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ABSTRACT 

Fitting elliptical arcs to strokes of an input sketch is discussed. We describe an approach 

which automatically combines existing algorithms to get a balance of speed and 

precision. For measuring precision, we introduce fast metrics which are based on 

perceptual criteria and are tolerant of sketching imperfections. We return a likelihood 

estimate based on these metrics rather than deterministic yes/no result, in order that the 

approach can be used in higher-level collaborative-decision recognition flows. 
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1. INTRODUCTION 
For sketch-based interfaces, fitting lines to strokes must be an efficient and reliable 

process. Dealing separately with overtraced [1,2], and grouped strokes [3] does not work: 

excessive grouping of overtraces strokes, or fitting lines before segmenting, results in 

macrolines (several true lines or curves are grouped together), but segmenting strokes 

each time a candidate corner is detected results in microlines, as the segmenter wrongly 

interprets undulations and oscillations as true corners. Instead, these processes should 

run in parallel, passing information to one another until they converge to a solution. In 
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such an approach, ellipse-fitting will be invoked each time the segmentation process 

identifies a candidate ellipse, so fast ellipse-fitting is a necessity. 

Most current fitting approaches are mainly concerned on geometrical accuracy or even 

ultra-accuracy, while recognition strategies in Sketch-Based Modelling (SBM) require 

equal consideration to perceptual criteria. �“What you perceive is what you get�” is the goal 

(WYPIWYG concept by [4]), instead of �“what you measure is what you get�”. In this sense, 

our new approach differs from current approaches in the field of image recognition, as it 

prioritises speed and perception over geometrical accuracy. 

In this paper, we discuss fitting elliptical arcs. The input is a stroke, a time-ordered 

sequence of 2D points, generated by following hand movements as the user sketches the 

ellipse (some systems also time-stamp individual points). The output is an approximate 

rather than a precise ellipse fit, and to allow for multiple interpretations it also includes a 

merit figure which measures how likely the stroke is to represent an ellipse. The methods 

should be as fast as possible, both to allow for immediate feedback and because higher-

level interpretation processes may use them repeatedly. 

Although speed is more important than exact fitting, we nevertheless require an 

acceptable approximation. And the acceptability of the approximation depends on how 

the stroke is perceived by humans, not on preconceived geometrical measures. Thus, 

there are two stages to our approach: we first find a reasonably good fit, and then 

measure how well the original stroke fits into a set of three tolerance bands around the 

resulting elliptical arc. 

Section 2 reviews the existing fitting algorithms and analyses their weaknesses and 

strengths. Section 3 briefly describes our experimental approach to determine how 

humans perceive shapes embedded in sketched strokes. Section 4 describes how we 

combine different algorithms for fitting elliptical arcs to strokes to find the best balance 

between speed and accuracy, and how we measure the likelihood of the fit. In Section 5, 

we test our approach to determine its �“goodness�”, measured as its ability to produce the 

same interpretation as humans. Section 6 presents our conclusions. 
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2. ASSESSMENT OF PREVIOUS WORK 
The most common approaches for fitting an ellipse with unknown parameters to a set of 

stroke points are based on minimising the total error, which may be measured in different 

ways. An excellent discussion of the state of the art in ellipse fitting can be found in [5]. A 

distinction is made between Maximum Likelihood, geometric and algebraic approaches 

[6]. We do not consider Maximum Likelihood as a stand-alone approach, because �“when 

the noise is large or the eccentricity of the ellipse is large, the algorithm breaks down�” [6]. 

Since only five points are required to determine an ellipse, we can take advantage of the 

sequential ordering of points in a stroke by selecting a regularly-spaced five-tuple [7]. 

Although Rosin [7] described a technique for ellipse fitting based on accumulating many 

five-point ellipse fits, we note that each such five-point ellipse fits (5P) is itself a fast fit. 

The Direct Ellipse Fit (DIR) of Fitzgibbon et al [8] is currently the most popular algebraic 

algorithm for fitting ellipses to scattered data. Halir and Flusser [9] describe a robust 

version of DIR, and Kotagiri [10] provides a C# implementation. DIR was first applied to 

sketch recognition by Shpitalni and Lipson [11]. DIR is computationally expensive, as 

solving the eigenvalues and eigenvectors problem is simple for symmetric matrices but 

becomes more complex for non-symmetric matrices. For 3x3 matrices, there is an exact 

solution, but its implementation is unstable. The other choice is to use a numerical 

approach: there are various libraries which include calculation of eigenvalues and 

eigenvectors [12-14]. 

