of the agent. Each node perceives information corresponding
to its “spatial awareness” in the environment. The structure parameters of
the discretization are described in Section 4.1. Then, Section 4.3 describes the
variable resolution and dynamic scaling of the discrete fields.

4.1 Structure of Discrete Egocentric Fields

Discrete Egocentric Fields comprise the following structural components, shown
in Figure 2:

10 M. Kapadia et al.

- Root: The root represents the current position of the agent and is the
origin of the egocentric fields.

- Layers: The egocentric map is segregated into layers, denoted by the layer
number l, where each layer comprises a fixed number of nodes that store
the information of an area of the environment. The number of nodes per
layer n and the number of layers m are the two user-defined parameters.

- Layer Radius: The distance from the root to the lth layer is known as
the layer radius, denoted as rlayer(l).

- Node Radius: The radius of the area associated with node of the lth layer
is termed as the node radius, rnode(l). The node radius increases for layers
further from the root. As a result, the spatial area covered by the node
increases with increase in distance from the root, giving rise to variable
resolution.

- Inter-node weight: The inter-node weight, w(l), determines the area be-
tween two adjacent nodes in successive layers. It allows us to dynamically
scale the coverage of the environment, for a constant memory cost.

- Node Information: Each node contains its location, connectivity to neigh-
boring nodes, and values of the perception and affordance fields for its given
location.

4.2 Derivation from User-defined Parameters

The accuracy of the discrete representation is dependent on the layer radius,
node radius, and the inter-node weight, which in turn are determined by user-
defined parameters: the number of nodes per layer, n, and the number of layers,
m. Here we describe how those parameters are computed given n and m.

The layer-radius rlayer(l), node-radius rnode(l), and inter-node weight w(l)
all contribute to the variable resolution and the dynamic scaling of the egocen-
tric fields. These structural components are dependent on the layer number l
and the number of nodes per layer n. Note that n is a user-defined parameter.
The node radius is proportional to the circumference of the lth layer. Thus,

rlayer(l) = rnode(l) ×
n

π
. (3)

The first layer is at an offset of rnode(0), outside the agent. The agent is
modeled as a circle, with radius ragent.

rlayer(0) = rnode(0) + ragent. (4)

From 3 and 4, the initial condition of rnode(0) is

rnode(0) =
π

n − π
× ragent. (5)

The node radius of the next layer increases to ensure the coverage of adjacent
nodes following the structure shown in Figure 2,

rnode(l + 1) =
n + π

n − π
× rnode(l). (6)

Egocentric Fields for Autonomous Navigation 11

Equations 3, 5 and 6 provide a method of estimating the node radii and
the layer radii respectively. The user can thus specify the number of nodes per
layer, n and the number of layers, m to control the size and resolution of the
map.

4.3 Variable Resolution and Dynamic Scaling

Our method allows us to take advantage of variable resolution discretization,
where the accuracy of information is higher near the root and decreases further
from the origin. The information storage per unit area is dense close to the
origin, and density decreases further from the root. In combination with the
egocentric property, variable resolution fields allow us to avoid costly computa-
tions where data is far away, both temporally and spatially. This is appropriate
in the context of agent navigation, since the immediate surroundings are often
more important for making navigation decisions.

This is appropriate for agent navigation, where an agent’s navigation prior-
ities are highest in its immediate surroundings, and lower further away, where
it cannot robustly predict the future situation anyway. In this way, the layer
radius also determines the relative importance of the information in each node.

To dynamically scale the field at runtime, we use inter-node weights, w(l),
to scale the field with respect to the distance of the goal, D. If the goal is
further than the radius of the mth layer, D > rlayer(m − 1), then the goal lies
outside of the field. In this case, we scale the resolution of the field such that
the goal lies inside the field. The weight of the first layer w(0) is initialized to
1 to keep the level of detail in the first layer high for collision-free steering. We
successively increase the weight of the other layers as follows:

w(l + 1) = w(l) + β. (7)

where β represents the common difference between successive weights. The
weight of the mth layer can thus be calculated as follows:

w(m − 1) = 1 + (m − 1) × β. (8)

The scaled node radius r′node(l) is computed as follows:

r′node(l) = rnode(l) × w(l). (9)

For the goal to lie within the field, the goal distance, D must be equal to the
scaled layer radius, r′layer(m − 1). From Equations 3, 6, 8, and 9, we get

D =

(

n + π

n − π

)m−1

× r(0) × (1 + (m − 1) × β) ×
n

π
(10)

Rearranging Equation 10, we can compute β to dynamically scale the field to
accommodate the goal position.

12 M. Kapadia et al.

Fig. 3 Data flow diagram for steering using egocentric fields.

β =

D

(n+π

n−π
)

m−1
×r(0)×n

π

− 1

m − 1
(11)

5 Applying Discrete Egocentric Fields to Steering

This section describes the specific egocentric fields used for steering. Sensory
information, such as traversability, dynamic threats and velocity of neigh-
boring agents, is represented using egocentric perception fields (Section 5.1).
Affordance fields are computed as a function of these perception fields which
provide the relative strength of all possible steering decisions, based on the
goal(s) of the agent (Section 5.2). The final output decisions, in the form of
target speed, starget and target direction, Dtarget are used for locomotion of
agent (Section 5.3).

Egocentric Fields for Autonomous Navigation 13

5.1 Sensory Phase – Perception Fields

Figure 3(a) illustrates the specific perceptions fields used for steering, which
are described below:

- Static Field: The static field, Pstatic(X), represents the configuration of
the obstacles in the environment surrounding the agent. A minimum value
of 0 for a given location in the field indicates that the location is free from
static obstacles, while a maximum value of 1 indicates that it cannot be
traversed.

- Dynamic Field: The dynamic field, Pdynamic(X) represents the config-
uration of all dynamic objects, by providing the predicted positions of
neighboring agents at various points of time. A minimum value of 0 in-
dicates that the likelihood of a dynamic threat at the given location is
minimal, while a maximum value of 1 indicates a high probability of a
dynamic threat.

- Velocity Field: The velocity field, Pvelocity(X) is a vector field that pro-
vides the direction and speed magnitude of neighboring agents.

- Traversability Field: Ptraversability(X), the traversability field, is a com-
bination of Pstatic and Pdynamic:

Ptraversability(X) = Pstatic(X) + Pdynamic(X) (12)

- Local Dynamic Field: The dynamic field, Pdynamic(X) is subject to a
kernel function that considers the regions in which dynamic threats are
most imminent. The resulting fields are known as local dynamic fields,
denoted by Plocal-dynamic.

Plocal-dynamic(X) = K(X) · Pdynamic(X) (13)

Our current implementation uses a simple step function which only con-
siders the information in the first m/2 layers of the dynamic field, where
m is the total number of layers :

K(X) =

{

1 if |X| < rlayer(m/2)
0 otherwise

(14)

- Relative Velocity Field: The relative velocity field, Prelative-velocity(X)
provides the relative velocity of neighboring agents with respect to the
agent’s velocity.

