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Abstract Compressed Sensing (CS) has been successfully utilized by many
computer vision applications. However,the task of signal reconstruction is still
challenging, especially when we only have the CS measurements of an im-
age (CS image reconstruction). Compared with the task of traditional im-
age restoration (e.g., image denosing, debluring and inpainting, etc.), CS im-
age reconstruction has partly structure or local features. It is difficulty to
build a dictionary for CS image reconstruction from itself. Few studies have
shown promising reconstruction performance since most of existing methods
employed a fixed set of bases (e.g., wavelets, DCT, and gradient spaces) as the
dictionary, which lack the adaptivity to fit image local structures. In this pa-
per, we propose an adaptive sparse nonlocal regularization (ASNR) approach
for CS image reconstruction. In ASNR, an effective self-adaptive learning dic-
tionary is used to greatly reduce artifacts and the loss of fine details. The
dictionary is compact and learned from the reconstructed image itself rather
than natural image dataset. Furthermore, the image sparse nonlocal (or non-
local self-similarity) priors are integrated into the regularization term, thus
ASNR can effectively enhance the quality of the CS image reconstruction. To
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improve the computational efficiency of the ASNR, the split Bregman itera-
tion based technique is also developed, which can exhibit better convergence
performance than iterative shrinkage/thresholding (IST) method. Extensive
experimental results demonstrate that the proposed ASNR method can effec-
tively reconstruct fine structures and suppress visual artifacts, outperforming
state-of-the-art performance in terms of both the PSNR and visual measure-
ments.

Keywords Compressed sensing · Nonlocal self-similarity · Dictionary
learning · split Bregman iteration

1 Introduction

The recent development of the compressed sensing (CS) theory [1, 2] has drawn
much attention in signal/image communities. The CS theory has uncovered
that by achieving the possibility of reconstructing a signal from a smaller num-
ber of random measurements, as long as the signal has a sparse representation
in some domain. The CS theory has the potential of dramatically improving
the energy efficiency of sensors, leading to extensive applications in the real
world. For instance, in recent years, several CS-based imaging systems have
been established, including the compressed spectral imaging system [3], the
single-pixel camera [4], and the high-speed video camera [5].

In the CS theory, if a signal is sparse in some transform domain, it is usually
sampled by a random projection which is independent and reconstructed by
minimizing the ℓ0 norm or the ℓ1 norm optimization problem with some prior
information which usually constitutes regularization terms. However, since the
ℓ0 norm minimization is a difficult combinatorial optimization problem, solving
this problem directly is both NP-hard and unstable in the presence of noise.
For this reason, it has been proposed to replace the non-convex ℓ0 norm by its
convex ℓ1 norm, and provably it is probable that the ℓ1 norm is equivalent to
the ℓ0 norm in many practical problems. Therefore, under these circumstances,
one is allowed to solve the problem easily by the ℓ1 norm, rather than the
ℓ0 norm. The optimization problem by the ℓ1 norm can be solved by linear
programming [6] and several CS restoration algorithms, known as the gradient
projection sparse reconstruction [7], the orthogonal matching pursuit [8], and
the iterative thresholding [9], which have been proposed recently.

As a basic image inverse problem in the field of image restoration, the
purpose of CS image reconstruction is to reconstruct high quality image from
considerably fewer measurements than suggested by the Nyquist sampling the-
ory. In addressing this issue, the most effective method now is to utilize image
prior knowledge or some constraints, which plays a key role in the CS image
reconstruction problems to recover the missing information. Accordingly, ef-
fective regularization terms are designed to reflect the image priors, which is
vital for the CS image reconstruction.

The classic regularization models, such as the quadratic Tikhonov regular-
ization model [10], the Mumford-Shah (MS) model [11], and the TV regular-
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ization model [12], utilize the local structure patterns of an image and high
effectiveness to preserve image edges and recover the smooth regions of an
image. Nevertheless, they usually destroy the image details and cannot handle
fine structures well, since they have only exploited the image local statistics,
while ignoring the nonlocal statistics.

