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Abstract Medical datasets are continuously increas-

ing in size. Although larger models may be available for

certain research purposes, in the common clinical prac-

tice the models are usually of up to 512×512×2000 vox-

els. These resolutions exceed the capabilities of conven-

tional GPUs, the ones usually found in the medical doc-

tors’ desktop PCs. Commercial solutions typically re-

duce the data by downsampling the dataset iteratively

until it fits the available target specifications. The data

loss reduces the visualization quality and this is not

commonly compensated with other actions that might

alleviate its effects. In this paper we propose Adap-

tive Transfer Functions, an algorithm that improves the

transfer function in downsampled multiresolution mod-

els so that the quality of renderings is highly improved.

The technique is simple and lightweight, and it is suit-
able, not only to visualize huge models that would not

fit in a GPU, but also to render not-so-large models in

mobile GPUs, which are less capable than their desktop

counterparts. Moreover, it can also be used to acceler-

ate rendering framerates by using lower levels of the

multiresolution hierarchy while still maintaining high

quality results in a context and focus approach. We also

show an evaluation of these results based on perceptual

metrics.
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1 Introduction

Medical imaging is challenged by the continuous in-

crease in size of the datasets produced by capture de-

vices (such as CT scanners). Although GPUs also evolve,

their horsepower lies behind the size of the data. This

is specially true for physicians that receive the data

from radiologists, since their workplaces also commonly

shared with other physicians, and, not being their main

task the visualization of such data, they are not usually

equipped with powerful GPUs. As a result, a common

solution applied in many commercial software packages

is to downsample the volume iteratively along its largest

dimension until it fits a target size for interactive ex-

plorations. Although this strategy helps overcoming the

limitations of GPUs [3], this also produces ostensible

changes in the different multiresolution levels. Com-

monly, no other improvements are applied. Several ad-

vanced methods have already been proposed in the lit-

erature, such as compression or data partitioning tech-

niques [1,4]. Unfortunately, most of these advanced tech-

niques still require long preprocessing time and high

GPU power that is not commonly available in com-

modity desktop PCs, or can not even be considered

in nowadays mobile GPUs. Nonetheless, physicians can

devote limited time to data inspection, so large pro-

cesses that achieve aggressive compression cannot be

applied and would also demand higher powered GPUs

for the rendering stage.

With mobile GPUs, which are gaining traction lately,

more especially among the medical community, there

is an increasing demand on transferring computation

tasks to mobile devices. As a consequence, several solu-
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(a) Original dataset (b) Downsampled at 1283 (c) Detail of (b) and (d) (d) Downsampled at 1283

at 5123 (original TF) (adapted TF)

Fig. 1 Enhancements for multiresolution rendering. The leftmost image (a) shows the model rendered at full resolution. In
(b) the model was downsampled with a standard Gaussian-based filter and rendered using the original transfer function. In
(d), the same downsampled model is rendered using an automatically adapted transfer function. Notice how (d) resembles (a)
better than (b) approximating the overall colors and opacities with more accuracy.

tions have been developed to tackle volume models in

such devices [22,14,23,21,27,20]. However, this pushes

forward the pressure on data size and the quality of the

renderings, and the reduced mobile GPU power further

compromises the complexity of the algorithms to be ap-

plied to the compressed data.

As stated above, our research was triggered by a

real need of the medical community after observing for

many years that the situation is not likely to change

anytime soon. The size of the images commonly avail-

able in medical practice are usually up to 512 × 512 ×
2000 voxels. A downsampling of two levels is usually suf-

ficient to make them tractable in terms of interactivityJD

in the typical desktop computers of the physicians. Un-

fortunately, such an aggressive simplification changes

the way the model is visualized, because the down-

sampling process implies modifying the image values.

Thus, the original Transfer Function (TF henceforth)

that might have been designed by a radiologist in a

high-end computer will now exhibit different informa-

tion in a downsampled model (see Figure 1-b). Our con-

tribution is a method to automatically adapt the TF to

downsampled levels, so that most of the quality of the

higher level resolutions is preserved (see Figure 1-d).