Prelative-velocity(X) = Pvelocity(X) − (scurrent × Dcurrent) (15)

where scurrent is the speed with which the agent is traveling and Dcurrent

is its current direction of motion.

Implicit Space-Time Planning. Previous approaches implement space-time
planning by representing space in two or three spatial dimensions with time
as an additional dimension. This incurs a considerable processing overhead
which becomes intractable in large crowd simulations. Our approach naturally

14 M. Kapadia et al.

supports efficient space-time planning by using egocentric fields. Due to the
egocentric nature of our data representation, we can represent time implicitly
as the distance from the origin to any point of interest, effectively reducing
the dimensions in space-time planning by one.

There exists a mapping between time and a particular layer of an agents
egocentric field, as both time and the layer number are proportional to the
distance from the origin. Let t[l] be the time taken by the agent to travel a
distance rlayer(l), for a particular layer, l. Pdynamic and Pvelocity are computed
by considering this time-level associativity and the neighbors, N , surrounding
an agent . If the difference in the time taken by the neighbor N(i) in traveling a
distance rlayer(j) and the time taken by the agent to travel a distance rlayer(k)
is below a certain threshold, ǫ, then a dynamic threat is predicted at that
instance of time and space. Pdynamic of the agent reflects a potential threat at
the predicted position of N(i), at time t[k]. Pvelocity stores the current velocity
of the potential threats at that point in space. Once these fields are computed,
Plocal-dynamic and Prelative-velocity are determined using equations 13 and 15.

5.2 Affordance Phase – Affordance Fields

Once the perception fields are populated, the affordance fields can then be
computed. The affordance fields that we use for steering provide a fitness
value for each possible speed and direction, and are defined as follows:

Speed Affordance Fields. The speed affordance field Aspeed(s) provides the
relative fitness for each speed affordance. The fitness of a particular speed s is
the distance of the most imminent threat for that value of s:

Aspeed(s) = arg min
X

(Xi + t × Prelative-velocity(X)) (16)

where Xi ∈ {X : Plocal-dynamic > 0}. Note that the relative velocity field,
Prelative-velocity(X) is recomputed for each s.

Direction Affordance Fields. Direction Affordance Fields, Adirection(θ),
quantify the relative strengths of all possible directions θ in which an agent
can steer. A pedestrian in a crowd bases its direction of travel on the presence
of static objects in the environment as well as other pedestrians (dynamic
objects). For instance, a slow moving pedestrian in front would mandate a
direction change in order to perform an overtaking maneuver. In order to
compute the direction affordance field, we first compute an intermediate affor-
dance field, Aspatial(X), to provide a fitness value for all points in the spatial
domain:

Aspatial(X) = f1(Aspatial, Ptraversability,Xgoal) (17)

where f1 is an iterative process on Aspatial. The process starts by adding a
strong fitness value at the goal position and then propagating this value in all
directions. The propagation at each point in space is affected by the traversabil-
ity perception field. For example, if there is an untraversable object between

Egocentric Fields for Autonomous Navigation 15

the agent and its goal, the fitness value will not propagate through the object.
Instead the high fitness will eventually reach the agent by propagating around
the object.

The implementation of f1 is described as follows. Given a 3D location X1,
which is initially set to Xgoal, a set of points at an infinitely small displacement
of ∆r in all directions around X1 can be represented by the following function,
a(X):

a(X) = {X2 : |X − X1|
2 = ∆r2,X ∈ R3} (18)

The fitness value propagates from point X1 to point X2 according to the
following recurrence:

Aspatial(X2) = (Aspatial(X1) − Ptraversability(X2)) × α (19)

where α ∈ (0, 1) is the rate of decay. The end result of this process is a path
of high fitness from Xorigin to Xgoal that represents the path that must be
traversed to reach the goal.

The spatial affordance field, Aspatial(X) provides fitness values for all points
in space. However, we require the fitness for all possible directions which serve
as our steering choices. We choose the fitness values of points immediately
surrounding the agent as the values for direction affordance, Adirection(θ).

5.3 Selection Phase – Optimal Affordance Selection

Once the fitness is computed for all speed and direction affordances, the final
step is to select the speed and direction having optimal fitness. The target
speed, starget maximizes Aspeed(s), i.e. it maxmimizes the distance from all
imminent threats:

starget = arg max
s

Aspeed(s) (20)

The target direction, Dtarget is estimated by rotating the current direction by
an angle, θtarget which is computed as follows:

θtarget = arg max
θ

Adirection(θ) (21)

In the discretized implementation of our model, selecting the direction
having maximum fitness produces vibrations because the fitness of adjacent
directions may oscillate over key frames. We offset this undesirable effect by
performing quadratic interpolation for fitness over a window of directions, and
maximizing the interpolated fitness. Let Y (θ) = Aθ2 + Bθ + C be a quadratic
equation that maps angular displacements to fitness. The value of θ for which
Y (θ) is maximized is simply given by θtarget = −B/2A.

16 M. Kapadia et al.

(a) (b) (c)

(d) (e)

Fig. 4 The Steering Algorithm: (a) The current state of the environment. (b) Static Per-
ception Field indicating low traversability at position of obstacle. (c) Dynamic Perception
Field for speed starget = s0. (d) Dynamic Perception Field for speed starget = s0 + ∆V ,
which avoids the dynamic obstacle. (e) Resulting affordances indicating a path of high fitness
to goal.

6 Virtual Human Simulation Framework

This section presents the integration of our steering technique into a complete
framework. Our pedestrian simulation framework comprises three modules: (1)
Pathfinding : the process of determining a series of waypoints from the start
position to a target location (Section 6.1), (2) Steering : the use of discrete ego-
centric fields to steer the agents along the planned path (Section 6.2) and, (3)
Animation: the process of animating virtual humans that follow the position
and orientation trajectories (Section 6.3).

6.1 Pathfinding

Recall that agents dynamically scale their egocentric fields to include the local
goal. The resolution could become too coarse if we allowed this goal to be too
far away. To avoid this problem, we first compute a series of waypoints {wi} (a
long-term path) using A* search [16] that leads an agent to its goal position
which may lie outside the boundaries of the field. The next waypoint wi is
given as input to the steering algorithm to initialize the local goal, Xgoal.

Egocentric Fields for Autonomous Navigation 17

6.2 Steering

Given the local goal, we employ our egocentric affordance fields approach to
find an effective control decision. Sections 3, 4 and 5 presented the foundations
of our approach, and the following algorithm describes how these pieces are
implemented together:

1. Determine goal position of an agent, Xgoal.
2. Initialize node weights, w(l) = 1,∀ l. If the goal falls outside the field,

perform dynamic scaling using Equations 7 and 11.
3. Estimate time-layer associativity, t[i], for all m layers, where i iterates from

1 to m. t[i] is the predicted time taken by the agent to travel a distance
rlayer[i], corresponding to layer i, at the current speed.