One representative geometric approach is the Guaranteed Ellipse Fitting algorithm (GEF) 

by Szpak et al. [15]. It is supposed to improve on DIR when data points are sampled from 

only one portion of an ellipse, and it is claimed to give a fast and accurate approximation 

of the computationally more expensive orthogonal-distance-based ellipse fitting method. 

We have found experimentally that 5P fails: (1) for arcs close to 360 , unless one of the 

endpoints is replaced by an extra intermediate midpoint; (2) for short (encompass a small 

angle, less than 180 ) and flat arcs and for strokes with a change in the curvature, as 

they produce elongated fits, and (3) for flat and undulating strokes, as they do not return 

a valid ellipse (Figure 1). 
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Figure 1: Elongated 5P fits. 

Our experiments confirm that DIR fails for short and flat arcs, as it has a bias towards 

smaller ellipses when points are sampled from only a portion of the ellipse the estimated 

ellipse is often smaller than it should be [16]. It also fails occasionally through numerical 

instability. 

GEF does not fail (provided that 5P or DIR feeds it with a valid seed). However, GEF 

execution times are unacceptable for an on-line application 

To test the five-point algorithm, we selected the two endpoints plus three equally spaced 

intermediate points as input for the Davis implementation [17]. We also tested the Kotagiri 

implementation of the Direct Ellipse Fit (DIR) [8], [10], and our own C++ implementation 

of Guaranteed Ellipse Fitting with Sampson Distance (GEF) [16]. 

We compared the times taken by four algorithms: 5P, DIR, GEF seeded by 5P, and GEF 

seeded by DIR. Since these algorithms behave differently for arcs encompassing small 

angles and large angles, we treat these cases separately. Figure 2 plots running time 

against number of points for all of the examples of Section 5. Additionally, we resampled 

some examples to widen the range of number of points. 
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Figure 2. Execution times when strokes encompass large angles (left) and small angles 

(right). 

It is evident that 5P is fastest�—roughly 1000 times faster than DIR and 100000 times 

faster than GEF�—and that this advantage increases somewhat with increasing the 

number of points. 5P should always be tried first if speed is a criterion. 

DIR execution times might be acceptable for strokes of up to a few hundred points, and 

DIR combined with resampling to fewer than 100 points is a credible fast-fit alternative. 

Both GEF/5P and GEF/DIR execution times are unacceptable for an interactive 

application, even when combined with resampling to 20 points. GEF/5P is not worth 

considering, as it is almost always slower than GEF/DIR. 

3. PERCEPTION OF ELLIPSE FITTING 
Design engineers are accustomed to seeing ellipses in engineering sketches. But what 

criteria do they take into account when assessing whether and how to fit an ellipse to a 

curve? For example, where does perception leave off and inductive reasoning begin? We 

wish to investigate psychological behaviour, without accidentally misinterpreting learnt 

behaviour of particular subjects as general perceptual behaviour. 

To determine the limits of human perception, we must ask humans what they perceive, 

and the only scientific strategy which has proved at all useful in determining what humans 

perceive is performing experiments with groups of humans who are then interviewed to 

make their perceptions explicit (e.g. [18]). 

In Experiment #1, subjects compared a set of strokes (see Figure 6) against given arcs. 

In Experiment #2 they compared strokes against their own mind's-eye arcs. The 

conclusion from these two experiments support our first hypothesis: humans perceive that 

strokes depict good, average or poor arcs, regardless of whether or not they are given a 

pattern to compare the stroke with. 

Experiments #3 and #4 showed that subjects are stricter with large strokes and less 

confident with short strokes, as shorter strokes convey less perceptual information. 

Hence, relaxing evaluation criteria for short strokes mimics human perception. 
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More details on the studies can be found at [19]. 

3.1 Oscillations and undulations 
During the experiments, we observed that some interviewed subjects evaluated 

oscillating strokes as poor, while other group of subjects seemed to mentally filter out 

oscillations and evaluate the underlying stroke. In other words, some subjects distinguish 

oscillations from undulations (respectively higher or lower frequency waves around the 

theoretical line). This interpretation was reinforced by queries (which we did not answer) 

from some subjects asking the interviewers whether or not they should ignore the lack of 

"smoothness", "flatness" or "horizontality" of some lines. 

We hypothesise that subjects distinguish curvature changes from high frequency 

oscillations and low frequency undulation, and that oscillations are less distracting (as 

they are usually perceived as unintentional) than undulations. 

4. FAST AND PERCEPTUALLY-BASED ALGORITHM FOR 
FITTING ELLIPTICAL ARCS 

In fitting elliptical arcs to strokes, we have two concerns. Firstly, we must find a balance 

between speed and accuracy: although speed is more important than exact fitting, we 

nevertheless require an acceptable approximation. Secondly, the acceptability of the 

approximation depends on how the stroke is perceived by humans, not on preconceived 

geometrical measures. Thus, there are two stages to our approach: we first find a 

reasonably good fit (possibly to a reduced point set to reduce calculation time), and then 

measure how well the original stroke fits into a set of three tolerance bands around the 

resulting elliptical arc (Section 4.7). 