Besides the local structural schema, perhaps the most remarkable nonlo-
cal statistics are the nonlocal self-similarity models demonstrated by natural
images in the image processing, which was initially proposed as a solution to
image denoising, called the non-local means (NLM) denoising filtering [13].
The basic idea of the nonlocal self-similarity method is very simple: the image
patches that have similar patterns can be spatially far from each other and
thus we can collect them from the whole image. The nonlocal self-similarity
characterizes the repetitiveness of textures and structures reflected by natural
images within nonlocal regions, which can be applied to retain the edges and
the sharpness effectively to maintain image nonlocal consistency [13–16]. Lat-
er, inspired by the success of the NLM denoising filtering, a flurry of nonlocal
regularization terms were proposed to solve the image inverse problems and
to utilize the nonlocal self-similarity properties of natural images as exhibited
in [14–19]. Note that the NLM-based regularization term in [17] is implement-
ed at the pixel level, i.e., from one pixel to another pixel. The block-level
NLM-based method is introduced in [14] to address the image deblurring and
super-resolution problems. The connection between the spectral bases of the
nonlocal graph Laplacian operator and the filtering methods was proposed by
Peyr in [15]. Jung et al. [18] proposed a nonlocal form of the approximation of
the MS regularizer for color image restoration instead of the traditional local
MS regularizer. Recently, Dong et al. [19] proposed a nonlocally centralized
sparse representation model for image restoration, which first obtains good
estimates of the sparse coding coefficients of the original image, and then cen-
tralizes the sparse coding coefficients of the observed image to those estimates
to improve the performance of sparse representation-based image restoration.

In recent years, the patch-based sparse representation along with dictionary
learning (DL) from natural images, has led to very impressive reconstruction
results [14, 19–23]. The sparse representation model assumes that each patch
of an image can be accurately represented by a few elements from a basis set
called a dictionary, which is usually learned from a natural image dataset [20].
Therefore, one important issue of the sparsity-based image restoration is the s-
election of the dictionary. The conventional analytically designed dictionaries,
such as the DCT, wavelet, bandlet and curvelet, etc., share the superiori-
ty of fast conduct, yet they usually lack the adaptivity to fit the image local
structures, resulting in poor reconstruction performance. Compared with these
predefined sparse transforms, the DL method eliminates the disadvantage of a
fixed sparse transform. For example, it is impossible for one predefined sparse
transform to be universally optimal and sufficient to characterize the many
complex structures of natural images. The purpose of many DL methods is
to learn a universal and over-complete dictionary which can represent vari-
ous image structures. However, it has been shown that sparse decomposition
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over an over-complete dictionary is potentially unstable, and it tends to gen-
erate visual artifacts [24, 25]. Recently, the PCA sub-dictionary has been an
illustrious DL method, which clusters the training patches extracted from a
set of natural images into some clusters, and finally learns a compact PCA
sub-dictionary for each cluster [14].

To reconstruct an image accurately from its compressed sensing measure-
ments, Wu et al. [26] proposed a model-assisted adaptive recovery of com-
pressed sensing for exploiting the 2D piecewise autoregressive model and, in
turn, for making the CS recovery adaptive to spatially transform the second or-
der statistics of an image. Ravishankar et al. [27] began with a rough estimate
for the compressed sensing measurement, and they simultaneously updated
the sparse dictionary and the sparse coefficients of all overlapped patches, and
finally averaged all the reconstructed patches to estimate the image iterative-
ly. Many recent image CS reconstruction works integrated some prior knowl-
edge into the image CS reconstruction framework, such as the tree-structured
wavelet [28], tree-structured DCT [29] ,and Gaussian mixture models [30] have
integrated some prior knowledge into the CS image reconstruction framework.
Mun et al. [31] proposed a projection-driven CS reconstruction incorporated
with block-based random image sampling, which aimed at encouraging spar-
sity in the domain of directional transforms.