As shown in Section 5 significative improvement is

obtained both visually or when we numerically com-

pare the results. Our technique is fully automatic, not

requiring any user intervention, and is fast: if TF is

changed, the new adapted TFs are recomputed in in-

teractive time. Other advantages of our Adaptive TFs

are:

1. Physicians can interactively inspect the full reso-

lution level interactively, with seamless integration

with the lower resolution levels: no blocking artifacts

or seams are visible (see Figure 11).

2. It is independent of the downsampling method and

the grid positions used to create the downsampled

images.

3. Simple adaptation to rendering algorithms: The sys-

tem only changes the TF for the corresponding level,

and typical post-classification GPU-based rendering

is achieved without framerate penalty.

4. It can be combined with other compression tech-

niques.

Our system essentially compares the data of a coarser

downsampled level with the original resolution dataset

and analyzes how the density values vary. Then, it cre-

ates a new TF that approximates the rendered results of

the downsampled data to the full resolution model. All

this process is performed interactively; we need to store

only the new 1D TF, and the downsampling histograms

in case a new modification of the TF is required, so the

extra information required is negligible.

The rest of the paper is organized as follows: Sec-

tion 2 surveys related work. Section 3 analyzes the op-

timization procedure. In Section 4 we present our tech-

nique for TF adaptation. We then discuss the results

in Section 5. We conclude the paper in Section 6 by

pointing out some lines of future research.

2 Previous Work

There is a large amount of literature in different as-

pects of data reduction for volume rendering. On the

one hand, many articles focus on lossy or lossless data

compression (we refer the interested reader to the re-

cent state of the art by Balsa et al. [1]). Another group
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of techniques partition data in order to make smaller

chunks that are then loaded on demand to the GPU.

These techniques include bricking, streaming, and other

methods [4]. Other authors focus their work on opti-

mized rendering on the CPUs by using specific data

structures and instruction-level knowledge [15].

(Paper Isa)JD Multiresolution techniques [29,32,3]

use special data structures such as octrees [5,17,10],

N3-trees [6], wavelets [11], 3D mipmaps, hierarchical

grids [8], or other sparse representations [26,33], in some

cases also combined with compression techniques [9,7]

and streaming [28]. We will concentrate on regular rep-

resentations, as they are the most commonly found in

commercial software.

Unfortunately, as previously stated, most of these

techniques are not amenable to common commodity

desktop PCs that physicians have at their desks, since

they would require highly performing CPUs or GPUs,

which is not the case, as commented above. Other meth-

ods require long pre-processing time which impedes their

use since the span the physicians may devote to data ex-

ploration is scarce. As a result, simple downsampling is

commonly performed. However, the downsampled data

often suffers from artifacts due to the lower quality.

Surprisingly, little effort has been devoted in literature

to address this problem. Although many papers have

focused on the important problem of aiding in the def-

inition of the transfer function by automatic or semi-

automatic methods (e.g. [25,19,24,13]), less numerous

are the papers that concentrate on the effect of data

reduction.

Bergner et al. [2] perform a spectral analysis of the

composition of the scalar field and the transfer func-
tion. This way they provide essential understanding to

the fundamental problem of proper sampling in volume

rendering. With these theoretical tools they are able to

provide an adaptive approach that significantly reduces

the number of samples. JD

Wang et al. [30] concentrate on the preservation

of features in data reduction. This is done by assign-

ing importance to the voxels according to the current

transfer function; in our case, we do not change the re-

duced data, but we adapt the TF to better provide the

information on the original data. Ljung et al. [18] in-

troduce the use of transfer functions at decompression

time to guide a level-of-detail selection scheme. Kraus

and Bürger [16] concentrate on the interpolation and

reduction of RGBA data. In our case, since we must

reduce the data just to make it fit the GPU memory,

it is better to rely on the density values; otherwise the

size of the data is multiplied by four.

