
Noname manuscript No.
(will be inserted by the editor)

Automatic Cage Construction for Retargetted Muscle Fitting

Xiaosong Yang · Jian Chang · Richard Southern · Jian J Zhang

Received: date / Accepted: date

Abstract The animation of realistic characters necessitates
the construction of complicated anatomical structures such
as muscles, which allow subtle shape variation of the charac-
ter’s outer surface to be displayed believably. Unfortunately
despite numerous efforts, the modelling of muscle structures
is still left for an animator who has to painstakingly build up
piece by piece, making it a very tedious process. What is
even more frustrating is the animator has to build the same
muscle structure for every new character. We propose a mus-
cle retargeting technique to help an animator to automati-
cally construct a muscle structure by reusing an already built
and tested model (the template model). Our method defines
a spatial transfer between the template model and a new
model based on the skin surface and the rigging structure.
To ensure that the retargeted muscle is tightly packed in-
side a new character, we define a novel spatial optimization
based on spherical parameterization. Our method requires
no manual input, meaning that an animator does not require
anatomical knowledge to create realistic accurate muscula-
ture models.

Xiaosong Yang
National Centre for Computer Animation, Bournemouth University,
United Kingdom
E-mail: xyang@bmth.ac.uk

Jian Chang
National Centre for Computer Animation, Bournemouth University,
United Kingdom
E-mail: jchang@bmth.ac.uk

Richard Southern
National Centre for Computer Animation, Bournemouth University,
United Kingdom
E-mail: rsouthern@bmth.ac.uk

Jian J Zhang
National Centre for Computer Animation, Bournemouth University,
United Kingdom
E-mail: jzhang@bmth.ac.uk

Keywords Muscle modelling · Character animation

1 Introduction

In animation production, creating realistic character anima-
tion is a very complicated process which is time-consuming
and laborious. While some of the work requires professional
artistic skills, most of the time will be spent on repetitive
tasks such as skin weight painting, muscle modelling, and
detailed tweaking of skin deformation frame by frame. In
the last two decades many attempts have been made to au-
tomate this process to save artists from having to perform
this tedious task. Researchers have tackled most of the pro-
cesses in character animation, such as character modelling
(skin shape), rigging [1–3], muscle modelling and deforma-
tion (skinning) [4–7]. Several techniques [8–11] have been
published in the last two decades on the topic of muscle
deformation. Most of these focused on the physical prop-
erties of muscle, trying to mimic their functionality in real
human and animal bodies. Some of these methods have been
adopted in medical visualization and surgery simulation.
However these approaches are seldom used in animation
production as they involve excessive computation, and do
not offer significant visual improvement. The production of
realistic muscle deformation still requires significant manual
work by animators.

Muscle modelling involves not only modelling the shape
of each muscle, but also their placement and grouping,
which influences the deformation of the skin layer. Initially
only very simple muscle shapes [12] are introduced, such as
the fusiform, multi-belly and bi-cubic patch muscles. Tools
for muscle modelling have been integrated into Autodesk
Maya, a professional modelling package, since 2008. Mim-
icking complicated human musculature from basic shapes
depends entirely on the animator’s creativity. To automate
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(a) Pratscher [13] (b) Yang [14]

(c) 75 feature points used for
Seo’s method [3]

(d) our result

Fig. 1 Comparison of similar works on muscle modelling

this procedure, Pratscher et al. [13] presented an “outside-
in” muscle modelling technique which builds muscle struc-
tures from the analysis of the skin shape. However the mus-
cles constructed are still too simplistic (Figure 1(a)) to create
realistic muscle deformation. Later work by Yang [14] based
on Constrained Delaunay Triangulation created more com-
plicated musculature (Figure 1(b)), but the results are still
far from realistic.

For each new project, an animator will typically need
to model skin, skeletal and muscular structure from scratch.
Unfortunately there is no process by which these complex
assets can be efficiently re-used on later projects. This costly
procedure has led to concept of muscle retargeting, whereby
an existing muscle setup, consisting of the models and con-
trols, is deformed to match a new character. This level of
automation would naturally provide a significant saving to
production costs. However since the new character may look
very different from the original model, simple affine trans-
formations cannot produce a useful result.