We suggest two complementary strategies to reduce the point set. Firstly, we can find the 

complex hull (as described in Section 4.3) since this is what humans often do when 

oscillations or undulations mask the underlying shape. Secondly, we resample the point 

set (as described in Section 4.4) at equal intervals to obtain a reduced but representative 

subset, thus speeding up DIR and GEF. 
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5P applied on the convex hull stroke is calculated first (5P/CH). However, it does not 

always work. A certain subset of short strokes causes systematic failures with 5P. We 

can detect short strokes before we try to fit them (as explained in Section 4.5). A human 

observer easily detects those short strokes with undulations and oscillations that are 

going to be problematic, but fitting algorithms are blind to oscillations and undulations. If 

5P fails, this may be due to numerical instabilities (for very flat and short arcs the 

difference between elliptic and hyperbolic fits is very small) so we next try 5P applied to 

the original stroke. If both fail, then we have a clue that the stroke may belong to the 

problematic subset. At this point, we switch: from fast but uncertain 5P, to slower but 

more accurate, and less prone to fail, DIR/R. If all of them fail, the merit is returned as 

zero. 

As we are searching for a balance between speed and precision, we have implemented 

two other operating modes (in addition to the fast mode already described). In the 

balanced mode, we try 5P/CH, DIR/R and DIR/R/CH In the accurate mode, we try DIR 

(only for long arcs), followed (if necessary) by GEF/R. 

The variables of our approach are the parameters that define all conics (ellipses, 

parabolas and hyperbolas), which can be defined by a general second degree equation, 

 

In all cases, failures occur when the six parameters returned by the algorithm�—which 

should define the equation of the conic in general form (Equation 1)�—do not define a 

valid ellipse. 

Valid fits may differ from each other (Figure 3), and may be poor (differ greatly from the 

stroke). To know if an algorithm has returned a poor fit we have two choices: a very slow 

point-by-point comparison, or fast metrics based on perceptual criteria. The approach 

uses the second way, based on the metrics defined in Section 4.5. 
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Figure 3: Nearly polygonal stroke fitted by 5P (left), DIR (middle) and GEF (right). 

Thus, our approach emulates human perception, as, from results obtained in Section 3, 

we know that distinguishing between good, average and poor is perceptual behaviour. It 

is also similar to human perception in behaving different for short and long arcs, and by 

choosing the fastest approach instead of the more geometrically accurate. 

Once a fit is obtained, evaluation of the merit of the fit�—by distinguishing between good, 

average and poor strokes, as humans do�—defines three tolerance bands and checks 

whether the points of the stroke are located inside them. This is described in Section 4.7. 

The full code is available at [20], and approach may be summarised as follows: 

1. Calculate stroke metrics (BoxLength, Sagitta, ShortStroke, FlatStroke, 
SmallAndFlat). (see Sect. 4.5) 

2. Fit an elliptical arc to the stroke. 

1. If operating mode is fast or balanced, calculate = (a, b, c, d, e, f) by 
5P/CH (Sect. 4.3). 

i. Calculate main axes, centre, foci and endpoints from . 

ii.  is valid if  0 and J>0 and  *(a+c)<0 (see Section 4.1) 

iii. Calculate arc metrics (SmallArc, ArcOverflow). (see Section 4.5) 

iv. Set  as invalid if: 

1. (SmallAndFlat and not SmallArc), or 

2. (Not ShortStroke and SmallArc) or 

3. (Not SmallArc and ArcOverflow) 

2. If  is not valid, and operating mode is fast, then calculate  by 5P 
applied to the original stroke. 

i. Same steps i to iv as in 2.1. 

3. If  is not valid, and (operating mode is fast or balanced) or (operating 
mode is accurate and not ShortStroke), resample to 20 points and 
calculate  by DIR/R. 

i. Calculate main axes, centre, foci and endpoints from . 

ii.  is valid if  0 and J>0 and  *(a+c)<0 (see Sect. 4.1) 

iii. Calculate arc metrics (SmallArc, ArcOverflow, GapEnds, 
ArcUnderflow). (see Sect. 4.5) 
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iv. Set  as invalid if: 

1. (SmallAndFlat and not SmallArc), or 

2. (Not ShortStroke and SmallArc) or 

3. (GapEnds is set) or 

4. (SmallAndFlat and ArcUnderflow) 

5. (Not SmallArc and ArcOverflow) 

4. If  is not valid, and operating mode is balanced, resample to 20 points 
and calculate  by DIR/R/CH (Sect. 4.3 and 4.4). 

i. Same steps i to iv as in 2.3. 