4. Populate the static perception field, Pstatic.
5. Populate dynamic threat perception field, Pdynamic, at the current speed.
6. Populate local dynamic threat perception field, Plocal-dynamic using Equa-

tion 13.
7. Populate velocity perception field, Pvelocity.
8. Populate relative velocity perception field, Prelative-velocity using Equation 15.
9. Generate speed affordance fields, Aspeed(s), using Equation 16

10. Compute the new target speed starget, which maximizes the fitness of the
speed affordance, using Equation 20.

11. Re-estimate time-layer associativity, dynamic fields and velocity fields at
new target speed.

12. Generate direction affordance fields, Adirection(θ) (Equations 17-19).
13. Compute target direction, Dtarget (Section 5.3).

The above mentioned steps are executed at every time step for each agent.
starget and Dtarget are the control decisions made by our system. The steering
simulation results in position and orientation trajectories of each agent which
are input to the animation system (Section 6.3) for providing high-quality
results of animated humans.

6.3 Animation

The animation system is given the position and orientation trajectories of the
agents. It produces a set of blended animations such that the virtual human
moves along the specified trajectories. We use a simple finite-state machine
of animations to simulate the virtual humans that are seen in the results
(Figure 5). Our state machine has the following animation states: (1) Walk,
(2) Stop, (3) WalkToStop and, (4) StopToWalk. In addition, we generate a
SlowWalk animation by reducing the speed of the Walk animation. The state
machine transitions are based on speed thresholds, and the animations are
also played at different speeds to match the simulated speed of the agents. To
seamlessly patch between animations, we linearly blend from one animation
to the next. Each animation is composed of three pieces, a beginning overlap,

18 M. Kapadia et al.

(a) (b) (c) (d)

Fig. 5 (a): Agents walking through a hallway. (b): Queue formation as agents enter narrow
passageway. (c): A simulation of a forest-like scenario with a large number of agents and
obstacles. (d): 5000 agent simulation with random initial positions and goals.

a non-overlapping section, and an ending overlapping section. This method
animates smoothly and without foot-skate, while following the control outputs
of our egocentric affordance fields method.

7 Evaluation

In this section, we describe the methodology (Section 7.1) and results (Sec-
tion 7.2) of our approach, followed by a discussion (Section 7.3) of the results.

7.1 Methodology

Testing, evaluating and analyzing steering simulations is known to be a difficult
task, primarily due to the lack of automated tools. SteerBench [46,47] proposes
a way of objectively evaluating and comparing the quality of steering solutions.
It provides: (1) a set of test cases that can be used to exercise the steering
algorithm over a wide variety of scenarios and, (2) a scoring method that
can be used to gain insight into the simulation and serve as the basis for
comparison between different approaches. As part of our work, we demonstrate
our algorithm using the test cases and scoring methods from SteerBench, to
serve as the basis for comparison with other approaches.

The test cases we used for testing represented a diverse set of navigation
tasks, described as follows:
Similar direction: Agents traveling in similar directions, with slightly differing
goals.
Crossing threats: Agents crossing paths, at various angles, in the presence of
obstacles.
Oncoming threats: Agents traveling in opposite directions, with a potential for
head-on collisions, with obstacles in the way.
Curves: Agents having to travel along a curved path to avoid obstacles.
Group-interactions: Agents traveling in groups, with other agents cutting
across.
Squeeze: 2-4 agents, passing through a narrow hallway, with same or opposite
directions (Figure 8).
Doorway : Agents having to pass through a narrow doorway.

Egocentric Fields for Autonomous Navigation 19

Overtake: An agent, encountering a slower moving agent in front, while trav-
eling through a narrow passageway. (Figure 9)
Confusion: Agents traveling in opposite directions, arriving at the same place,
at approximately the same time. (Figure 6)
Hallway : A large number of agents, passing through a hallway, in either direc-
tion. (Figure 5 (a))
Bottleneck squeeze: Agents enter through a narrow passageway (Figure 5 (b))
Forest : A large number of agents, with random goals, in an obstacle laden
environment. (Figure 5 (c))
Random: A large number of agents, with random initial positions and goals.
(Figure 5 (d))
Urban: A large number of agents, with random goals, in an environment with
large obstacles, resembling large buildings.

Using these test cases and some additional group behavior tests, we eval-
uated the qualitative behaviors of our framework, discussed below. We also
computed SteerBench benchmark scores, using the composite01 benchmark
technique. The three metrics used in the composite01 benchmark technique
are: (1) average number of collisions per agent, (2) average time in seconds that
an agent spends to reach its goal, and (3) average kinetic energy. A weighted
sum of these metrics is used to provide a single score for a steering algorithm
on a particular test case. Collisions are given a high weight (50.0) while the
other two metrics are given a weight of 1.0. For more information on how the
SteerBench score is computed, please refer [47].

7.2 Results

In this section, we evaluate our approach by comparing it with two state of
the art steering techniques and one baseline reactive approach:

– PPR. The work in [48,46] presents a hybrid framework that combines
reaction, prediction and planning into one single framework.

– RVO. The work in [3] proposes the use of reciprocal velocity obstacles to
serve as a linear model of prediction for collision avoidance in crowds.

– Reactive. This steering technique employs the use of a simple finite state
machine of rules to govern the behavior of an autonomous agent in a crowd.
This technique is purely reactive in nature and does not employ the use
of any form of predictive collision avoidance. The implementation of this
technique is similar to the collision avoidance strategy described in [42].

These three approaches represent a sampling of the wide spectrum of tech-
niques that have been used for simulating crowds, ranging from predictive
models, rule-based techniques, and hybrid frameworks. Table 1 lists the Steer-
Bench scores for our framework as well as these three techniques to serve as a
basis of comparison.

20 M. Kapadia et al.

Our steering framework is able to successfully simulate 40 out of 42 test
cases that are present in SteerBench (we do not consider the large-scale test
cases that are useful for stress testing the steering framework). We observe
similar scores in all steering techniques for the simple, crossing and, oncoming
scenarios. The PPR and reactive technique have collisions in the Cut-across-1
scenario where an agent has to cut through a group of other agents. In Surprise-1

and Surprise-2, agents are unable to detect the presence of other agents that
are not in their line of sight (blocked by obstacles) and hence are unable to
predictively avoid collisions; this is the expected result for these test cases. The
Overtake and Overtake-obstacle scenarios are successfully solved by RVO
and our framework. The confusion scenarios show unexpected results where the
reactive technique performs almost as well as the other algorithms which use
predictions to avoid collisions. The squeeze scenarios are much more challeng-
ing where agents need to steer in narrow passageways with oncoming threats.
Our framework successfully solves 4 of the 6 scenarios without collisions. How-
ever, the agents reach a deadlock in the Wall-squeeze and Doorway-two-way

scenarios as the agents arrive at the narrow entrance together and are unable
to back away to let one agent through. The results of the SteerBench analysis
show that our algorithm can efficiently handle a wide variety of scenarios and
is competitive with the current state of the art in steering.