Younesy et al. [34] also focus on improving the qual-

ity of renderings for coarse multiresolution levels. They

state that the original data distribution in coarse levels

of detail might be ideally approximated by storing lo-

cal histograms at each low-resolution voxel. However, as

the authors note, this is usually impractical due to its

high storage requirements. Thus, they propose a simpli-

fication that consists of representing these histograms

with a Gaussian basis function, which implies storing

an average density (µ) and its standard deviation (σ)

along with each voxel. Although they designed an effi-

cient algorithm, the size of the data is increased with

respect to traditional downsampling methods. This may

be a problem if the available memory is limited. Our so-

lution does not require such extra storage but a simpler

small transfer function mapping.

More recently Sicat et al. [26] have presented an

approach that uses a compact sparse representation

of probability density functions (pdf) to capture voxel

neighborhood distributions for consistent multiresolu-

tion volume rendering. They succeeded in avoiding er-

roneous data analysis (loss of information) when coarser

models are rendered using the same TF than the ini-

tial volume. However, the significant precomputation

time needed and the increase of storage make this rep-

resentation impractical in the current clinical practice.

Our objective is to obtain consistent visualizations for

datasets commonly used in the medical practice but

minimizing the modifications needed to the rendering

pipeline, the preprocessing time, and the increment of

memory storage. Furthermore, our system has no im-

pact in terms of required computational power since we

use the same ray casting algorithm with no modifica-

tions.

3 Optimal Transfer Function Adaptation for

Coarse Levels

Given a volume dataset defined in a space D ⊂ R3,

V (x) is a scalar function that computes a density value

for points x ∈ D:

V (x) : D ⊂ R3 → R.

Let us assume that this volume is evenly sampled

in N3 points xi and stored in a voxel representation of

N3 resolution. For notation convenience, we use V0 to

refer to this original model and z = V0(xi) the density

value at xi.

A multiresolution volume representation is a set of

successively coarser resolution models V0, V1, . . . , Vn. We

assume a reduction factor of two in each dimension from

successive resolutions so that, for k > 0, Vk is stored in

a 1/8th of memory required for Vk−1. For k > 0, Vk
is usually computed by filtering and downsampling a

higher resolution representation. It is obvious that the
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distribution of values in the volume changes among the

different levels of resolution.

Without loss of generality and in order to simplify

notations, in the rest of this section we will only con-

sider a 1-dimensional scalar field. Downsampling filter-

ing is usually performed through a symmetric weighting

function w of finite domain [12]:

Vk(xj) =
∑
i

V0(xi) w(xj − xi) (1)

where, in uniform voxelizations, we can assume that

xj = j · 2kh and that xi = i ·h, with h being a constant

spacing.

By considering the voxelization as a discrete repre-

sentation of a continuous scalar field we can also write:

s = Vk(x) =

∫ ∞
−∞

V0(y) w(x− y) dy (2)

where s is a density value obtained from the down-

sampled level Vk at a certain position x. We assume

that values retrieved from any discretized volume are

usually computed as a linear interpolation of neighbor

voxel densities.

Let TF0 be a 1D transfer function specifically de-

signed to map density values of the original dataset V0
to output color and opacity, TF0 : R → (R,G,B, α);

and let ITF0(V0) be the image obtained by rendering

V0 using TF0. Therefore, if Vk is rendered using TF0,

the resulting image ITF0(Vk) will differ and lose details

from the render of the original volume ITF0(V0) due to

the change of values on downsampling. The ideal after

downsampling would be to have a new TFk with which

ITFk(Vk) = ITF0(V0), that is, TFk(Vk(x)) = TF0(V0(x))

for all samples x in D.

Several previous papers [34,16] have tried to com-

pute the RGBA color Ck for a point x in the downsam-

pled volume Vk by using a color averaging function wC
and defining:

Ck(Vk(x)) =

∫ ∞
−∞

TF0(V0(y)) wC(x− y) dy (3)

Notice that, in this equation, Ck(Vk(x)) is local, be-

ing in fact a function of the original densities around x

and the original transfer function TF0.

We observed that the downsampling process from

the original dataset V0 to a lower-resolution Vk (see

equation 2) can be characterized by a 3D point cloud

in the (x, z, s) space, where the x-dimension represents

the N3 voxels of V0. Any point (x, z, s) of the cloud

represents that the computation of the downsampled

density s = Vk(x) takes into account the density value

z = V0(y) for y in the neighborhood of x (just observe

that we have deliberately removed the second order lo-

cality of y in equation 2 by ignoring this y value).