In order to achieve high quality muscle transfer, a repre-
sentation of the internal space of the original character must
be transformed to fit into the new character. If we consider
the skin surface as a cage wrapping around the muscle struc-
ture, this retargeting task can be seen as cage based space
deformation. Seo [3] presented a technique based on this
principle to retarget both the original skeleton and muscles
to a new character. However since the mapping is based on

Fig. 2 System structure

a simplified body segmentation, the retargeted muscles are
not guaranteed to closely fit the new skin model (as in Fig-
ure 1(c)).

Based on the same retargeting idea, we present a new
muscle modelling method which starts from a template
model including the skeleton structure, skin surface and a
pack of muscle structures. Given a new character model,
our method builds a volume mapping between the template
skin and the new skin model. The muscles from the template
model, which are embedded in this volume, are deformed to
match the new model. Since our template muscle structures
originate from a real human body, the retargeted muscles
will closely resemble the actual human anatomy. Our novel
volume mapping technique optimizes the way the cage fits
the new skin shape (as showed in Figure 1(d)), meaning that
the mapped muscles can be packed tightly inside the skin
surface. In this way, the animator can begin the process of
muscle deformation with a high quality muscle representa-
tion. Figure 2 shows the system framework.

In Section 2 we introduce related work on cage mod-
elling and deformation. In Section 3 we discuss how we
build the retargeting cage from the skeletal structure, and
how we adjust the cage to fit more closely with the new
skin shape. In Section 4 we describe a method to prevent
cage self-intersection, and in Section 6 we discuss our ex-
perimental results.

2 Related works

The process of retargeting muscular structure from one char-
acter into another is effectively a 3D space mapping prob-
lem solved by volume deformation. In early work [15–18]
a lattice was used to deform the embedded shape. However,
since the lattice involved a limited number of control points,
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the deformation appears rigid. This lead to many publica-
tions considering a dense polyhedron cage which gives the
animator more flexible control over the deformation.

Mean Value Coordinates were first introduced by [19]
for 2D polygons and then extended to 3D [20–22]. Ju et
al. [20] presented an efficient MVC method which encloses
the deformable object within a triangular cage surface. Joshi
et al. [23] presented Harmonic coordinates [24] which sup-
ports non-negative coordinates, capable of handling highly
concave cages. Lipman et al. [25] presented Green coordi-
nates [26] which preserves the deformed object shape during
cage deformation. However since the retargeted shape may
extrude outside the cage, it is not suitable to our muscle re-
targeting problem, as the deformed muscles may intersect
the skin surface.

An alternative approach to space deformation are tech-
niques based on scattered-data interpolation [27,28]. How-
ever since we already have a skin mesh which envelopes the
space to be mapped, using only a few feature points on the
surface without considering the existing topology is not ap-
propriate to this problem.

As an alternative to the surface cage, the volume cage
[29] embeds deformable objects into a simplified tetrahe-
dron mesh. The control mesh complexity increases the re-
quired computation significantly. In the case of muscle re-
targeting, it is difficult to find a consistent method to locate
the inside vertex in the two different character models. For
these reasons we use a surface cage in this paper.

As with other space mapping methods, we use a cage
to build up the spatial transfer between the template model
and the new skin model. However in this specific muscle re-
targeting problem, we not only need the spatial transfer to
be smooth, but also the retargeted muscles should be tightly
packed inside the new skin model, otherwise the muscle de-
formation may produce an unexpected result.