Group Behaviors. Introducing a high-level layer into our framework, which
assigns intermediate goals to agents, provides a simple and intuitive way for
implementing common group behaviors. The intermediate goals can be dy-
namic (e.g. other agents) or static (e.g. location in space). To implement the
group behaviors demonstrated in the video, agents automatically choose a dy-
namic goal to be the closest agent in front of itself. The following examples of
group behaviors are demonstrated:

Lane Formation and Queueing : When several agents are given the same goal,
agents with no-one in front simply steer towards the goal. Agents with others
in front begin to follow the agents immediately in front. The strictness of the
lane is defined by a ‘comfort distance’ between agents. As the agents near the
goal, they ‘queue’ up politely. (Figure 5 (b))
Snake Motion: We demonstrate snake-like motion by having a leader weaving
around a set of obstacles, and each previous agent follows the next one.
Group persistence: Persistence of groups is demonstrated in the Oncoming-
Groups scenario (Figure 10). Agents perceive the oncoming group as a single
entity, because of the variable resolution fields. As a result, the two groups
steer around each other. Leader Following and Group Reformation: Figure 7
shows a group of agents following a leader as they enter through passageways.
The group breaks up as they steer around the obstacles and reform as they
continue to follow the leader.

Additional behaviors can be implemented by varying parameters (e.g., de-
sired speed) or adding fields to the framework. For example, an additional field
could be defined based on social constraints, such as “prefer to stay on the
sidewalk” or “avoid a scary group of people”. Aggressive and polite behaviors,

Egocentric Fields for Autonomous Navigation 21

Test Case Time Energy Ego RVO PPR Reactive

Simple-1 11.1 240.5 251.6 266.3 254.8 254.8
Simple-2 7.3 137.4 144.7 141.3 145.6 145.6
Simple-3 5.7 112.0 117.8 114.4 118.8 117.9
Simple-obstacle-1 6.7 126.4 133.1 130.5 133.9 133.9
Simple-obstacle-2 14.2 253.1 267.3 265.7 268.2 268.2
Similar-direction 37.3 633.9 671.2 672.3 672.2 672.2
Simple-wall 23.9 415.4 439.3 450.1 440.1 474.5
Curves 21.5 363.9 385.4 431.2 385.5 385.5
Crossing-1 14.6 246.7 261.3 259.7 261.4 259.5
Crossing-2 14.2 246.9 261.0 257.5 261.6 259.4
Crossing-3 16.3 282.9 299.2 295.7 299.4 297.3
Crossing-4 16.3 277.9 294.1 291.2 294.7 292.5
Crossing-5 20.6 279.7 300.3 296.8 297.2 297.15
Crossing-6 22.2 277.8 298.3 298.9 295.3 295.3
Crossing-obstacle 13.9 227.9 241.8 268.0(0.5) 244.2 247.1
Crossing-trick 5.6 95.0 114.2 111.1 115.2 115.2
Oncoming-1 14.4 254.8 269.2 265.4 270.0 268.6
Oncoming-2 14.3 253.6 267.9 266.4 268.7 267.5
Oncoming-3 15.0 253.6 268.5 265.4 268.7 267.4
Oncoming-4 14.4 254.8 269.2 265.4 270.1 268.6
Oncoming-obstacle 16.8 267.9 284.7 289.6(0.5) 284.1 276.8
Oncoming-trick 6.6 120.9 127.5 124.8 178.9 621.9
Oncoming-groups 41.7 598.9 640.5 643.8 637.5 638.8
Fan-in 17.3 236.5 254.1 267.3 253.9 255.8
Fan-out 32.3 519.9 552.2 549.5 551.3 551.3
Cut-across-1 32.6 505.9 538.6 545.8 571.9(0.6) 551.2(0.3)
Cut-across-2 33.6 505.9 539.5 546.8 537.1 536.9
Surprise-1 24.3 350.5 424.8(1) 408.8(0.5) 484.9(2) 403.9
Surprise-2 25.7 353.8 429.5(1) 401.6 407.2 406.6
Overtake 17.6 273.4 290.9 306.5 Fail Fail

Overtake-obstacle 16.9 279.3 296.2 300.3 Fail Fail

3-way-conf-1 17.5 276.2 293.7 293.4 293.4 292.7
3-way-conf-2 15.6 254.7 270.3 267.0 270.0 263.6
4-way-conf-obs 15.8 253.6 269.4 261.7 271.7 293.5(0.5)
4-way-conf 15.3 253.4 268.7 267.0 269.1 265.6
Frogger 14.2 227.6 241.8 240.4 241.6 241.4
Squeeze 19.45 315.0 334.5 332.9 335.2 382.8(1)
3-squeeze 20.77 312.9 333.7 360.3(0.6) 366.6(0.6) 396.9(1.3)
Double-squeeze 22.63 308.4 331.1 371.3(1) 354.6(0.5) 379.5(1)
Doorway-one-way 20.35 313.4 333.5 334.9 333.2 332.7
Doorway-two-way – – Fail 331.4 Fail Fail

Wall-squeeze – – Fail Fail 434.4(2) Fail

Table 1 Evaluation Results using SteerBench. Lower score is better. (1) Time: Average time
per agent in reaching goal (seconds). (2): Energy: Total energy spent per agent (kg ·m2/s2).
(3) Ego: The cumulative score of our method, computed as a weighted sum of average number
of collisions, time, and energy. Collisions are given a weight of 50.0 while time and energy
are given a weight of 1.0. (4) RVO: Score for Reciprocal Velocity Obstacles [3]. (5) PPR:
Score for hybrid framework that uses planning, prediction and, reaction for steering [48,46].
(6) Reactive: Score for a reactive technique that uses a set of simple rules for steering. For
3,4,5,6 the number in () is the average number of collisions per agent. For more information
on how the SteerBench score is computed, please refer [47].

22 M. Kapadia et al.

Fig. 6 Four agents (rendered as circular discs), traveling in opposite directions form a
vortex as they maneuver around an obstacle.

such as agents being pushy or patient, can be modeled by affecting the compu-
tation of traversability fields of agents. For example, a pushy agent’s position
as well as future position would have low traversability in the computation
of other agents fields, while a timid person would perceive other agents as
dynamic obstacles with greater obstacles.

7.3 Discussion

In this section, we discuss the results of our framework on the scenarios de-
scribed in 7.1. Agents exhibit a wide variety of behaviors including local inter-
actions between agents as well as group behaviors, some of which are described
below:

Local Agent Interactions. Agents steer naturally around each other, with and
without obstacles. This is shown in all scenarios, particularly the Crossing,
Oncoming, Confusion, and Curves scenarios.