Different from the task of traditional image restoration (e.g, image denois-
ing, deblurring, inpainting, etc.), which can directly use the image nonlocal
self-similarity (NSS) property and due to the encouragement by the recen-
t excellent sparse representation methods in the image processing. In this
paper, we propose a unified variational framework for adaptive sparse nonlo-
cal regularization model of CS image reconstruction. Specifically, an effective
self-adaptive dictionary learning as sparse domain is used to greatly reduce
visual artifacts and the loss of fine details. The dictionary is compact and
learned from the reconstructed image itself rather than natural image dataset.
In addition, the image sparse nonlocal (or nonlocal self-similarity) priors are
integrated into the regularization term to enhance the quality of CS image re-
construction. To improve the computational efficiency of the proposed method,
we have developed a convenient implementation utilizing the split Bregman
iteration technique, which can exhibit good convergence performance. Exten-
sive experimental results validate that the proposed method can effectively
reconstruct fine structures and suppress visual artifacts, outperforming many
current state-of-the-art schemes in terms of both the PSNR and visual mea-
surements.

The rest of this paper is organized as follows: -Section 2 briefly states the
prior work in the CS theory and the patch-based sparse representation. Sec-
tion 3 presents the modeling of the ASNR and introduces the implementation
details. Section 4 presents the extensive experimental results, and Section 5
concludes this paper.
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2 Background and related work

2.1 Compressed sensing

The CS theory demonstrates that the signal can be recovered by linear pro-
jection from its measurements, which may even be far below the traditional
Nyquist sampling rate, as long as the signal has a sparse representation in
some domain. In the CS theory, a signal x of size N is viewed as sparse in
domain Ψ , if its transform θ coefficients over Ψ is expressed by x = Ψθ, where
θ are mostly zeros or nearly sparse if the vast majority of coefficients θ are
either zeros or very close to zero. The number of significant elements within
the coefficient vector θ is usually quantifying the sparsity of x in Ψ .

More specifically, one can seek the perfect reconstruction of a signal x from
y ∈ ℜM with M randomized linear measurements, which is formulated as the
following constrained optimization problem, namely,

argmin
θ

||θ||0, s.t. y = ΦΨθ (1)

where Φ ∈ ℜM×N represents the random projection matrix and such that M
is much smaller than N. || • ||0 represents the ℓ0 norm, counting the number
of nonzero entries of a vector θ.

However, since the || • ||0 norm minimization is discontinuous and an NP-
hard problem, it is often relaxed to the convex ℓ1 norm minimization. By
selecting an appropriate regularization parameter, Eq.(1) is equivalent to the
following unconstrained optimization problem, -i.e.,

argmin
1

2
||y −ΦΨθ||22 + λ||θ||1 (2)

According to [32], CS is capable of recovering K-sparse signal x with a
high probability from M = O(Klog(N/K)) random measurements by solving
this ℓ1 norm optimization problem.

2.2 Patch-based sparse representation

Recently, the sparse representation based modeling has been proved to be a
promising model for the image restoration studies [14, 19–23], which assumes
that a natural image is sparse in some domain spanned by a set of bases or the
atoms of dictionary. According to [21], the basic unit of sparse representation
for images is patch. Mathematically, for an image x ∈ ℜN, let x i = Rix ,
i=1,2,...,n denote an image patch of size

√
bc ×

√
bc extracted at location i,

where Ri is the matrix extracting patch x i from x at location i. Given a dic-
tionary D ∈ ℜbc×M, bc ≤ M, the sparse coding processing of each patch x i is
to find a sparse vector αi to satisfy x i = Dαi over dictionary D , where αi is a
sparse vector whose coefficients are mostly zero or close to zero. Obviously, the
image patches can be overlapped to better suppress noise and visual artifacts,
and we can obtain a redundant patch-based representation. Then the entire
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image x can be reconstructed by averaging all the reconstructed patches x i,
which can be mathematically expressed as

x ≈ Dα = (
n∑

i=1

RT
i Ri)

−1(
n∑

i=1

RT
i Dαi) (3)

where α denotes the concatenation of all αi, that is, α = [αT
1 ,α

T
2 , ...,α

T
n ]

T .
Note that the above equation is nothing but signifying that the overall image
is reconstructed by averaging each reconstructed patch of x i.

After this, we merged Eq.(3) into Eq.(1). The CS recovery scheme for sparse
coding by the ℓ0 norm is formulated as

argmin
α

||α||0, s.t., y = ΦDα (4)

where D replaces Ψ in Eq.(1), standing for a learning dictionary, and α rep-
resents the patch-based sparse coding coefficients for the entire image over
dictionary D .