We can compact this point cloud in the z-direction

by encoding, for each pair (x, s), the occurrences of

the z values used to compute Vk(x). We refer to this

information as the 2D histograms Hx,s(z). Note that

Hx,s(z) stores the distribution of original density val-

ues z within a footprint of x in V0.

Younesy et al. [34], by defining an appropriate weight-

ing of these histograms, transform equation 3 into:

C1(V1(x)) =

∫ ∞
−∞

TF0(z)Hx,s(z) dz (4)

(They focus on the case k = 1.) The direct use of equa-

tion 4 requires storing one histogram per voxel in down-

sampled representations, which is unpractical. Thus,

the authors approximate each of those histograms by

two values µ and σ (mean and standard deviation) to

represent the Gaussian curve that better fits their dis-

tribution (note that µ encodes the downsampled voxel

density s of Vk(x)). This is in fact a projection of the

point cloud in the z direction that allows pre-computing

the integral in equation 4 into a 2D TF TFk(µ, σ).

Our approach was inspired by the experimental be-

havior of the discretized projection of the point cloud

in the x-direction. For each pair (z, s) we compute the

number of sample points x such that V0(x) = z and

Vk(x) = s. We refer to this information as the 2D his-

togram Hd(z, s) (see Figure 2). We observed that this

projection was clearly showing a z− s correlation, even

when the locality information on x had disappeared. In

other words, the amount of information loss when pro-

jecting the point cloud in the x-direction is limited. By

using the histograms Hd(z, s) we are able to get rid of

the spatial dimension and we still capture most of the

downsampling information. By just changing the pro-
jection direction of the point cloud {(x, z, s)}, we move

from local histograms Hx,s to our global histograms

Hd(z, s).

Hence, we decided to use the downsampling global

histograms Hd(z, s) in equation 3. As we will see, they

significantly improve the visual quality of Vk render-

ings (see Section 5) without storing extra information

in their voxels. The goal is to compute TFk so that the

resulting ITFk(Vk) is as close as possible to ITF0(V0):

TFk(s) =

∫ ∞
−∞

TF0(zH)Hd
k (zH , s)wH(zH −µ(s))dzH(5)

where wH is a weighting function that allows us to fo-

cus on the zH -interval that contributes with the highest

information, and µ(s) is the average center point for ev-

ery s, which can be directly estimated from Hd
k (zH , s).

Now, by imposing that TFk(s) should be equal (or as

close as possible) to TF0(s), we can write:

TF0(z) =

∫ ∞
−∞

TF0(zH)Hd
k (zH , s)wH(zH −µ(s))dzH(6)
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Fig. 2 Histogram of density correspondences between the
original volume V0 and a downsampled volume Vk in the
multiresolution pyramid. Gray points lay on zones where the
correspondences take place. The green line is a function of s
that approximates a path fitting the mean of each individual
row 1D histogram; the row histogram for a given si contains
the overall information about what density used to be si in
V0 before having been downsampled.

(a) Joint histogram Hd
1 (b) Joint histogram Hd

2

Fig. 3 Histograms of correspondences between the full reso-
lution model V0 and subsampled versions of the Head dataset
(see Figure 6). (a) shows the correspondences between V0 and
V1, and (b) shows the correspondences between V0 and V2.
Note how the values spread increasingly as long as we go to
downsampled levels, because of the averaging functions that
dilute the details of the voxels. This clearly suggests that us-
ing the original TF0 on Vk will likely be suboptimal.

By discretizing equations 2 and 6 and using the

definition of s in equation 2, a specific equation is di-

rectly obtained for every sample position x. Observe

that equation 5 computes TFk(s), while equation 6 im-

poses that, for a fixed sample x, TF0(z) = TF0(V0(x))

should be as close as possible to the resulting value of

TFk(s) = TFk(Vk(x)) as evaluated from equation 5. The

result of equation 5 is TFk(s), while the unknown in

equation 6 is the function wH .