Human-like Behaviors. Natural reactions are also captured by our framework.
For example in the Surprise scenarios (with sharp turns), agents do not see each
other until the collision is imminent. In such cases, behavior is affected by each
individual’s visual field. Macro-scale crowd simulations with global knowledge
cannot model this. Our framework models this individuality successfully.

Implicit Space-time Planning. The importance of space-time planning is demon-
strated in doorway, overtake, confusion, and squeeze (narrow passage) scenar-
ios. Comparisons of behaviors with and without implicit space-time for the
3-way confusion and overtaking scenarios show that the natural, anticipatory
behaviors are a result of our implicit space- time planning. In general, we ob-
serve that space-time planning is essential for complicated interactions involv-
ing 3 or more agents. In contrast, we observe that purely reactive approaches
suffer from agents colliding with one another or fail to arrive at a solution,
resulting in deadlocks.

Crowd Behaviors. We also demonstrate several bottleneck and densely crowded
scenarios where agents cooperatively wait or steer around each other. Note that
many previous approaches steer unnaturally into each other and into obsta-
cles, relying on collision resolution and “greedy” reactive steering decisions to
progress the agents. We do not explicitly prevent agents from colliding and
overlapping; collision avoidance is purely a result of our steering algorithm.

Egocentric Fields for Autonomous Navigation 23

Fig. 7 Agents exhibiting leader following and group re-formation.

Fig. 8 Two agents traveling in the same direction encounter two oncoming agents in a
narrow passageway. Results demonstrated with animated humans.

Fig. 9 An agent overtakes another agent while traveling through a narrow passageway
with an obstacle.

Fig. 10 Group persistence is observed as two groups of oncoming agents efficiently steer
around each other.

8 Parallelization

Most agent-based crowd simulation techniques, including ours, require syn-
chronization at an agent level. This is because agents read each others’ data
to react and predict around each other. In this section we show that our ap-
proach can be parallelized effectively. We investigate parallelization strategies
to achieve near-linear speedup with increase in processors by leveraging the
egocentric nature of our fields. Section 8.1 presents the performance results

24 M. Kapadia et al.

Fig. 11 Time of update for stress cases. Number of nodes per layer, n = 16. Number of
layers, m = 8.

and memory requirements of our algorithm on a single thread. Section 8.2
discusses the rationale behind our choice of decomposition strategies, while
Section 8.3 describes the different scheduling and synchronization methods.
Finally, Section 8.4 presents the performance results of the parallel version of
our algorithm for different benchmarks and crowd densities.

8.1 Performance Analysis on Single Thread

Each agent has associated with it a set of fields that serve as its memory repos-
itory. We observe that a field with 8 layers and 16 nodes per layer is sufficient
to perform effective steering in a virtual environment. It takes 2.5 − 3 KB of
memory per agent to store the information of these fields. This is about 3 MB
of memory per 1000 agents, which we believe to be a manageable overhead that
increases linearly with increase in crowd size. We tested the runtime perfor-
mance of our algorithm using three stress test scenarios (Random, Forest, and
Urban) on a 2.66 GHz Core 2 processor with a single thread. The time of
update per agent for each of these scenarios is outlined in Figure 11. We ob-
serve a frame rate of approximately 25 frames per second for up to 500 agents
which decreases to 10 frames per second for 5000 agents. The computation
time linearly increases with the number of agents, and is independent of the
complexity of the environment. In the following sections, we present the par-
allelized version of our algorithm which is capable of handling much larger
numbers of agents in real-time.

8.2 Decomposition Strategies

The current trend is for processors to deliver high performance through multi-
threading by exploiting multiples cores in their architectures. We investigate
the following decomposition techniques for partitioning our problem for par-

Egocentric Fields for Autonomous Navigation 25

(a) (b)

(c) (d)

Fig. 12 Parallelization results: (a) Comparison of synchronization strategies for Random test
case, 8 threads, guided scheduling. (b) Comparison of scheduling strategies for Random test
case, 8 threads, deferred-wait synchronization. (c) Performance comparison with increase in
number of threads for Random test case, intelligent guided scheduling, busy-wait synchro-
nization. (d) Performance evaluation of 100, 500, 1000, 2000, 3000, 4000 and, 5000 agents
with increase in number of threads.

allelization: (1) Task decomposition and, (2) Data decomposition.

Task Decomposition. In this approach, the task to be executed is decom-
posed into smaller independent sub-tasks and each sub-task is executed in
parallel. Table 2 outlines the profiling results of the function blocks in a single
update step for one agent. We observe that the population of direction affor-
dance fields, Adirection(θ) takes up approximately 71% of the total execution.
This procedure is described in Section 5.2. The recursive nature of this pro-
cedure makes it an unlikely candidate for parallelization. Hence, we turn our
focus to decomposing the problem based on agents.

26 M. Kapadia et al.

Task Execution Execution Need for
time (ms) profile Synchronization

Query Grid Database 0.0136 4% No
Populate dynamic 0.0142 7% Yes
perception field
Compute speed 0.0211 9% No
affordance field

Compute direction 0.1681 71% No
affordance field

Total 0.2337 100% Yes

Table 2 Task Decomposition of Steering Algorithm.

Data Decomposition. It is often possible to partition the data associated
with a task into pieces that can be processed independently of each other,
thus allowing multiple instances of the task to execute concurrently. For the
purpose of crowd simulation, this entails farming of a set of agents on different
threads. The steering algorithm described above, operates on a per-agent basis
in a distributed manner which makes it amenable for data-level parallelism.
However, there are two syncrhonization issues. First, all agents independently
make a steering decision and execute the decision by updating their position
in the environment by writing to a centralized grid database. We resolve this
by seperating the computationally inexpensive position update operation from
the rest of the AI and executing it serially for all agents. Second, the agents
read data from the fields of neighboring agents while computing the dynamic
perception field, Pdynamic(X). The dynamic fields allow agents to perform im-
plicit space-time planning and handle complex agent-agent interactions. This
inter-agent communication prevents simply splitting agents and farming them
off to different threads.

We implement synchronization between agents using a simple read-write
locking scheme in which there are multiple readers and a single writer. Each
agent has a lock associated with it. Whenever an agent wishes to write to its
internal data structures, it yields for any neighboring agents that are currently
reading from it. Similarly, future readers yield to agents that are currently
updating their state. Section 8.3 discusses the different scheduling strategies
for allocating agents to threads.

8.3 Scheduling Strategies

There are two main issues that affect scalability of performance with increase
in number of threads:

– Load Balancing. Agents in different parts of the scenario may require
different processing time based on the density of agents and obstacles in
the neighboring region. Hence, an equal partitioning of agents between
threads may suffer from severe load-imbalance. The main reason is that the
agents assigned to a particular thread may finish their computation early,

Egocentric Fields for Autonomous Navigation 27

while the remaining ones are still performing computations. For this reason,
we investigate dynamic partitioning to agents for better load balancing
between threads.