Several methods have been presented for cage construc-
tion from meshes. Xian and co-workers [30] present an effi-
cient method based on simplifying an enveloped voxeliza-
tion of the polygon mesh. However, the cage created is
highly dependent on the shape of the original mesh, mak-
ing it is impossible to enforce a consistent topological struc-
ture on different meshes. Ben-Chen et al. [31] generate the
envelope based on a sampling set of the vertices from orig-
inal mesh, and no topological information from the original
mesh is considered in the process. It may create cages with
different topology when some parts of the original mesh are
in a very close distance. The method of Tao [6] constructs
and fits a cage to the input geometry, but requires manual
input to resolve surface self-intersection.

Seo and co-workers [3] presented a retargeting method
to transfer both the skeleton rig and muscles to a new model.
Their approach requires the animator to manually specify
point correspondences between the source and target model.

The cage is then constructed based on surface patch segmen-
tation. While our method uses the same spatial deformation
method, our methods differ in how the cage is constructed.

The approach in [3] is very general, able to map mus-
cle between characters of arbitrary topology. However, this
generality is largely useless in the animation setting, where
the vast majority of muscled characters are humanoid or
quadrupeds. This generality necessitates the manual specifi-
cation of feature point correspondences which is an exceed-
ingly tedious task and exposes the technique to the possibil-
ity of user error. In the human example used in [3], about 50
feature points were manually specified, which creates a cage
which is too simple for high quality muscle retargeting.

Our method exploits the topological structure of hu-
manoid characters defined by the skeleton rig, and builds
the cage of a user specified density automatically. The cage
(Figure 11(b)) used for Figure 1(d) consists of 508 automat-
ically generated points which provides an accurate fit of the
muscles within the skin, but would be impossible to specify
manually.

In this paper we will build up the cage from the skeleton
structure. In order to solve the self-intersection problem, we
introduce a sphere mapping based optimization method to
adjust the location of vertices on the cage such that they do
not penetrate the skin surface while ensuring that muscles
are tightly packed under the skin surface. This ensures the
generation of a valid cage (Figure 11(b)).

3 Initial cage construction

To construct an appropriate mapping of the muscle structure
into a new character model, the deformation cage should
have the following properties:
1. The cages for the template model and the new character

should have the same topology and mesh configuration.
For example, the feature vertices on the belly should
be kept at the same position on both models. Otherwise
muscles may be mapped to the wrong position, or even
skewed or twisted.

2. The cage must be sufficiently simple, and must not in-
volve skin details. The cage is meant to wrap around
muscles rather than unrelated details on skin surface,
such as scales, clothing or even antlers.

3. The cage should be complex enough to represent the
shapes of skin bulges implying underlying muscles.

We present a new cage construction algorithm designed for
muscle retargeting which adheres to these desired proper-
ties based on the information contained within the embed-
ded skeleton. As long as both characters which have the
same skeleton structure we can guarantee topology consis-
tency between these two cages. As all the vertices of the
cage are computed from the intersection between the skin
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surface and a ray cast from an inside joint, if the skin mesh
is a closed mesh, the cage will not be affected by any out-
side skin surface details. The complexity of the cage mesh
will be controlled by the user through three sets of parame-
ters. The user can choose to build up very dense cage models
to increase the mapping accuracy. We will show how these
parameters will affect the fitting of the muscles in the final
experiment section.

The skeletal structure inside a human body is very com-
plicated, making it very hard to design a simple algorithm to
construct the cage based only on the template cross-sections
(as in [6]). The cage at the pelvis and chest must be spe-
cially designed. We present an algorithm to construct the
cage segment by segment based on the topological structure
of the skeleton. By choosing the same density parameters
for all cage segments, we can ensure the cage segments will
be seamlessly integrated into a final closed mesh.

As an animator arrives at the stage of muscle modelling,
he/she should have a character skin model and a rigged
skeleton structure both ready at the rest pose. Using these
as the only input, in the following sections we present the
process whereby each cage segment can be constructed.

Fig. 3 The cage cross-section at the linear linkage joint

3.1 Linear Linkage

If a joint has only one parent and one child, such as the el-
bow and knee, we will build up the cage cross-sections as in
Figure 3.