5. If  is not valid and operating mode is accurate, then calculate  by 
GEF/R (after resampling the original stroke to 20 points). 

i. Calculate main axes, centre, foci and endpoints from . 

ii.  is valid if  0 and J>0 and  *(a+c)<0 (see Sect. 4.1) 

6. If  is not valid, then return zero merit 

3. Evaluate the merit of the fit 

1. Calculate Tol for the original stroke. 

2. If Tol is less than minimum tolerance, then 

i. Return the highest figure of merit �“1�”. 

3. Smooth the original stroke, as in Section 4.6. 

4. Calculate Tol for the smoothed stroke (Sect. 4.7). 

5. Assign merit 1 for Tol TolMin, null for Tol>TolMax, and linearly 
decreasing from 1 to 0 inside this range. 

6. Reduce merit for oscillating strokes:  

Merit= max(Merit - Penalty*NSS, 0), see Sect. 4.7. 

4.1 Valid ellipse 
All conics (ellipses, parabolas and hyperbolas) can be defined by a general second 

degree equation (Equation 1), where one parameter can be fixed without loss of 

generality. Defining  as the determinant of the matrix of coefficients (Equation 2), and J 

as the Jacobian (Equation 3),  describes a non-degenerate real ellipse if 0 (otherwise 

it is a degenerate conic), J>0 (otherwise it is not an ellipse) and  (a+c)<0 (otherwise it is 

an imaginary ellipse). 
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4.2 Endpoints detection 
Once we get the conic in general form (Equation 1), we can easily calculate the canonical 

parameters: main axes (defined by the length of both semi-axes Ra and Rb, plus the 

orientation of the major axis ), the centre (cx, cy) and the foci (F1, F2). 

 

 

 

 

 (8) 

 

 

However, since we fit a full ellipse while we need an elliptical arc, we also calculate the 

points of the ellipse that are closest to the endpoints of the stroke. For this, we need a 

function to calculate the point of an ellipse which is closest to a generic point P. This is 

the point T where the normal to the tangent to the ellipse passes through P. Since this 

results in a transcendental equation, we use a root-finding technique explained and 

implemented by Eberly [21]. We also calculate the point on the ellipse closest to the 

midpoint of the stroke, to choose from the two arcs defined by the endpoints the one 

which better fits the stroke. 
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4.3 5P Variants 
Since any selection of the five-tuples for 5P is arbitrary, we tested three variants of 5P in 

which we took different approaches to five-tuple selection. There is no loss of generality 

in such arbitrary selection: any resulting lack of precision during the fitting stage does not 

prevent assigning the right merit to the fit during the second stage, where we measure the 

tolerance between the elliptical arc and the original points. Firstly, we implemented a 

"standard" 5P, for which the five points are the two endpoints of the stroke and three 

intermediate points are at equal intervals in the stroke (effectively the same as resampling 

to five points). For nearly-closed arcs where the two endpoints are close, we chose 

instead the midpoint of the two endpoints and four intermediate points (effectively the 

same as resampling to six points, of which the first and the last are the same). All these 

5P approaches trivially guarantee that the endpoints of the stroke belong to the ellipse 

(meeting the closure principle of the Gestalt criteria [22]). 

The second and third variants are designed to avoid the problem of locally concave 

strokes. These are based on the perceptual assumption that humans, when forced to 

make sense of a very irregular shape, ignore its details and try to make sense of its global 

contour (�“where possible, interpret a curve in an image as the rim of a surface in 3D�” 

[23]). The second variant, 5P/CH, discards those points of the stroke not on the convex 

hull and runs 5P (as above) on the reduced list of points which remains. A similar strategy 

is used to create a DIR/CH variant of DIR. 

To obtain the convex hull, we recursively remove those points that define a concave 

connection with their neighbours. We use the Shoelace Formula to determine if the stroke 

is clockwise or anticlockwise (the output is unpredictable for self-intersecting strokes, but 

those strokes are not important here, as they cannot depict an elliptic arc). For clockwise 

strokes, if the current point lies in the right semiplane of the two semiplanes defined by 

the line connecting the preceding and following points, this means that current point is 

concave and must be removed. For anticlockwise strokes, points in the left semiplane are 

removed. In both cases, the semiplane is determined by the sign of the cross product of 

the oriented lines (previous-current) and (current-next). 
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Again, for nearly-closed arcs we chose instead the midpoint of the two endpoints and four 

intermediate points from the convex hull. 