The set of equations 6 tries to force all colors and

opacities in points of Vk to be identical to their corre-

(a) Original TF of the full resolution model.

(b) Corrected TF for the first downsampling level.

(c) Corrected TF for the second downsampling level.

Fig. 4 Original transfer function (top) and the adapted TFs
obtained with our method for two different levels. The bottom
one is used for rendering in the Head in Figure 6.

sponding locations in V0. Note that this is an overde-

termined linear system of equations on the unknown

values that the averaging discrete function wH takes

on its finite domain. An optimal solution of this lin-

ear system in the least squares sense could be obtained

by quadratic programming, by imposing that all dis-

cretized values wH(i) of the weighting function must

be positive (wH(i) > 0). However, for efficiency pur-

poses, we have computed the optimum of equation 6 in

a least squares sense on a restricted domain of positive

weighting functions by testing a biparametric convex

set of functions wH , as discussed in Section 5. Our re-

sults show that a Gaussian averaging function wH has a

good behavior in all cases with small Root Mean Square

(RMS) and perceptual errors. The following section de-

scribes our implementation using these Gaussian aver-

aging functions.

4 Fast Approximation of Optimal Transfer

Functions for Coarse Levels

In this section we present our implementation to ap-

proximate the optimal TFs for coarse levels. This is

achieved by analyzing the distribution of density val-

ues at the higher levels in relation with the finest level,

once the multiresolution pyramid has been built.

Just after the multiresolution pyramid has been con-

structed, also as a pre-processing step, we need to com-

pute the downsampling histogram Hd
k (z, s) (the 2D-

histogram that relates downsampled densities s of Vk
and initial densities z of V0) for each coarse level k. In

Figure 2-top we see one of these histograms created by

evaluating one value per voxel at the maximum reso-

lution V0. Obviously, for the lower resolution level Vk,

the obtained values come from the trilinear interpola-
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tion (mimicking the behaviour of GPUs accessing 3D

textures). Another example of the distribution of such

joint histograms is depicted in Figure 3 for the Head

dataset (see Figure 6). Gray points lie on zones where

the correspondences take place. Notice how the loss of

the original information is reflected by the spreading

of the points as the downsampling increases. This in-

dicates that the original TF will not work properly for

downsampled levels. JD

We compute TFk by traversing the vertical axis of

Hd
k (s values in Vk) and, for each value, averaging the

colors of TF0(z) using the information along the row (z

values in V0):

TFk(s)← 1

K

∑
z

TF0(z)Hd
k (z, s)Gµs,σs

(z) ∀s (7)

Here, Gµs,σs is a Gaussian function centered at µs with

standard deviation σs (see Figure 2), and the fraction
1
K ,K =

∑
zH

d
k (z, s)Gµs,σs

(z), ensures that the weighted

sum of colors is normalized. All rows of the histogram

are visited, and in our current implementation the al-

gorithm only traverses the values around the mean (we

use values of ±3σs around µs).

Once our method is applied, fitted transfer func-

tions for Vk can be computed very quickly. The re-

sulting adapted TFs for two coarse levels are shown

in Figure 4. These correspond to the TF applied to the

Head dataset (Figure 6). Note how it improves the re-

sult over the use of the original TF used in (b), and thus

our approach yields images that are more similar to the

original model in (a). Images (c) and (e) show, as a tem-

perature map, the difference images between the image

rendered at full resolution, and the ones obtained with
the downsampled models (b) and (d), respectively. The

model rendered with the fitted TF used in (d) yields a

much better result than the original TF.

5 Results

We have analyzed different candidate weighting func-

tions for equation 5. To ensure positiveness of this weight-

ing function wH in the least squares solution of equa-

tion 6, we have restricted our optimization to a bi-

parametric convex set of weighting functions. We use

barycentric coordinates on a triangular domain of func-

tions to interpolate among three basis functions: a nor-

malized Gaussian G(x), a constant function C(x) and

a triangular function T (x) = 0.4 · (1− 0.4 · |x|). The bi-

parametric weighting function is wH(x) = s ·C(x) + t ·
T (x)+(1−s−t)·G(x), with s and t being defined in the

interval [0, 1] and x in the centered interval [−2.5, 2.5].