Just like in [6], we build up the cross-section polygon
at the linear linkage joint. The number of vertices for this
polygon is defined by the density parameter dc, while the
number of cross sections along the bone is specified by a
second density parameter db. In Figure 3 dc and db are 8 and
5 respectively. Both parameters can be selected by animator
considering the complexity of the skin mesh in this area.

3.2 Bifurcation linkage (joint with three links)

A bifurcation normally occurs at a character’s root joint.
Figure 4 shows a frontal view of the cage wrapping around
this joint.

The cage construction at the bifurcation joint is partic-
ularly complicated. Suppose Jr is the root joint, J1, J2, J3

(a) (b)

Fig. 4 Cage segment at the bifurcation joint

are three linked joints. From Jr a ray is casted in the di-
rection perpendicular to the plane < J1,J2,J3 >, the inter-
section on the skin surface in the front direction is Pr f . For
the joint structure in a human character, J1, J2, J3 are all
linear linkage joints. We can build the cage cross-section
at these three joints as in Figure 3. We will cast three rays
from Jr at the middle of the angle between adjacent joints
< J1,J2 >, < J1,J3 >, < J3,J2 >, the intersection with the
skin surface will be P1, P2, P3. So the front side of this cage
section can be constructed by linking Pr f with all the front
sides of the cross-section at J1, J2, J3 and P1, P2, P3 as in Fig-
ure 4(a). This figure only shows the situation in which the
cross-section polygon at a linear linkage joint has four ver-
tices, and the front side has only one ring of vertices. We can
add several rings around Pr f to make sure the front side has
higher density of vertices. The number of rings is defined by
the third density parameter dr which is 2 in Figure 4(b).

3.3 Cross linkage (joint with four links)

The joint at the chest has the cross linkage as in Figure 5.
Normally in a character model, < J1,J2,J3,J4 > roughly lie
on the same plane. So our cage can be constructed in the
same way as bifurcation linkage. Project the centre joint
Jr in the normal direction of this plane, intersect with the
skin surface with Pr f . Casting four rays from Jr in the direc-
tion half the angle between two adjacent joints < J1,J2 >,
< J2,J3 >,< J3,J4 >,< J4,J1 >, intersected with the skin
surface with < P1,P2,P3,P4 >. Linking these vertices as in
Figure 5(a) will form the front part of this cage.

We can construct the back part in the same manner. As
with the bifurcation case, we can also form another ring of
vertices around Pr f to produce a more dense cage model as
in Figure 5(b).
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(a) (b)

Fig. 5 Cage segment at the cross joint

3.4 Ending joint

For the special purpose of muscle modelling, we will not
consider the head (including facial musculature), hands or
feet in our system. These three parts are represented with an
ending joint at the wrist, ankle and the centre of the head, at
which we construct a cap for the cage as in Figure 6. From
the cross-section vertices, we cast rays in the direction of the
last bone, intersecting with skin at < P1,P2,P3,P4 >; cast
another ray from Jr in the same direction, find P5. Using
these five points we form a cap to close up the cage. The

Fig. 6 The cap at the ending joint (head)

above four methods cover all possible joint configurations of
humanoid characters. Rules for cage construction of skeletal
structures with alternative topology, for example an octopus,
could be deduced using a similar methodology.

Following these procedures, we can construct the cage
for the whole body. Figure 9(c) shows the cage constructed
from the skin and skeleton model in our template (Fig-
ure 9(a)).

4 Self-intersection problem

As with [6], our cage construction algorithm also suffers
from the self-intersection problem (Figure 10(a)), which can
cause a serious artefact as a result of performing muscle re-
targeting. Tao [6] proposes that this problem can be manu-
ally corrected. However, our experience suggests that it is

almost impossible to interactively tidy the messy polygon as
in Figure 10(a).