The third variant, 5P/DQ, starts with the two endpoints (A and B), adds a third point C 

which is the stroke point furthest geometrically from the line AB, and fourth and fifth points 

D and E which are, respectively, the point in the sequence between A and C which is 

furthest geometrically from the line AC, and the point in the sequence between C and B 

which is furthest geometrically from the line CB. We did not test any alternative to 5P/DQ 

for nearly-closed arcs. 

Figure 4 allows for a visual comparison between 5P, 5P/CH, and 5P/DQ. In the first row 

(an average quality stroke) all merits are average. In the second row (a poor quality 

stroke) all merits are zero. 

 
Merit= 0.58 

 
Merit= 0.58 

 
Merit= 0.58 

 
Merit= 0.00 Merit= 0.00 

 
Merit= 0.00 

 

Figure 4: Two strokes (upper and lower rows), fitted with 5P (left), 5P/CH (middle) and 

5P/DQ (right) 

4.4 Resampling 
We can reduce the time taken by DIR or GEF, without significantly reducing the quality of 

the fit, by reducing the number of input points. DIR/R and GEF/R are, respectively, DIR 

and GEF where the input is limited to 20 points, extracted at equal intervals from the 

sequentially-ordered input, plus the two endpoints. Where the interval is fractional, we 

interpolate between the appropriate two points in the input. 
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Kumar et al. [24] is similar to our approach as it also proposes resampling the input data 

before fitting. But their goal is improving accuracy (so they increase the number of points 

of the stroke), while ours is reducing the time. 

4.5 Fast metrics for measuring fit quality 
As well as finding our fit, we must assess how good it is. We could measure differences 

between the input stroke and the resulting arc (for instance, by comparing differences 

between their respective perimeters), but this would require too much calculation time for 

an interactive application. Instead, our approach is based on fast metrics that measure 

reasonably well the discrepancies between the stroke and the arc. 

According to our analysis (see Section 2) 5P and DIR failures appear mainly for arcs 

covering small angles. We set a flag ShortStroke when the angle encompassed by the 

stroke is smaller than 180 degrees. The approach can indirectly measure the angle 

before fitting the arc since values GapF and GapL (Figure 5) are null for such short 

strokes. Both gaps can be calculated as the maximum distances between the endpoint 

and its closest side of the bounding box. To allow for sketching errors, we set the flag if 

the larger of (GapF, GapL) is smaller than a tolerance threshold set to 10% of the larger 

of (Chord/2, Sagitta). 

 

Figure 5: Parameters to determine whether the stroke depicts an arc that covers a small 

angle of an ellipse. 
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This metric assumes that the stroke roughly depicts an elliptical arc. It would fail�—and 

does�—for very poor quality strokes (e.g. Stroke 12 in Figure 6), but this is not a problem, 

as our goal for such bad strokes is simply detecting that they do not depict elliptical arcs. 

Some long strokes are wrongly classified as short by our fast metric. A tight threshold 

solves this problem, but does not allow for sketching mistakes. However, short strokes 

are not a problem for 5P unless they are also �“flat�”: we set a second flag, FlatStroke, if 

the stroke depicts a nearly straight line. We first calculate the bounding box of the stroke, 

where BoxLength is parallel to Chord (the chord connecting the two endpoints F and L) 

and Sagitta is perpendicular (Figure 5). For small-curvature strokes, Sagitta is much 

smaller than Chord. Currently, FlatStroke is set if Sagitta is less than 20% of Chord. 

If the stroke depicts an arc that covers a small angle and is nearly flat (i.e. if both 

ShortStroke and FlatStroke are set), we set a flag SmallAndFlat. Also, the angle covered 

by the stroke is compared with the angle covered by the arc: we set a flag SmallArc if the 

arc encompasses less than 180 degrees. 

For long strokes, 5P has a bias towards excessively big arcs: we set a flag ArcOverflow if 

the arc is much bigger than the stroke. The approach uses the orientation of the stroke, 

measured as the angle of Chord, and the angle of the major axis of the arc ( ), where 0 

angle< /2. If the absolute difference between both angles is less than /8, the major 

axis is assumed to be nearly parallel to BoxLength. In this case, ArcOverflow is set if 2.Ra 

is greater than BoxLength, or 2.Rb is greater than Sagitta. If the absolute difference 

between both angles is greater than 3. /8, major axis is assumed to be nearly 

perpendicular to BoxLength. In this case, ArcOverflow is set if 2.Rb>BoxLength or 

2.Ra>Sagitta. In other cases, ArcOverflow is set if Ra > (BoxLength2+Sagitta2). 

Thus, there are three cases where 5P is prone to produce bad fits: (1) If SmallAndFlat 

and not SmallArc; (2) if not ShortStroke and SmallArc, and (3) If ArcOverflow and not 

SmallArc. 