However, since the ℓ0 norm minimization is discontinuous and NP-hard,
solving Eq.(4) is a difficult combinatorial optimization problem. On this ac-
count, a straightforward method has been proposed for solving the non-convex
ℓ0 norm by its convex ℓ1 counterpart, and Eq.(4) can be turned into the fol-
lowing unconstrained optimization problem:

argmin
α

1

2
||y −ΦDα||22 + λ||α||1 (5)

The above ℓ1-minimization problem is a classic sparse coding problem and
can be efficiently solved by various methods, such as the iterative shrinkage al-
gorithm [9], the split Bregman algorithm [33, 34], and the alternative direction
multiplier method [35].

3 Modeling of compressed sensing image reconstruction via
adaptive sparse nonlocal regularization

Now, the goal is to reconstruct the desired image x from CS measurements y .
In the scenario of CS image reconstruction, this problem can be converted to
decoding the CS measurements y so as to obtain the desired α

argmin
α

1

2
||y −ΦDα||22 + λR(α) (6)

where R(α) represents some regularization terms and λ represents the reg-
ularization parameter. However, in this paper, due to not knowing whether
R(α) is a convex or a non-convex minimization, we have developed a con-
venient implementation using the split Bregman iteration algorithm to solve
Eq.(6) without considering the property of R(α) in advance.
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Table 1: Split Bregman Iteration

Split Bregman Iteration (SBI)
1. set t = 0, choose µ > 0, b0 = 0, z 0 = 0,α0 = 0.
2. Repeat

3. z (t+1) = argmin
z

(z ) + µ
2
||z −Gα(t) − b(t)||22

4. α(t+1) = argmin
α

(α) + µ
2
||z (t+1) −Gα− b(t)||22

5. b(t+1) = b(t) − (z (t+1) −Gα(t+1))
6. t← t+ 1;
7. Until stoping criterion is satisfied.

3.1 Split Bregman based iterative algorithm for the proposed ASNR model

In this section, we exploit the algorithmic framework of the split Bregman
iteration [33, 34] to solve Eq.(6) and introduce the implementation details of
the proposed method.

The split Bregman iteration (SBI) has recently been proposed by Gold-
stein [33] for solving a very broad class of ℓ1 norm related minimization prob-
lems. By exploiting the variable splitting technique, the SBI translates the
unconstrained minimization problem into a constrained one, after which the
constrained minimization problem can be solved by invoking the Bregman
iteration [33, 34]. Next, we will briefly introduce the SBI, by considering a
constrained optimization problem, i.e. ,

min
z∈ℜN,α∈ℜM

f(z ) + g(α), s.t. z = Gα (7)

where G ∈ ℜM×N and f : ℜN → ℜ, g : ℜM → ℜ are convex functions. Note
that although g(α) is a convex function, it does not imply that it is infeasible
when g(α) is a non-convex function, which has been done in [36]. The split
Bregman iteration algorithm is described in Table 1.

In the SBI, the problem sequence approaching infinity can be avoided with
the fixed parameter µ, which has been done in [37]. According to the SBI, each
sub-problem minimization may be simpler than solving the original problem
directly if the original minimization is split into two sub-problems.

Now, let us come back to Eq.(6) and show how to exploit the framework of
the SBI to solve it. We first convert Eq.(6) into another equivalent constrained
form by introducing a variable z , namely,

argmin
z ,α

1

2
||y −Φz ||22 + λR(α), s.t. z = Dα (8)

By defining f(z ) = ||y −Φz ||22, g(α) = λR(α), we have

z (t+1) = argmin
z

1

2
||y −Φz ||22 +

µ

2
||z −Dα(t) − b(t)||22 (9)

and
α(t+1) = argmin

α
λR(α) +

µ

2
||z (t+1) −Dα− b(t)||22 (10)
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We can then update b(t) by line 5 in Table 1:

b(t+1) = b(t) − (z (t+1) −Dα(t+1)) (11)

Therefore, according to the SBI, the minimization for Eq.(6) is equivalen-
t to solve two sub-problems, that is, z and α sub-problems. Next, we will
expound that every split sub-problem is suitable for an efficient solution. To
avoid confusion, the subscribe t may be omitted for conciseness.