We analysed the cage segment by segment and found
that some of these problems can be easily solved, such as
the case in Figure 10(b), which we call the over-shooting
problem. As all the vertices of the cage result from the in-
tersection between a shooting ray and the skin surface, in
some cases the ray may intersect the incorrect part of the
skin mesh. In Figure 10(b) a ray is cast from the right pelvis
joint to the left with the half angle between the two ad-
jacent joints, but intersects with the left leg. To solve this
over-shooting problem, i.e. to find a correct angle for the ray
shooting, we use a trail and error method to cast several rays
around the half angle ray. If the distances between the joint
and the intersection points on the skin mesh have large dif-
ference, we can identify this error. Figure 10(c) shows the
fixing result.

(a) Left shoulder (b) Mapping on the
unit sphere

Fig. 7 Using spherical parameterization to solve cage intersection.

A straightforward approach to self-intersection detection
is to evaluate the orientation of each cage face. However, for
characters with complex geometry it is difficult to specify
a criterion to robustly detect face flipping. In Figure 7(a)
we demonstrate a common self-intersection example at the
shoulder joint. Large dihedral angles between adjacent cage
faces may not indicate an intersection (see P5 in Figure 6).
Another approach could be to compare the local cage nor-
mal with an associated local skin surface normal, but finding
the skin surface corresponding to the cage vertices may be
difficult on a complicated 3D surface.

Our novel solution to the self-intersection problem is to
solve it in parameter space. Fold-over is detected by “pin-
ning” the cage vertices to the parameterized skin surface
(Figure 7(b)) and minimizing the area which the cage covers
in parameter space. As we can assume a spherical topology,
a spherical parameterization technique is used. This is ex-
plained in more detail in the following section.
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4.1 Spherical parameterization

As previously stated, a cage generated by the method in Sec-
tion 3 may have self-intersections which jeopardise the pro-
cess of retargeting the muscles to the new skin mesh. To
prevent self-intersection and cage flipping errors, we rep-
resent the skin mesh by a spherical parameterization as in
Figure 10(e). We establish a one-to-one mapping between
mesh vertices and surface points on a unit sphere. After
that, all cage vertices are nailed to the exact position on the
skin faces, and transformed to the sphere surface following
each individual face. By doing this, we reinterpret our initial
problem of relocating the cage points along the mesh to rec-
tifying the self-intersections as moving their corresponding
points on the sphere to rectify the self-intersections. While
mesh geometry may vary, the shape of the unit sphere re-
mains unchanged, providing a unified approach to tackling
this problem.

As in [3], a precondition for our algorithm is that the
input geometry represents a genus zero surface, i.e. topolog-
ically equivalent to a sphere.

Given a skin mesh M represented as < vi,ei j, fi jk >

where < vi > is the vertices set, < ei j > is the edge set
and < fi jk > is the face set, its spherical parameterization
presents a 3D mapping:

S : M
〈
vi,ei j, fi jk

〉→ Ms
〈

vs
i ,e

s
i j, f s

i jk

〉
(1)

where vs
i is the corresponding set of vertices on a unit

sphere. We adopt the Barycentric Spherical Parameteriza-
tion method [32] to establish the one-to-one mapping rela-
tion. For an arbitrary cage vertex vc

l , we use the barycentric
coordinates of the point with respect to the mesh triangle f i jk

it belongs to and approximate its corrsphonding point v cs
l on

the sphere as interpolation of vertices of spherical triangle
f s
i jk with the same set of barycentric coordinates.

Similarly, we can map a cage triangle onto the unit
sphere as a spherical patch by the same mapping function S.
For a cage triangle T , we have it’s patch area on the sphere
as AT . It is noted that when there is a self-intersection on the
cage, the counterparts of overlapped triangles remain over-
lapped on the unit sphere. This gives us a convenient way
of checking if the cage has self-intersections. If the summa-
tion of areas of all corresponding patches of cage triangles
is greater than the sphere area, the self-intersection happens.
Therefore, if we want to rectify the self-intersection, we can
relocate the cage vertices to alter the area of their corre-
sponding patches, so that

∑AT = 4π (2)

The area of an individual corresponding patch can be esti-
mated from the summation of all the spherical triangles f s

i jk
it covers. We can redefine the problem as an optimization

problem by minimizing an energy function relating to the
area as

min Es = ∑AT (3)