In evaluating DIR fits, we pay attention to its typical failure: the bias toward smaller 

ellipses. This failure is linked to short and flat strokes, but it also results in failures to meet 
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the Gestalt principle of closure. Hence, we set flag GapEnds if the distance from the 

elliptical arc to at least one of the two endpoints (see next section) is greater than 5% of 

the reduced length of the stroke; where reduced length of the stroke is calculated as the 

sum of the lengths of numIntervals chords. A small value of numIntervals (typically 10) is 

used to find the approximate length of the undulating arc that should result after removing 

high frequency oscillations from the original arc. In this way, the approach distinguishes 

oscillations from undulations. 

Since DIR has a bias towards excessively small arcs (but only for arcs covering large 

angles), we set flag ArcUnderflow if the arc is much smaller than the stroke. This occurs 

when BoxLength is greater (typically 15% more) than 2.Ra. 

Thus, DIR is assumed to be prone to produce a poor fit: (1) if SmallAndFlat and not 

SmallArc, (2) if GapEnds is set, (3) if ArcOverflow is set. 

4.6 Smoothing 
There are well-known techniques for removing high frequency oscillations (for instance 

[25]), of which moving average (or rolling average) is perhaps the most popular. However, 

it is also well-known that estimating the right parameters for distinguishing noise from 

signal is critical [26]. Since we are interested in what humans perceive, we opted for a 

very simple method which can be easily controlled by those parameters which seem to be 

the most important for humans: corners and width. Thus, our approach removes "micro-

corners", taking advantage of the fact that strokes are sequences of points (not clouds of 

points) to sequentially remove alternate points of the stroke as long as the smoothed 

stroke still contains corners, and while the width of the resulting stroke is still similar to the 

width of the original stroke. The metric for similarity is the maximum permitted variation in 

the stroke width while smoothing it, defined as threshold TolSmooth—we only remove 

alternate points whenever their mutual distance is lower than 2*TolSmooth. The number 

of smoothing steps (NSS) required for every stroke is recorded.  

The approach uses one of three segmentation methods to find corners: IStraw [3], 

Shortstraw [27] and Sliding strips [28]. The initial choice is made by the user, with IStraw 
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as the default. Since IStraw requires timing information, if it is selected but no timing 

information is available, Shortstraw is used instead. 

Note that, although corners are calculated, strokes are not actually segmented, since we 

attempt to t the line before deciding whether the stroke must be segmented. Here, we 

only use segmentation information at that end. 

4.7 Evaluation of the merit of the fit 
We evaluate the merit of the fit to distinguish between good, average and poor strokes 

(as in Experiments #1, #2 and #3). To determine the merit of the fit, we define tolerance 

bands and check whether the points of the stroke are located inside them. First, we check 

the original stroke against the minimum tolerance band (TolMin). Strokes passing this 

filter are nearly perfect elliptical arcs, and are acknowledged as such. Strokes not passing 

the minimum tolerance filter are smoothed (smoothing, as explained in Section 4.6, is a 

process for filtering out oscillations, i.e. high frequency irregularities), and checked 

against the maximum tolerance band (TolMax). 

The resulting figure of merit is reduced depending on the number of smoothing stages 

(NSS) as follows: Merit= Merit - Penalty*NSS, where negative merits are not allowed. 

Measuring the distance from every stroke point to the ellipse to determine whether the 

stroke is inside tolerance bands is clearly time consuming, as it requires solving one 

transcendental system using root finding techniques�—described in Section 4.2 

�“Endpoints detection�”�—for every point in the stroke. 

Instead, we assume that an ellipse is a circle that has been stretched in one direction. 

Hence, we rotate the stroke to align its major axis with the x-axis and rescale the stroke to 

convert the elliptical arc fit into a unit-radius circle. The points of the transformed stroke 

most distant from the unit radius are considered to be the most distant from the ellipse to 

the original stroke, and their distances to the elliptical arc are calculated (respectively 

d_In and d_Out). Finally, Tol is the sum (Tol= d_In+d_Out). 
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5. ANALYSIS 
This section analyses the results of testing the ideas implemented in Section 4. The 

suggested set of tuning parameters is described in Section 5.1. Since merits obtained 

using our approach are close to those obtained by the most accurate approach (GEF), we 

can conclude that our new approach provides fits of an acceptable quality. The analysis 

also includes a brief description of pathological cases (Sect. 5.4). 

5.1 Tuning parameters 
By testing a large set of strokes�—included but not limited to the strokes of the 

experiments in Section 3�—we found that the approach is fast and returns figures of merit 

comparable with the results of human perception when: Tolmin equals 1.0% of the length 

of the stroke; TolMax is 10% of the length of the stroke; TolSmooth is 1.0% of the stroke 

length, and the smoothing Penalty is 5%, for every smoothing step. 