1) z sub-problem
Given α, the z sub-problem denoted by Eq.(9) becomes

argmin
z

Q1(z ) = argmin
z

1

2
||y −Φz ||22 +

µ

2
||z −Dα− b||22 (12)

Clearly, z is actually a closed form of Eq.(12); Q1(z ) is a strictly convex
quadratic function and its gradient can be expressed as

d(Q1(z )) = ΦTΦz −ΦTy + µ(z −Dα− b) (13)

Setting d(Q1(z )) to be zero gives the exact minimization of Eq.(12), name-
ly

ẑ = (ΦTΦ+ µI )−1(ΦTy + µ(Dα+ b)) (14)

where I represents the identity matrix.
In the CS image reconstruction, since Φ is a random projection matrix

without a special structure, computing the inverse by Eq.(14) at each iteration
is too costly to implement numerically. Therefore, to avoid computing the
matrix inverse, an iterative method is highly desirable for solving Eq.(12). In
this paper, we exploit the gradient descent method with the optimal step to
solve Eq.(12), namely

ẑ = z − ηd (15)

where d is the gradient direction of the objective functionQ1(z ), η = abs(dTd/dT∂d)
is the optimal step, ∂ = ΦTΦ+ µI , and I is the identity matrix.

Finally, it only requires an iterative calculation of the following equation
to solve the z sub-problem, namely,

ẑ = z − η(ΦTΦz −ΦTy + µ(z −Dα− b)) (16)

where ΦTΦ and ΦTy can be calculated in advance, making the solving of the
above equation more efficient.

2) α sub-problem
Given z , similarly, according to Eq.(10), the α sub-problem can be written

as

argmin
α

Q2(α) = argmin
α

1

2
||Dα− r ||22 +

λ

µ
R(α) (17)

where r = z − b.
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To make Eq.(17) as tractable as possible, we will make a conversion: let
x = Dα, and then Eq.(17) can be rewritten as:

argmin
α

Q2(α) = argmin
α

1

2
||x − r ||22 +

λ

µ
R(α) (18)

Note that it is difficult to solve Eq.(18) due to the unknown structure of
R(α). In this paper, a general assumption is made, with which even a closed
form can be achieved. Specifically, r can be regarded as some type of noisy
observation of x , and then the assumption that each element of e = x − r
follows an independent zero-mean distribution with variance σ2 is made. The
universality of the above assumption merits attention, which means that it
needs to be, for example, neither Gaussian nor Laplacian nor a generalized
Gaussian distribution (GGD) [38] process, but something more general. The
following conclusion can be proved with this assumption.

Theorem 1: Defining x , r ∈ ℜN , x i, r i ∈ ℜn, e(j) is every element of the
error vector e , where e = x − r , j = 1, ..., N . Assume that e(j) follows an
independent zero mean distribution with variance σ2. Therefore, for any ε > 0,
we can represent the relationship between 1

N ||x −r ||22 and 1
K

∑n
i=1 ||x i−r i||22

by the following property, namely,

lim
N→∞
K→∞

P{| 1
N

||x − r ||22 −
1

K

n∑
i=1

||x i − r i||22| < ε} = 1 (19)

where P(•) represents the probability and K = n × k. The detailed proof of
the Theorem 1 is given in the APPENDIX A.

On the basis of Theorem 1, we have the following equation with very
large probability (restricted to 1) at each iteration t, namely,

1

N
||x − r ||22 =

1

K

n∑
i=1

||x i − r i||22 (20)

Next, the following equation can be achieved by merging Eq.(20) into E-
q.(18), that is

argmin
α

1

2
||x − r ||22 +

λ

µ
R(α)

= argmin
α

1

2

n∑
i=1

||x i − r i||22 +
λK

µN

n∑
i=1

Ri(α)

= argmin
α

1

2

n∑
i=1

||x i − r i||22 + τ

n∑
i=1

Ri(α)

(21)

where τ = λK
µN .
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It is obvious that the minimization of Eq.(21) can be efficient by solving n
sub-problem for all the image patches x i. Each patch-based sub-problem can
be calculated by:

αi = argmin
α

1

2

n∑
i=1

||x i − r i||22 + τ
n∑

i=1

Ri(α)

= argmin
α

1

2

n∑
i=1

||Dαi − r i||22 + τ
n∑

i=1

Ri(α)