This optimization is more robust to the numerical error in-
troduced by the discretization. As the spherical parameteri-
zation fails to preserve the area, the area of some overlapped
cage triangles is relatively small (e.g. the area of arm or leg)
and will cause slow convergence when we try to solve the
optimization problem. To get around of this, we simply re-
place the summation of AT in equation 3 with a weighted
summation, where the weight is defined as S−1(AT )/AT ,
where S−1 is the function to find the area of the patch after
inverse spherical mapping. Basically it is the ratio between
the areas of original 3D triangle and the spherical patch.

The optimization problem in Equation 3 can be used
to rectify cage self-intersection. However, the output some-
times includes degenerate cage triangles with zero area,
which are as harmful as self-intersection for the process of
muscle retargeting. A penalty is added to the overall energy
function to eliminate the degeneration triangle. We define

EA = ∑ (
S−1(AT )− 1

N ∑S−1(AT )
1
N ∑S−1(AT )

)

2

(4)

With N is the total number of the cage triangles, and
1
N ∑S−1(AT ) is the average area of the projection of AT back
to the mesh.

We expect the new cage point to be close to the associ-
ated joint. We measure the distance of the initial cage point
and its new position with the angle of their casting ray, θ i.
The cosine of the angle can be calculated by the dot product
of the two vectors which start from the joint position and
end at the corresponding mesh vertices. Therefore, we have

ER = ∑cos2θi (5)

With the above three energy functions, we can specify the
new location of cage vertices to rectify the self-intersection
and degeneration problems by the following optimization
problem:

min Es + kAEA + kRER (6)

where kA and kR are the associated weight. In our ex-
periments, kA is set to 4π

N ∑S−1(AT ), and kR is set to
1
N ∑S−1(AT ). This is a non-linear optimization problem,
which can take a long time to converge when the number
of cage vertices is relatively large.

As an alternative, we decide to use a greedy algorithm to
solve the above optimization problem, which finds a feasi-
ble (rather than an optimal) solution to rectify the cage self-
intersection.

Using the criteria of the area on the spherical parame-
terization, we determine whether a cage is self-intersecting.
Similarly, for an individual cage vertex vc

i , we determine



Automatic Cage Construction for Retargetted Muscle Fitting 7

which points are associated with the intersection. By moving
the vertex on the mesh to a new position with a small per-
turbation, it becomes vc

i + δ . If the associated energy term
ES decreases for a certain displacement δ , then this vertex
has contribution to the self-intersection and is labelled as an
intersection point.

In our greedy algorithm, firstly, on the cage we label
the intersection vertices which lying inside other patches
on the sphere surface. Then, for each intersection points,
we provide a set of candidates for its new position by cast-
ing a ray with some random deflection from the initial ray
onto the mesh. The differences of the overall energy E =

Es+kAEA+kRER of the initial position and those candidates
are computed. We then cache the initial vertex and its can-
didate which has the lowest overall energy and the energy
decrease resulting from moving the vertex to its new posi-
tion. Repeating the above process, if we find a larger drop
of the overall energy, we then cache the pair of vertices (the
cage vertex and its candidate). When all the intersection ver-
tices and their candidates are visited, we have a cached ver-
tex and its candidate. By moving this vertex to its candidate
position, we can have the largest drop of the overall energy.
Then we finish a loop with one cage vertex updated. We then
start the loop again until the overall energy converges or the
loop reaches a presented number. Figure 10(d) shows the
cage self-intersection at the shoulder part of the fat model
(Figure 11(e)), 6 intersection cage vertices (Figure 10(f)) are
detected from the spherical parameterization. All 6 intersec-
tions are fixed from the first iteration. Figure 10(g) shows
the final fixed result.