Tuning the approach in this way, it returns the merits shown in Figures 6, 7 and 8. 

Comparing these figures with the assessments made by our experimental subjects, we 

can conclude that our approach nearly always matches human perception. Comparison 

shows that strokes with a figure of merit equal or greater than 0.5 correspond with strokes 

clearly perceived good or average by humans, and this is the criterion we suggest for 

those interested in converting the merit into a binary decision (yes/no). 

5.2 General behaviour 
5P/CH can fit all of the strokes of Experiments #1 and #2 (light green arcs in Figure 6). 

Poor strokes (10 and 12, and arguably 11) give fits whose only virtue is that they include 

the two endpoints. 
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Figure 6: 5P fitting of the 12 strokes of the set �“a�” used in Experiment #1 

5P/CH fits six of the strokes of Experiment #3, shown in light green in Figure 7. 5P fits 

one more (stroke 4, drawn in dark green), and DIR/R fits another four (3, 5, 10 and 11 in 

dark blue). None of the three methods fits a valid elliptical arc to the stroke 12, which is 

only fitted by DIR/CH in the balanced mode (light blue), although with a zero merit. 

 

Figure 7: Fitting of the 12 strokes of the set �“b�” used in Experiment #3. 

5P/CH fits all of the strokes of Experiment #4 (Figure 8). 

 

Figure 8: Fitting of the 12 strokes of the set �“c�” used in the Experiment #4. 

It is worth noting that the first stage of our approach returned valid fits for all of the test 

examples except b.12. The fastest methods (5P/CH and 5P) were sufficient for all large 

arcs and 13 of 18 small arcs. In further tests (not illustrated in the paper), the fastest 

methods were sufficient for 68 of 69 long arcs and for 42 of 71 short arcs. 
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In the case of example b.12, we note that DIR/R/CH and GEF/R produce valid fits, so 

balanced or accurate mode would return a valid elliptical arc. The second stage of our 

approach assigns low merit to such poor fits (in this case, the merit is zero), meeting the 

requirement that our approach should emulate human perception (example b.12 is 

considered to represent an ellipse by only 1 in 7 humans). 

5.3 Figures of merit 
In Table 1, we tabulate the merit values of the fits which would be returned by each of the 

eight methods we evaluated. All three of the 5P variants sometimes returned hyperbolas 

(labelled as �“Hyp�” in the table), and 5P/DQ fails for closed loops (labelled as �“Closed�” in 

the table). Grey backgrounds indicate fits which were labelled as invalid by sub-stage 

2.1.iv. 

Table 1. Merits of fits to the examples of Section 5.2. 

 5P/ 
CH 5P 5P/ 

DQ 
DIR/

R 
DIR/R
/CH DIR GEF/

R GEF New 
app. 