All basis functions are normalized, having a unit area in

this interval. The equations, once normalized, are used

to compute the root-mean-square (RMS) error for any

wH defined by a pair of parameters (s, t). Experiments

performed on our test models confirm that the mini-

mum error is obtained at s = 0, t = 0 in most cases

(see Figure 7), while in the rest of the cases the result-

ing error is almost not sensible to (s, t) and to the shape

of wH .

We have also compared the visual quality of dif-

ferent approaches using series of 20 images generated

by positioning the camera at the center of all faces

of an icosahedron bounding the volume. Each render-

ing of a downsampled model is compared against the

rendering of the original full resolution model using

a perceptually-based metric. More concretely, we ana-

lyzed the visual quality using the Structural SIMilarity

(SSIM) index for image quality assessment [31]. The re-

sults using Gaussian and Constant weighting functions

for equation 5 are shown in Figure 8, where lower val-

ues indicate less error. Errors when using barycentric

coordinate interpolation and also using triangle-shaped

functions are higher. By analyzing these results, we de-

cided to use Gaussian averaging functions in our im-

plementation. In this way we reduce RMS and percep-

tual errors while automatically removing outliers in the

histogram of density correspondences. In addition, we

have performed a set of experiments to show the advan-

tages of using the adapted TF versus the original TF

with different models. We have used a Quad Core i7 PC

and a Core 2 Duo equipped with a GeForce GTX 470

with 1GB of RAM, and GTX 280 with 1GB of RAM,

respectively. The resolutions of the models go up to

5122×1559 for the Body model, 5123 for the Head and

the Chameleon, and 2563 for the Foot and Aneurysm.

The rendering algorithm is a GPU-based ray casting

with pre-integrated classification and on-the-fly gradi-

ent computation, and the sampling step is of the size of

the voxel (for the corresponding resolution level). In the

first PC, the framerate was interactive and no change

was produced with the Adaptive TF. The second PC

could only render the large model at 2-3 fps, while our

multiresolution rendering with ROI is one order of mag-

nitude faster.

In all the examined cases, the adapted TFs clearly

improve the quality of the rendered downsampled model

with respect to using the original TF, as shown in Fig-

ures 5 and 6. The images shown correspond to a two-

level simplification from their full resolution models.

This data reduction would allow the models shown along

the paper to fit into the GPUs of commodity PCs and

most modern tablets and smartphones. We have com-

pared the original models versus three different down-

sampling levels (see Figure 9). Observe that the pairs
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(a) Original model (5122 × 1559) (b) Downsampled (1282 × 389) (c) Difference images

Fig. 5 The results of our method applied to a simplification of two levels of a 5122 × 1559 model. The images show the
improvement that is very noticeable (zooming in will reveal more details). Top row contains the original model (left), and
the downsampling without TF adaptation. The bottom row uses our adapted TF. Note how different structures such as the
kidneys are better preserved and the overall color of the image is highly improved. The images on the right illustrate the
differences between the low resolution model and the original one.

Original 2-level Difference 2-level Difference
model downsampled original downsampled original

(a) at 5123 (b) at 1283 (c) vs 1283 (d) at 1283 adapted (e) vs 1283 adapted

(a) at 2563 (b) at 643 (c) vs 643 (d) at 643 adapted (e) vs 643 adapted

Fig. 6 Results obtained with our modified TFs for two example datasets (Head and Aneurysm). The leftmost column shows
models at full resolution. The second column shows the result of a two-level downsampling without TF change. Our TF
adaptation method generates better results as shown in the fourth column. We compare the difference maps from the full
resolution model in the third and last columns.

of bars corresponding to the V2 and V3 levels show

that adapted TFs are always better at these levels.

The first downsampling level V1 also improves in three

cases while having similar values in the Body and Head

cases, with negligible differences. Note that, except for

two cases where the first level does not improve (only

a very small worsening), in all the rest of the cases the

differences are noticeable.