5 Cage based muscle retargeting

After building up a valid cage we can map the interior
muscle structure into the new model. Many methods have
been proposed to perform cage based deformation, such
as MVC[20,21], PMVC[22], Harmonic coordinates[23] and
Green Coordinates[25]. Because the cage for character mod-
els normally doesn’t have large reflex angles (as shown in
Figure 9(c)) and both cages are built from the same T-pose,

Table 1 Greedy algorithm to solve self-intersection

1. Label the intersection cage vertices;
2. For first intersection vertex, compute the value of overall

energy, E. Set Emin with the value of E
3. For each intersection vertex;

a. Identify a set of random mesh points as candidates;
b.For each candidate, compute the value of overall energy,
E; if E < Emin, update Emin to E, cache this intersection
vertex and this candidate;

4. Update the cached intersection vertex to the cached candi-
date.

5. If not converge or reach maximum loop number, go to step
2.

these methods performed quite similarly in our experiments.
As a result, we use the quicker, more efficient Mean Value
Coordinates approach to perform the cage based deforma-
tion. Our cage may not entirely encapsulate all the muscles,
and some muscles may lie outside of the cage. As Mean
Value Coordinates are continuous and tolerant of negative
coordinates, this did not cause any problems in our exam-
ples.

6 Experiments

We implement this muscle retargeting method into an Au-
todesk Maya plugin. Cage construction is developed using
PyMEL for maya; because MVC involves very heavy com-
putation for our large mesh, this module is implemented
using C++ Maya API. Figure 8 shows how it works in
Maya with our python code. Our prepared template char-
acter model includes skin, skeleton and muscle structure.
Given any new character model, the user can easily build
up the cage and map the muscle into the new skin model.
The self-intersection module of our system was developed
separately. Since we use the Barycentric Spherical Param-
eterization method from [33] which only supplied Matlab
code, we develop an input and output interface to transfer
data between Maya and Matlab.

Figure 9 shows the template model which includes the
skin mesh, skeleton structure (Figure 9(a)), the muscle mod-
els (Figure 9(b)), and the cage (Figure 9(c)). To test our
method, we choose an extremely muscular model (Fig-
ure 11(a)) and a fat character (Figure 11(e)). The cage is
showed in Figure 11(b) and 11(f). Figure 11(c) and 11(g)
show the retargeted muscles.

The tightness of fitting of the muscle models inside the
skin mesh is essential for muscle animation. In the tem-
plate model, the muscle structure is tightly packed inside the
skin model. In order to measure how tightly the transferred
musculature fits inside the new skin model, we use cage
based deformation to map the template skin on to the new
skin model. If these two skin models are close enough, then
we can say the retargeted muscle structure is also “close”
to the new skin model. Here we adopt the method from
[34] to measure the closeness between the two skin meshes.
Figure 11(d), 11(h), 12(d) show this experiment, in which
we compare the mapped template skin to a new character
skin model. Since the mapping only involves the torso, arm
and legs, the head, feet and hand are not considered in this
computation. It uses rainbow colour from blue to red rep-
resenting the distance from 0 to maximum. Table 2 shows
the result from all our experiments. All cages are created
from (8, 4, 2) density parameters, including 508 vertices and
568 faces, the muscle model include 76561 vertices, 78943
faces, the size means the diagonal distance of the bounding
box. The mean distance is less than 1% of the mesh size,
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indicating a very good fitting. The fat model presents a big
different figure from the template model. Using the same
density cage will induce larger mapping errors than other
experiment. Choosing a denser cage would improve the re-
sult.

In another experiment we evaluate how cage density af-
fects mapping fitness. If we adopt a very dense cage mesh,
the muscle structure fits more tightly into the new skin sur-
face. However this will increase the complexity of compu-
tation. Figure 12 shows the result of this experiment. For
cross-section density dc, we choose the polygon with 4, 6,
8, 10, 12, 14, 16 sides, bone section db with 2,4, · · · ,16,
number of rings dr at fan joints is 1,2, · · · ,16. From Fig-
ure 12, we can see, the fitness of the mapping is increased
along with density of the cage. However when the density
reaches 8, there is little further improvement. In practice we
normally choose (8,8,4) as the cage density parameters.