New-
GEF 

a.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 
a.2 0.98 0.98 0.96 0.97 0.97 0.97 0.97 0.97 0.98 0.01 
a.3 0.93 0.93 0.92 0.94 0.94 0.95 0.94 0.95 0.93 -0.02 
a.4 1.00 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 
a.5 0.78 0.78 0.78 0.81 0.81 0.79 0.81 0.79 0.78 -0.01 
a.6 0.75 0.71 0.74 0.80 0.79 0.80 0.80 0.80 0.75 -0.05 
a.7 0.67 0.64 0.62 0.64 0.64 0.64 0.64 0.64 0.67 0.03 
a.8 0.58 0.58 0.58 0.66 0.66 0.67 0.66 0.67 0.58 -0.09 
a.9 0.67 0.65 0.65 0.67 0.66 0.68 0.67 0.68 0.67 -0.01 
a.10 0.01 0.02 0.00 0.13 0.10 0.17 0.10 0.16 0.01 -0.15 
a.11 0.26 0.18 0.28 0.27 0.27 0.28 0.26 0.27 0.26 -0.01 
a.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
b.1 0.99 0.97 0.95 1.00 0.96 1.00 1.00 1.00 0.99 -0.01 
b.2 0.88 0.85 0.87 0.88 0.86 0.89 0.88 0.88 0.88 0.00 
b.3 Hyp Hyp 0.75 0.80 0.78 0.79 0.85 0.87 0.80 -0.07 
b.4 Hyp 0.80 Hyp 0.85 0.87 0.85 0.85 0.88 0.80 -0.08 
b.5 Hyp Hyp 0.13 0.71 0.51 0.64 0.74 0.71 0.71 0.00 
b.6 0.70 Hyp Hyp 0.68 0.59 0.68 0.67 0.67 0.70 0.03 
b.7 0.68 0.51 Hyp 0.66 0.71 0.67 0.65 0.68 0.68 0.00 
b.8 0.42 Hyp Hyp 0.43 0.00 0.42 0.44 0.46 0.42 -0.04 
b.9 0.11 Hyp 0.00 0.16 0.00 0.16 0.18 0.19 0.11 -0.08 
b.10 Hyp Hyp 0.14 0.26 0.32 0.15 0.37 0.38 0.26 -0.12 
b.11 0.00 Hyp 0.34 0.23 0.00 0.13 0.36 0.38 0.23 -0.15 
b.12 Hyp Hyp Hyp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
c.1 0.99 0.97 0.95 1.00 0.96 1.00 1.00 1.00 0.99 -0.01 
c.2 0.98 0.98 0.97 0.99 0.98 1.00 0.99 1.00 0.98 -0.02 
c.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 
c.4 0.97 0.95 Clos 0.99 0.99 0.98 0.99 1.00 0.97 -0.03 
c.5 0.68 0.51 Hyp 0.66 0.71 0.67 0.65 0.68 0.68 0.00 
c.6 0.62 0.65 0.41 0.65 0.63 0.65 0.68 0.68 0.62 -0.06 
c.7 0.66 0.64 0.65 0.70 0.68 0.70 0.70 0.70 0.66 -0.04 
c.8 0.53 0.56 Clos 0.64 0.62 0.65 0.65 0.64 0.53 -0.11 
c.9 0.11 Hyp 0.00 0.16 0.00 0.16 0.18 0.19 0.11 -0.08 
c.10 0.10 0.06 0.12 0.20 0.11 0.04 0.20 0.20 0.10 -0.10 
c.11 0.34 0.33 0.33 0.33 0.34 0.33 0.32 0.32 0.34 0.02 
c.12 0.36 0.13 Clos 0.31 0.38 0.32 0.39 0.40 0.36 -0.04 
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These figures allow us to choose between the eight variants. We prefer 5P/CH to 5P as 

5P/CH is sometimes much the better of the two, and hardly ever worse (and even then, 

only by one or two points). We prefer 5P to 5P/DQ as, although they are roughly 

comparable for small arcs, 5P/DQ fails for closed loops. We prefer DIR/R to DIR/R/CH as 

DIR/R is always as good as, and sometimes better than, DIR/R/CH. 

For balanced mode, GEF/R is usually better than any of the 5P methods, although not 

always by very much. GEF/R is also always as good as, and occasionally better than, 

DIR/R, but DIR/R is faster than GEF/R. This small gain in accuracy is not enough to 

justify the higher execution time, so we only use GEF/R as a last resort. 

It can be seen that, in general, our approach produces fits which are almost as good as 

those produced by GEF (where "almost" means that the difference in measured merit is 

0.10 or less). Of the four cases where our approach produces fits which are clearly 

inferior to GEF, three (a.10, b.10 and b.11) are poor strokes which should probably not be 

interpreted as ellipses, and while the fourth, c.8, is geometrically a good ellipse, it is not 

perceived as such by humans. In this final case, GEF is "too good", and our new 

approach corresponds better to human perception. 

5.4 Pathological cases 
Perceptually, it is as important to reject strokes which do not represent ellipses as it is to 

fit elliptical arcs to those which do. Figure 10 shows several strokes which, to humans, 

clearly do not represent ellipses. Our approach finds tentative fits for all of them but 

returns zero merit for these fits�—there are no false positives. 
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Figure 10: These are not ellipses. 

Our approach currently fails when the stroke depicts an elliptical arc of more than 360 

degrees. Future versions should detect and deal with this during endpoint detection. 

6. CONCLUSIONS 
We propose a strategy based on selecting algorithms for their speed rather than their 

geometrical accuracy, and emulating human perception by returning a merit instead of a 

binary classification. The contribution here is twofold. 

Firstly, we have performed experiments to identify which strokes humans perceive as 

depicting elliptical arcs, and which they consider cannot be elliptical arcs. We then used 

the sketches from these experiments to test whether or not our approach replicates 

human behaviour. 

Secondly, we developed a systematic approach for fitting elliptical arcs to strokes. Our 

approach is designed to return valid fits for every stroke in a sketch in the shortest overall 

time. If speed is the priority, we start with five-points applied to the convex hull (5P/CH), 

followed if necessary by 5P and DIR/R. If precision is the priority, we choose DIR/R (if the 

stroke is not short) followed by GEF/R. The metrics we use to determine when a fitting 

algorithm has returned a bad fit are another original contribution. In future we may try 

other merit functions to see how well they match human perception. 
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