– Synchronization. Spatially co-located agents need to read each others
data while making their steering decisions. If neighboring agents are dis-
patched onto different threads, the synchronization overhead may result in
a decrease in speedup.

In this section, we investigate the effect of performance of our parallel al-
gorithm using the following four scheduling strategies:

Static Scheduling. In static scheduling, the number of agents are divided
equally among the available threads before execution. Static scheduling is
suited for decomposition strategies where the units of decomposition are load
balanced.

Dynamic Scheduling. In dynamic scheduling, the number of agents are not
divided equally among the threads. Instead, contending threads acquire agents
to be processed from a pool of pending agents. Once a thread finishes its allo-
cated processing, it picks another agent from this pool. This form of scheduling
is particularly suited for decomposition strategies where the units of decom-
position require varying computational resources.

Guided Scheduling. In guided scheduling, a large chunk of agents are allo-
cated to each thread dynamically, similar to dynamic scheduling. The chunk
size decreases exponentially with each successive allocation to a minimum spec-
ified size. This strategy is similar to the method used in [37] for parallelizing
the social forces model.

Intelligent Guided Scheduling. To minimize the synchronization overhead
between agents, agents that are allocated to the same thread are spatially
co-located. This ensures that neighboring agents that read each others data
are more likely to be processed on the same thread. The size of chunks is
determined in a manner similar to guided scheduling. Intelligent scheduling
requires a kd-tree data structure to be maintained that partitions agents based
on their spatial locations, which incurs a computational overhead.

8.4 Parallelization Results

Table 3 describes the setup used for running the parallelization experiments
described below. Figure 12(a) illustrates the comparison between busy-wait
and deferred-wait synchronization for the Random test case using 8 threads
and guided scheduling. We observe that a deferred-waiting strategy performs
consistently better than busy-waiting with increase in number of threads. The
average time for one update step of the above scheduling strategies using

28 M. Kapadia et al.

Hardware Intel R© Xeon R© Processor 7030 processor-based platform

Specification with2 dual-core processors, each with Intel R©

Hyper-Threading Technology
Operating System Red Hat Linux 4.1.2

Programming Language C++ and OpenMP
Software Base SteerSuite [46]

Table 3 Experimental Setup for Parallelization Results.

deferred-wait synchronization is shown in Figure 12(b). Static scheduling suf-
fers from load imbalance between threads due to agents taking widely different
amounts of processing time based on their surrounding environment configu-
ration. Hence, we observe a large difference in performance between static
scheduling and the other strategies.

The intelligent scheduling strategy allocates spatially co-located agents on
the same thread. Hence, two agents that read each others’ data (because they
are spatially co-located) will have fewer synchronization problems because
they are likely to be updated serially. As a result, intelligent guided schedul-
ing outperforms the other scheduling strategies. However, there is an extra
computational overhead of spatially ordering agents at every frame by main-
taining a kd-tree data structure which takes about 2−5 ms of processing time
per frame.

Figure 12(c) illustrates the performance of intelligent guided scheduling and
deferred-wait synchronization with increase in number of threads. Figure 12(d)
evaluates the performance of our approach by increasing the number of agents
from 100 to 5000 for 1− 8 threads. The less-than-linear speedup with increase
in number of threads is due to the synchronization between agents at the
boundaries of the spatial partitions. As we increase the density of agents in the
environment, the number of agents querying the data structures of neighboring
agents increases which increases the synchronization overhead. However, the
egocentric nature of the fields ensures that agents will only request read locks
of other spatially co-located agents that fall within the boundary of their field.

9 Conclusion

We have presented egocentric affordance fields that quantify the relative strength
of all possible actions that an agent can take over a set of view-dependent
models of the environment. The implicit dependency on time that these fields
have, allows our agent navigation framework to successfully resolve complex
dynamic situations, such as certain deadlocks that arise in narrow corridors
and openings.

We have evaluated our framework using SteerBench which provides us with
a large number of test cases that exercise the steering system against basic vali-
dation scenarios, oncoming and crossing threats, local agent-agent interactions
and, large-scale stress tests. We also perform a detailed emperical comparison

Egocentric Fields for Autonomous Navigation 29

between the proposed method and established prior art [3,48]. The results of
our analysis show that our algorithm can efficiently handle a wide variety of
scenarios and is competitive with the current state of the art in steering.

Limitations and Future Work. The system used to animate the virtual
characters shown in the supplementary video is a simple finite state machine
that chooses between four animations and uses linear blending to transition
between animations. This results in certain artifacts such as discontinuities in
character movement, unnecessary stopping and starting, and translation of the
character even though there is no animation playing. For future work, we are
investigating the use of parameterized motion graphs [18] and more advanced
motion blending techniques [34].

Our method currently does not support lateral movements of the character
(e.g. side-step), where the body of the virtual character is not tangential to
the trajectory of the motion. This causes some unrealistic walking movements
such as large changes in orientation where a small sidestep might have been
sufficient. The use of footsteps [49] as an interface between steering and lo-
comotion offsets these problems by allowing steering algorithms to have more
fine-grained control over the locomotion of the virtual character.

The resolution detail of the field is concentrated in the region closest to the
agent and decreases with increase in radial distance. One possible extension is
to investigate the relationship between the foveal angle and the resolution of
the field such that the portion of the environment directly ahead of the agent
is considered most significant for steering. We are also investigating using a
hierarchy of fields as an extension to our model, whereby each node can be
equipped with a sub-egocentric field of the area it encompasses. This would
increase the resolution of areas along the path that are further away, thus
providing information detail where necessary.

The main focus of our work is in the realm of pedestrian simulation which
is largely based in two dimensions. As illustrated in Section 3, our generic
model is inherently in three dimensions, representing space with an implicit
time dimension. In the future, we aim to implement a variable resolution 3-D
model of the environment that may find use in a wide variety of applications
not limited to steering.

Acknowledgements We wish to thank the anonymous reviewers for their comments. The
work in this paper was partially supported by NSF grant No. CCF-0429983. We thank Intel
Corp., Microsoft Corp., and AMD/ATI Corp. for their generous support through equipment
and software grants.