(22)

Clearly, Eq.(22) can also be viewed as a sparse coding problem. Now, the
question how to determine the specific structure of R(α) is quite essential.
It has been widely recognized that image prior knowledge plays a significant
role in the performance of CS image reconstruction, and thus designing an
effective regularization term to reflect image priors is at the core of CS image
reconstruction. Therefore, several regularization terms have been developed in
recent years. For instance, when Ri(α) is ||αi||1, Eq.(22) becomes a convex ℓ1
norm minimization problem and can be efficiently solved by iterative shrinkage
algorithm [9]. Meanwhile, whenRi(α) is ||αi||0, Eq.(22) becomes a non-convex
ℓ0 norm minimization problem, and apparently its constrained optimization
form can be efficiently solved by the orthogonal matching pursuit (OMP)
algorithm [20].

From the above analysis, it is clear to see that the SBI method solves not
only the convex optimization, but also the non-convex optimization problem.
However, since r is regarded as a good approximation of the original image x at
each iteration, it is challenging to recover the true sparse coding coefficients α
from r . Only using the local sparsity constraint ||αi||1 or ||αi||0 in Eq.(22) may
not lead to a sufficiently accurate CS image reconstruction, and even ||αi||0 is a
non-convex ℓ0 norm minimization. Therefore, good priors of natural images are
crucial to improve the CS image reconstruction performance. It is well-known
that the image sparse coding coefficients α are not randomly distributed due
to the local and nonlocal correlations existing in natural images. In order to
achieve a sufficiently accurate CS reconstruction performance, we first use
the NCSR model [19] as a regularization term instead of a conventional local
sparsity constraint term for the CS image reconstruction, that is,

Σi||αi − u i||1 (23)

where u i represent some reasonably good approximation of the sparse-coded
patch-based original image x .

In our CS reconstruction method, although the original image x is un-
known, for each patch x i in image r , we search the nonlocal similar patches for
it from within a large enough window in image r , because r can be regarded as
a good approximation of the original image x . We exploit the weighted average
of the first x q

i patches closest to L to predict x
′

i, that is, x
′

i = ΣL
q=1b

q
ix

q
i . The

weight bqi is set to be inversely proportional to the distance between patches x i

and x q
i : bqi = exp(−||x i − x q

i ||22/h)/W, where h is a predetermined scalar and



Title Suppressed Due to Excessive Length 11

W is the normalization factor. In the case of an orthogonal dictionary (e.g., the
local PCA dictionary used in this work, see sub-section 3.2 for more details),
each patch x i of r and its nonlocal prediction patch x

′

i are easily coded by

a dictionary D i, that is, x i = D iαi and x
′

i = D iu i. Since the dictionary is
orthogonal, the sparse coding coefficients αi and u i should be similar, and,

u i = D−1
i x

′

i (24)

Accordingly, we can exploit Ri(α) = Σi||αi − u i||p to regularize the solu-
tion of Eq.(22), namely,

αi = argmin
αi

1

2

n∑
i=1

||Dαi − r i||22 + τΣi||αi − u i||p (25)

where p denotes the ℓp norm. In general, p is equal to 1, which leads to the
Laplacian distribution and p is equal to 2, which follows the Gaussian distri-
bution. If 0 < p < 1, which follows the hyper-Laplacian distribution.

Let
χi = αi − u i (26)

Here we perform some experiments to investigate the statistical property of χ,
where χ represents the set of χi. We have tested the fidelity term in Eq.(25) on
the image Leaves with 0.2N measurements, Monarch with 0.3N measurements
and boats with 0.4N measurements, respectively. We plot the histogram of χ
as well as the fitting Gaussian, Laplacian and hyper-Laplacian distributions of
χ in Fig.1(a), Fig.2(a) and Fig3.(a), respectively. To better observe the fitting
of the tails, we also plot these distributions in the log domain in Fig.1(b),
Fig.2(b) and Fig.3(b), respectively. It can be observed that the histogram of
χ can be characterized well by the Laplacian distribution. Therefore, the ℓ1
norm is adopted to regularize χ , and the proposed model can be formulated
as:

αi = argmin
αi

1

2

n∑
i=1

||Dαi − r i||22 + τΣi||αi − u i||1 (27)