There is an indirect relationship between cage density
and the occurrance of self–intersection. A low density cage
seldom results in this problem, but for dc ≥ 8 or dr ≥ 4 we
notice self–intersection appearing with more frequency at
the bifurcation linkage and cross linkage. For example, an
(8,8,4) cage for the muscular model in Figure 11(a), 38 in-
tersection vertices are detected. Although all the intersec-
tions are fixed in the first three iterations of our algorithm,
this process does incur additional computation.

Table 2 also shows the running time of our system. The
time of constructing cage is largely depends on the size
of the mesh, in particular the intersection computation be-
tween casting ray and mesh faces. Our template model takes
the longest time. The muscle mapping times are almost the
same, because the MVC computation only relies on the
complexity of the cage and the mapped model. The cage
in all experiments use have the same density and the same
large muscle models.

7 Conclusions and Discussion

In this paper we presented a new muscle retargeting method
to help an animator to quickly construct character muscle
structures. Based on this detailed muscle model, the anima-
tor can produce whole body animation using any existing
muscle deformation techniques. Since all stages of the pro-
cess are completely automatic requiring no user input, this
method will largely improve the efficiency of the animation
production.

In our current implementation muscle retargetting is
only supported for humanoid characters. The skeletal struc-
ture of quadrupedal characters has the same topological
structure as humanoids, and our method can be easily ex-
tended to support these characters.

Currently the distribution of cross-sections still follows
regular space sampling. To further increase the fitness of

this retargeting, we should adjust the cage to create cross-
sections according to important feature points on the new
character model. This would give a better fit to the new skin
model if, for example, a muscle bulge was located at a dif-
ferent position on the limb, and may improve the retargeted
muscle for new character.

In this paper, we limit input surfaces to genus 0 as this is
a requirement of the spherical parameterization method used
to resolve the cage self–intersection problem. This limitation
is satisfactory for most humanoid characters which topolog-
ically conform to a tree structure. The topology of the cage
is only based on the skeleton structure: it has no direct link
with the topology of the skin mesh. Extending our algorithm
to robustly deal with loops in the skeleton structure (for ex-
ample, a torus) is an area we hope to explore in future work.

Acknowledgements The template model is from the Ultimate Human
(http://www.cgcharacter.com/ultimatehuman.html), other mesh data
used in this paper were made available by ’MakeHuman’ (http://www.
makehuman. org/blog/index.php).
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Table 2 The measurement of fitting of our experiments.

model vertices faces size mean variance Time for creating cage (s) Time for muscle mapping (s)
Template (Figure 9) 14652 15200 28.049 3.7
Muscular (Figure 11(a)) 5314 5312 29.652 0.0631 0.0039 1.76 83.21
Fat (Figure 11(e)) 713 1422 25.578 0.1486 0.0109 0.39 89.06
Chubby (Figure 12(a)) 5654 5610 43.231 0.1228 0.0094 1.28 85.82

Fig. 8 System interface

(a) Skin and skeleton structure (b) Muscle structure (c) Cage modele

Fig. 9 Template model
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(a) Self-intersection of the cage (b) Step 1: over-shooting problem (c) step 1: fix over-shooting problem

(d) step 2: before fix (e) spherical mapping of the skin
mesh

(f) step 2: 6 intersection vertices
labelled

(g) step 2: after fixing with spheri-
cal mapping

Fig. 10 Solving the self-intersection problem
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(a) skin and skeleton for a muscu-
lar model

(b) cage structure (c) the retargeted muscles (d) fitness

(e) skin and skeleton for a fat
model

(f) cage structure (g) the retargeted muscles (h) fitness

(i) template muscle (j) retargeted muscle to fat model

Fig. 11 Two experiments: retarget muscle to a muscular and a fatty model
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(a) skin skeleton structure (b) cage structure (c) the retargeted muscles (d) fitness for density (8, 4, 2)

Fig. 12 How the cage density affects the mapping fitness