References

1. Altun, K., Koku, A.: Evaluation of egocentric navigation methods. Robot and Human
Interactive Communication, 2005. ROMAN 2005. IEEE International Workshop on pp.
396–401 (2005). DOI 10.1109/ROMAN.2005.1513811

30 M. Kapadia et al.

2. Arkin, R.: Motor schema based navigation for a mobile robot: An approach to program-
ming by behavior. In: Robotics and Automation. Proceedings. 1987 IEEE International
Conference on, vol. 4, pp. 264 – 271 (1987). DOI 10.1109/ROBOT.1987.1088037

3. van den Berg, J., Lin, M.C., Manocha, D.: Reciprocal velocity obstacles for real-time
multi-agent navigation. In: IEEE International Conference on Robotics and Automa-
tion, pp. 1928–1935. IEEE (2008)

4. van den Berg, J., Patil, S., Sewall, J., Manocha, D., Lin, M.: Interactive navigation
of multiple agents in crowded environments. In: SI3D ’08: Proceedings of the 2008
symposium on Interactive 3D graphics and games, pp. 139–147. ACM, New York, NY,
USA (2008)

5. Boulic, R.: Relaxed steering towards oriented region goals. In: Motion in Games, First
International Workshop, pp. 176–187 (2008)

6. Chao, G., Dyer, M.: Concentric spatial maps for neural network based navigation. Ar-
tificial Neural Networks, 1999. ICANN 99. Ninth International Conference on (Conf.
Publ. No. 470) 1, 144–149 vol.1 (1999)

7. Chenney, S.: Flow tiles. In: Proceedings of the ACM SIGGRAPH/EG Symposium on
Computer Animation (2004). DOI http://doi.acm.org/10.1145/1028523.1028553

8. Clements, R.R., Hughes, R.L.: Mathematical modelling of a mediaeval battle: the battle
of agincourt, 1415. Math. Comput. Simul. 64(2), 259–269 (2004)

9. Dechter, R., Pearl, J.: Generalized best-first search strategies and the optimality af a*.
J. ACM 32(3), 505–536 (1985). DOI http://doi.acm.org/10.1145/3828.3830

10. Farenc, N., Schweiss, E., Kallmann, M., Aune, O., Boulic, R., Thalmann, D.: A paradigm
for controlling virtual humans in urban environment simulations. Applied Artificial
Intelligence 14, 69–91 (1999)

11. Fiorini, P., Shiller, Z.: Motion Planning in Dynamic Environments Us-
ing Velocity Obstacles. The International Journal of Robotics Re-
search 17(7), 760–772 (1998). DOI 10.1177/027836499801700706. URL
http://ijr.sagepub.com/cgi/content/abstract/17/7/760

12. Fleming, P.: Implementing a robust 3 dimensional egocentric navigation system. Mas-
ter’s thesis, Graduate School of Vanderbilt University (2005)

13. Gibson, J.J.: The Theory of Affordances. In Perceiving, Acting, and Knowing (1977)
14. Goldenstein, S., Karavelas, M., Metaxas, D., Guibas, L., Aaron, E., Goswami, A.: Scal-

able nonlinear dynamical systems for agent steering and crowd simulation (2001)
15. Greeno, J.G.: Gibson’s affordances. Psychological Review pp. 336–342 (1994)
16. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of

minimum cost paths. Systems Science and Cybernetics, IEEE Transactions on 4(2),
100–107 (1968). DOI 10.1109/TSSC.1968.300136

17. Hart, P.E., Nilsson, N.J., Raphael, B.: Correction to ”a formal basis for the heuris-
tic determination of minimum cost paths”. SIGART Bull. (37), 28–29 (1972). DOI
http://doi.acm.org/10.1145/1056777.1056779

18. Heck, R., Gleicher, M.: Parametric motion graphs. In: Proceedings of the 2007 sym-
posium on Interactive 3D graphics and games, I3D ’07, pp. 129–136. ACM, New
York, NY, USA (2007). DOI http://doi.acm.org/10.1145/1230100.1230123. URL
http://doi.acm.org/10.1145/1230100.1230123

19. Helbing, D., Buzna, L., Johansson, A., Werner, T.: Self-organized pedestrian crowd dy-
namics: Experiments, simulations, and design solutions. Transportation Science 39(1),
1–24 (2005). DOI http://dx.doi.org/10.1287/trsc.1040.0108

20. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E
51(5), 4282–4286 (1995). DOI 10.1103/PhysRevE.51.4282

21. Hoogendoorn, S.P.: Pedestrian travel behavior modeling. In: In 10th International Con-
ference on Travel Behavior Research, Lucerne, pp. 507–535 (2003)

22. Kant, K., Zucker, S.W.: Planning collision-free trajectories in time-varying environ-
ments: a two-level hierarchy. The Visual Computer 3(5), 304–313 (1988)

23. Kapadia, M., Singh, S., Hewlett, W., Faloutsos, P.: Egocentric affordance fields
in pedestrian steering. In: Proceedings of the 2009 symposium on In-
teractive 3D graphics and games, I3D ’09, pp. 215–223. ACM, New York,
NY, USA (2009). DOI http://doi.acm.org/10.1145/1507149.1507185. URL
http://doi.acm.org/10.1145/1507149.1507185

Egocentric Fields for Autonomous Navigation 31

24. Lamarche, F., Donikian, S.: Crowd of virtual humans: a new approach for real time
navigation in complex and structured environments. In: Computer Graphics Forum 23.
(2004)

25. Lee, K.H., Choi, M.G., Hong, Q., Lee, J.: Group behavior from video: a data-driven ap-
proach to crowd simulation. In: Proceedings of the ACM SIGGRAPH/EG Symposium
on Computer Animation, pp. 109–118 (2007)

26. Lerner, A., Chrysanthou, Y., Lischinski, D.: Crowds by example. Computer Graphics
Forum 26(3), 655–664 (2007)

27. Li, T.Y., Chen, P.F., Huang, P.Z.: Motion planning for humanoid walking in a layered
environment. In: Proceedings of IEEE ICRA, vol. 3, pp. 3421–3427 (2003). DOI
10.1109/ROBOT.2003.1242119

28. Loscos, C., Marchal, D., Meyer, A.: Intuitive crowd behaviour in dense urban envi-
ronments using local laws. In: TPCG ’03: Proceedings of the Theory and Practice
of Computer Graphics 2003, p. 122. IEEE Computer Society, Washington, DC, USA
(2003)

29. Lovas, G.: Modeling and simulation of pedestrian traffic flow. In: Transportation Re-
search Record, pp. 429–443 (1994)

30. Michael, D., Chrysanthou, Y.: Automatic high level avatar guidance based on affordance
of movement. In: Eurographics 2003. Eurographics Association (2003)

31. Milazzo, J., Rouphail, N., Hummer, J., Allen, D.: The effect of pedestrians on the
capacity of signalized intersections. In: Transportation Research Record, pp. 37–46
(1998)

32. Paris, S., Gerdelan, A., O’Sullivan, C.: Ca-lod: Collision avoidance level of detail for scal-
able, controllable crowds. In: MIG ’09: Proceedings of the 2nd International Workshop
on Motion in Games, pp. 13–28. Springer-Verlag, Berlin, Heidelberg (2009)

33. Paris, S., Pettré, J., Donikian, S.: Pedestrian reactive navigation for crowd simulation:
a predictive approach. In: EUROGRAPHICS 2007, vol. 26, pp. 665–674 (2007)