Note that for fixed τ , u i, Eq.(27) is convex and can be achieved efficiently
by using an iterative thresholding algorithm. We adopt the surrogate algorithm
in [9] to solve it. In the (t+ 1)-iteration, the proposed shrinkage operator can
be calculated as

α
(t+1)
i = Sρ(D

−1x
(t)
i − u

(t)
i ) + u

(t)
i (28)

where Sρ(•) is the soft thresholding operator, ρ = τ/c and c is an auxiliary
parameter. The above shrinkage operator follows the standard surrogate al-
gorithm, from which more details can be seen in [9]. Hence, if we know the
dictionary D , α can be obtained by sparse coding all the overlapped patches,
which is the final solution for α sub-problem in Eq.(17). In the next sub-
section, we will discuss how to learn a self-adaptive dictionary D .

According to the above analysis, the main difference between [19] and
this paper for sparse coding coefficient α is that we utilize the spit Bregman
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iteration method to solve a sub-problem to achieve α, while [19] solves α by
a direct method. The rationale behind is that each sub-problem minimization
may be more effective and robust than the original problem. In addition, the
iterative shrinkage (IS) algorithm [9] is applied to solve the original problem
in [19]. However, the major drawback of the IS algorithm is its low convergence
speed and instability [39].

Note that the main difference between [39] and our method is that we
utilizing the local and nonlocal redundancies to constraint sparse coding co-
efficient, while method in [39] only using the local sparsity constraint. More
specifically, we not only exploited the image nonlocal self-similarity to better
estimate the sparse coding coefficients, but also centralized the sparse coding
coefficients of the observed image to those estimates. However, [39] only uti-
lized the image nonlocal self-similarity to estimate the local sparse coefficients,
which may not an inaccurate CS reconstruction results.
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Fig. 1: The distribution of χ for image Leaves with 0.2N measurements and the fitting
Gaussian, Laplacian distribution, hyper-Laplacian distribution in (a) linear and (b) log

domain, respectively.

In addition, based on the above analysis and due to the unknown structure
of R(α) in Eq.(18), we assume that the error vector e = x − r follows an
independent zero-mean distribution with variance σ2 and achieves a conclusion
of Theorem 1. Later, we deduce that Eq.(18) can convert into Eq.(21) which
can efficiently solve n sub-problems for all the image patches x i. In other
words, Eq.(21) can also be viewed as the sparse coding problem.

Because we know the detailed structure ofR(α) in Eq.(27), namely,R(α) =
||α−u ||1, a series of experiments can be made. Specifically, because we regard
r as the approximation of the original image x , we achieve some experiments
to survey the statistics of e = x − r . In these experiments, a gray image
Leaves is used as an example in the context of compressed sensing image re-
construction, where the original image is undersampled by a random Gaussian
matrix with 0.2N measurements. At each iteration t , r (t) can be obtained by
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Fig. 2: The distribution of χ for image Monarch with 0.3N measurements and the fitting
Gaussian, Laplacian distribution, hyper-Laplacian distribution in (a) linear and (b) log

domain, respectively.
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Fig. 3: The distribution of χ for image boats with 0.4N measurements and the fitting
Gaussian, Laplacian distribution, hyper-Laplacian distribution in (a) linear and (b) log

domain, respectively.

r (t) = z (t) − b(t-1). Since it is difficult to achieve the exact minimization of
Eq.(27), we approximate x (t) by r (t) without the loss of generality. Thus, it
is possible to achieve the histogram of residual e(t) = x (t) − r (t) at each iter-
ation t. Fig.4 shows the distributions of residual e(t) when t is equal to 3 and
9, respectively.

From Fig.4, it is clear that the distribution of e(t) at each iteration is very
similar to the generalized Gaussian distribution (GGD) [38] with zero-mean
and variance σ2. Therefore, we assume that the error vector e = x −r follows
an independent zero-mean distribution with variance σ2 available in Eq.(18).