Whenever the user changes the original transfer func-

tion, we need to adapt the TFs of the downsampled

levels. This entire process takes fractions of a second

(less than 0.01 seconds in our workstation)JD, so it is

performed interactively (see accompanying video). To

obtain this timings, an optimization is needed in some

cases; as some medical models require 12 bits per voxel

(which means that we have to deal with histograms

of 4096 values, and thus downsampling histograms of

40962 values) we choose to work with a reduced bit

depth of 8 bits per voxels in the coarser representations,

a simplification that is in fact much less aggressive than

downsampling itself and supposes a great benefit re-

garding interactivity.JD The achieved computation time

is an insignificant amount of time, and it is definitely

much faster than the time required by other, more com-
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Fig. 7 RMS analysis of tested weighting functions wH in
equation 6. Triangles show the RMS error of all biparamet-
ric interpolated functions among a Gaussian (bottom-left
corner), a Constant (bottom-right) and a Triangular (top)
weighting function are shown for two models. The best be-
havior corresponds to Gaussian weighting, although the color
scales show that differences are more important in the Foot
dataset. The bottom of the figure also shows the perceptual
errors (computed using SSIM measure on 20 views) to further
evaluate the effects of both approximations on rendering (see
Figure 8).

Fig. 8 Perceptual analysis of two tested weighting functions:
Constant and Gaussian. Dissimilarities have been computed
with the SSIM perceptually-based metric, as in Figure 9. The
Gaussian weighting function produces either comparable or
better results than the constant function.

plex techniques. A nice feature of adapted TFs is that

they do not require special purpose modification of the

rendering algorithm. Thus, the framerates do not decay,

while still improving the quality.

Our method has scarce storage requirements. We

need to store an adapted TF at each coarse level, and

since it needs to be recomputed if the original TF changes,

we must also keep the downsampling histograms infor-

mation. Medical data often uses 12 bits per voxel, but in

order to reduce storage and computational complexity,

we use 8 bits per voxel in downsampled data, as we have

seen that this optimization is in fact much milder than

the actual subsampling in these kind of models. Con-

sidering this, our technique requires 1 byte per voxel in

downsampled levels, plus 256kB (histogram) and 256×
4b = 1kB (adapted TF) per level.

Fig. 9 Comparison of original models vs three different
downsampling levels (V1, V2, and V3) of the models used
along the paper. The values are computed as the aver-
age similarity of 20 regularly spaced views using the SSIM
perceptually-based metric [31]. Note that here we use dissim-
ilarity, so lower values indicate better performance. Only two
models (Body and Head) do not represent an improvement at
the first downsampling level, with non significative differences
of only 0.0013 and 0.0003.

Method Data Total Overhead
resolution size vs 2563 + 1283

[34] 5123 226MB 75.5MB
[26] 5123 241MB 90MB

Ours 5123 151MB 256kB+1kB

Table 1 Storage requirements comparison for a multires-
olution of the 8 bits per voxel 5123 Shepp-Logan model
with two levels of downsampling. The original downsampling
(2563 + 1283) requires 151MB. The method by Younesy et
al. [34] requires 4 bytes per voxel one byte for the average
µ, one byte for the standard deviation σ and two bytes for
the gradient. The approach by Sicat et al. [26] uses a sparse
structure. The values here are the ones declared by the au-
thors applied for the 5123 Shepp-Logan model.

We compare our requirements with the ones by Younesy et

al. [34] and Sicat et al. [26], as declared by the authors

in their respective publications. In the first case, they

require 4 bytes per voxel: one byte for the average µ,

one byte for the standard deviation σ and two bytes

for the gradient. In the second case, they store a sparse

histogram whose size may vary depending on the model

data. In Table 1 we show the requirements for a 5123

resolution of the Shepp-Logan model. As it can be seen,

our method clearly compares favorably against the oth-

ers.