34. Park, S.I., Shin, H.J., Shin, S.Y.: On-line locomotion generation based on mo-
tion blending. In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics
symposium on Computer animation, SCA ’02, pp. 105–111. ACM, New York,
NY, USA (2002). DOI http://doi.acm.org/10.1145/545261.545279. URL
http://doi.acm.org/10.1145/545261.545279

35. Pelechano, N., Allbeck, J., Badler, N.: Virtual Crowds: Methods, Simulation, and Con-
trol (Synthesis Lectures on Computer Graphics and Animation). Morgan and Claypool
Publishers (2008)

36. Pelechano, N., Allbeck, J.M., Badler, N.I.: Controlling individual agents in high-density
crowd simulation. In: Proceedings of the ACM SIGGRAPH/EG Symposium on Com-
puter Animation, pp. 99–108 (2007)

37. Quinn, M.J., Metoyer, R.A., Hunter-zaworski, K.: Parallel implementation of the social
forces model. In: in Proceedings of the Second International Conference in Pedestrian
and Evacuation Dynamics, pp. 63–74 (2003)

38. Reynolds, C.: Steering Behaviors for Autonomous Characters. In: Game Developers
Conference 1999 (1999)

39. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. In: Pro-
ceedings of ACM SIGGRAPH, pp. 25–34. ACM, New York, NY, USA (1987)

40. Rodrigues, R.A., Lima Bicho, A., Paravisi, M., Jung, C.R., Magalhães, L.P., Musse, S.R.:
Tree paths: A new model for steering behaviors. In: Proceedings of the 9th International
Conference on Intelligent Virtual Agents, IVA ’09, pp. 358–371. Springer-Verlag, Berlin,
Heidelberg (2009)

41. Rudomı́n, I., Millán, E., Hernández, B.: Fragment shaders for agent animation using
finite state machines. Simulation Modelling Practice and Theory 13(8), 741–751 (2005)

42. Shao, W., Terzopoulos, D.: Autonomous pedestrians. In: Proceedings of the ACM
SIGGRAPH/EG Symposium on Computer Animation, pp. 19–28 (2005)

43. Shao, W., Terzopoulos, D.: Autonomous pedestrians. Graph. Mod-
els 69, 246–274 (2007). DOI 10.1016/j.gmod.2007.09.001. URL
http://portal.acm.org/citation.cfm?id=1323742.1323926

44. Shapiro, A., Kallmann, M., Faloutsos, P.: Interactive motion correction and ob-
ject manipulation. In: I3D ’07: Proceedings of the 2007 symposium on Interactive

32 M. Kapadia et al.

3D graphics and games, pp. 137–144. ACM, New York, NY, USA (2007). DOI
http://doi.acm.org/10.1145/1230100.1230124

45. Shimoda, S., Kuroda, Y., Iagnemma, K.: Potential field navigation of high speed un-
manned ground vehicles on uneven terrain. Robotics and Automation, 2005. ICRA
2005. Proceedings of the 2005 IEEE International Conference on pp. 2828–2833 (2005)

46. Singh, S., Kapadia, M., Faloutsos, P., Reinman, G.: An open framework for develop-
ing, evaluating, and sharing steering algorithms. In: MIG ’09: Proceedings of the 2nd
International Workshop on Motion in Games, pp. 158–169. Springer-Verlag, Berlin, Hei-
delberg (2009)

47. Singh, S., Kapadia, M., Faloutsos, P., Reinman, G.: Steerbench: a benchmark suite
for evaluating steering behaviors. In: Computer Animation and Virtual Worlds, pp.
533–548 (2009)

48. Singh, S., Kapadia, M., Hewlett, W., , Glenn Reinmann, P.F.: A modular framework for
adaptive agent-based steering. In: Proceedings of the 2011 symposium on Interactive
3D graphics and games, I3D ’11. ACM (2011)

49. Singh, S., Kapadia, M., Reinmann, G., Faloutsos, P.: On the interface between steering
and animation for autonomous characters. In: In Workshop on Crowd Simulation,
Computer Animation and Social Agents. Saint-Malo, France (2010)

50. Sud, A., Gayle, R., Andersen, E., Guy, S., Lin, M., Manocha, D.: Real-time navigation
of independent agents using adaptive roadmaps. In: VRST ’07: Proceedings of the 2007
ACM symposium on Virtual reality software and technology, pp. 99–106. ACM, New
York, NY, USA (2007)

51. Surasmith, S.: Preprocessed solution for open terrain navigation. In: AI Game Pro-
gramming Wisdom, pp. 161–170 (2002)

52. Takeuchi, R., Unuma, M., Amakawa, K.: Creating and animating the virtual
world. chap. Path planning and its application to human animation system, pp.
163–175. Springer-Verlag New York, Inc., New York, NY, USA (1992). URL
http://portal.acm.org/citation.cfm?id=141248.141259

53. Tecchia, F., Loscos, C., Conroy, R., Chrysanthou, Y.: Agent behaviour simulator (abs):
A platform for urban behaviour development. In: In GTEC2001, pp. 17–21 (2001)

54. Thalmann, D., Musse, S.R.: Crowd simulation. Springer (2007)
55. Torrens, D.P.M.: Behavioral intelligence for geospatial agents in urban environments.

In: IAT ’07: Proceedings of the 2007 IEEE/WIC/ACM International Conference on
Intelligent Agent Technology, pp. 63–66. IEEE Computer Society, Washington, DC,
USA (2007). DOI http://dx.doi.org/10.1109/IAT.2007.37

56. Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. ACM Trans. Graph. 25(3),
1160–1168 (2006). DOI http://doi.acm.org/10.1145/1141911.1142008

57. Trovato, K.I., Dorst, L.: Differential a*. IEEE Trans. on Knowl. and Data Eng. 14(6),
1218–1229 (2002). DOI http://dx.doi.org/10.1109/TKDE.2002.1047763

58. Tsubouchi, T., Kuramochi, S., Arimoto, S.: Iterated forecast and planning algorithm to
steer and drive a mobile robot in the presence of multiple moving objects. In: IROS ’95:
Proceedings of the International Conference on Intelligent Robots and Systems-Volume
2, p. 2033. IEEE Computer Society, Washington, DC, USA (1995)

59. Turner, A., Penn, A.: Encoding natural movement as an agent-based system: an inves-
tigation into human pedestrian behaviour in the built environment. Environment and
Planning B: Planning and Design 29, 473–490 (2002). URL http://eprints.ucl.ac.uk/73/

60. Warren, C.: Global path planning using artificial potential fields. In: Proceedings of
IEEE ICRA, vol. 1, pp. 316–321 (1989). DOI 10.1109/ROBOT.1989.100007

61. Warren, C.: Multiple robot path coordination using artificial potential fields. In: Pro-
ceedings of IEEE ICRA, vol. 1, pp. 500–505 (1990). DOI 10.1109/ROBOT.1990.126028