Although our research has been focused on medical

data, the adapted TF can also be successfully applied to

other volumetric models. We show an example in Fig-

ure 10 where the Nucleon and the Chameleon datasets

are shown. Note that even with an aggressive down-

sampling such as the one in the Nucleon, where the
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Original Original TF Adapted TF
model at 413 downsampled at 103 downsampled at 103

Original Original TF Adapted TF
model 5123 at 1283 at 1283

Fig. 10 Using the adapted TF for non-medical models, the
Nucleon and the Chameleon, with two levels of downsam-
pling, also achieves good results. The Nucleon dataset is very
small; it is only used to illustrate that even with an aggressive
downsampled version of 103, our fitted TF is able to recover
quite a lot of information from the original model.

original model is only of 413 and thus the 2-level sim-

plified version is only of 103, the information we are

able to preserve is quite important. We can see it in the

perceptual-based comparison where dissimilarity (com-

puted using 20 views as in the previous chart) for the

Nucleon dataset is on average 0.216 when we compare

the 2-level downsampled model with the original one

while when using our adaptive TF it is reduced to 0.078.

For the chamaleon, the 2-level downsampled compari-

son yields dissimilarities of 0.062 with the original TF

and 0.044 with our adapted TF.

Our approach can be used to render a simplified

version of the model while showing the model at max-

imum resolution inside a user-defined Region of Inter-

est -ROI- (see Figure 11 and accompanying video). No-

tice that the transition between the two resolutions is

not perceived. The main advantage of this scheme in

client-server architectures is that clients can store low-

resolution versions of the model (V2 in our example), so

that only parts of V0 inside the ROI must be received

and rendered in the client devices.

The results obtained outdo the performance of com-

monly applied algorithms, since they allow us to recover

information that was lost during the downsampling at

a low cost, both in terms of memory and speed.

A limitation of our technique is its inherent global

character. Different neighborhoods of the voxels in the

original dataset may be downsampled to the same value

on the lower resolution model. Given this fact, although

we did achieve quite successful results in the models

we tested, our TF adaption technique is not able to

capture little and thin features, its improvements will

likely be limited for highly heterogeneous models and

in the worst case scenario different textured structures

could be equally colored, although it is unlikely that

typical medical models will behave this way.

If the original TF is changed, the adapted TFs must

be recomputed. For typical models, this process only

takes a small fraction of a second; however for 12-bit

datasets, without any optimization, the process may

take up to a second in our machine if not restricting to

use 8 bits to encode downsampled voxels.

6 Conclusions and Future Work

In this paper we have addressed the problem of qual-

ity preservation in the visualization of coarser levels

of multiresolution datasets through adaptive transfer

functions. For each coarser level, we compute the joint

histogram of the correlation between the original den-

sity values and the downsampled ones; then we auto-

matically build an adapted TF that reduces the effect of

data reduction when rendering this coarser model. This

technique has four main advantages: i) storage costs

are negligible (256+1kB per level), ii) the rendering is

not affected using pre-integrated or post-classification,

and the gradient -so shading- may be computed on-

the-fly (thus, it can be combined to other data storage

management methods), iii) the computation requires

no manual parameter setting and is fully automatic,

and iv) it is performed interactively. It is important to

note that the method is orthogonal to any downsam-

pling method, so it is not restricted to a subset of the

original points, and may use any downsampling filter.

It may also be seamlessly combined with any compres-

sion technique that generates density values; the de-

compressed model would be the one used to create the

histograms, and during rendering time, it is then just

necessary to substitute the TF fetch for a function that

fetches the newly created adapted TFs. This approach

allows to automatically obtain coarser models that can

be used in modest GPU environments and is a good

candidate technique for mobile rendering. Obviously,

the combination with off-line or bricking techniques is

straightforward.

In the future we will address the use of this quality

preserving technique in other scenarios such as stream-

ing, in combination with compression or with mobile

devices.
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(a) V0 (b) V2 with ROI (boundary shown) (c) V2 with ROI (boundary hidden)

Fig. 11 Part of the model in Figure 5 at the original resolution (a) and two levels of subdivision with the proposed algorithm
(b) and (c). In (b) and (c), the simplified model V2 is shown outside the Region of Interest (ROI), while the ROI shows the
original model V0. The ROI boundary is drawn in (b) for the purpose of comparison with (c).
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