14 Zhiyuan Zha et al.

(a)                                                                             (b)

Fig. 4: The distribution of e(t) for image Leaves in the context of CS image reconstruction
at different iteration. (a) (t) = 3 ; (b) (t) = 9 ;

3.2 Self-Adaptive PCA dictionary learning

Recently, there have been many works about learning dictionaries [14, 40–
43] from natural image patches. It is well-known that the KSVD [20, 21] can
represent various image local structures by learning a universal dictionary from
natural image dataset. However, it has been shown that sparse coding over
a highly redundant dictionary is potentially unstable and tends to generate
visual artifacts [24, 25]. In our method, we adopt the strategy in [14], that is,
the K-means clustering combined with the local PCA are used to learn a set
of PCA sub-dictionaries.

In order to obtain the self-adaptive PCA dictionary, the training image
patches are usually derived from the natural image dataset or the original
image. However, in many practical situations the training example images are
simply not available, and, even in the CS image reconstruction, the original
image is also not available; we can only use the CS measurements from Eq.(1).
Although the original image x is unknown, we can still extract all the image
patches from r to achieve a self-adaptive PCA dictionary, because r can be
regarded as a good approximation of the original image x at each iteration in
Eq.(27). We divide r into patches and cluster the patches into multiple clusters.
In order to remove the redundancy from each cluster, we use the PCA to handle
it to learn a local sub-dictionary. Meanwhile, the centroid of each cluster is
calculated. For each given image patch, the Euclidian distance between the
patch and the centroid of each sub-dictionary is calculated to adaptively choose
the proper sub-dictionary. More details about the PCA dictionary can be seen
in [14].
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Table 2: Complete Distribution of proposed ASNR model for CS image reconstruction

Input: the observed measurement y and the measurement matrix Φ.

Initialization: t = 0, b(0) = 0, z (0) = 0, α(0) = 0, L, bc, c, λ, η, µ;
Repeat

Update z (t+1) by Eq.(16);

r (t+1) = z (t+1) − b(t); τ = λK/µN; ρ = τ/c;

Update D(t+1) by K-means and PCA from r (t+1);
For Each patch x i;

Update α̂
(t+1)
i by computing by Eq.(28);

End For

Update α̂(t+1) by concatenating all α̂
(t+1)
i ;

Update b(t+1) by computing by Eq.(11) ;
t← t+ 1;

Until
maximum iteration number is reached.

Output:
The final restored image x̂ = D ◦ α̂.

3.3 Summary of the proposed method

So far, the above two sub-problems have been solved. In fact, we achieve an
efficient solution by solving each sub-problem separately, which can guaran-
tee the whole method to be more efficient and effective. Based on the above
derivations, the complete description of the proposed method for the CS image
reconstruction via the ASNR model is provided in Table 2.

4 Experimental Results

4.1 Experimental framework and parameters setting

In this section, we will report the experimental results of the proposed ASNR-
based CS image reconstruction method. We generated the CS measurements
at the block level by utilizing the Gaussian random projection matrix to test
images, i.e., the block-based CS recovery with block size of 32×32. In our ex-
periments, both the natural images and the MRI images were used to verify
the performance of the proposed ASNR method. The main parameters of the
proposed method were set as follows: the size of each patch, i.e.,

√
bc×

√
bc was

6×6, µ was set to be 0.0025, η was set to be 1, and the total L = 40 matched
patches were selected for each exemplar patch. The parameter λ that balances
the fidelity term and the regularization term should be tuned separately for
each sensing rate. The test images which were used in our experiments con-
sisted of eight natural images and two MRI images of size 256 × 256 as shown
in Fig.5. The platform for the comparison was an Intel(R) Core(TM) i3-4150
with a 3.50GHz CPU and 4GB memory, and Windows 7 operating system.
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(a)                                  (b)                                  (c)                                  (d)                                  (e)

(f)                                   (g)                                   (h)                                  (i)                                     (j)

Fig. 5: Test images used for compressed sensing reconstruction experiments. (a) House. (b)
Barbara. (c) Leaves. (d) boats. (e) foreman. (f) Goldhill. (g) starfish. (h) Monarch. (i)

Brain MRI image. (j) Bone MRI image.

4.2 Numerical performance comparisons

To verify the performance of the proposed ASNR method, we compared it
with several competitive CS recovery methods including the BCS method [44],
the NESTA method [45], the COS method [46], the BM3D based CS recov-
ery method [47] (denoted as the BM3D-CS), the ASD-CS method [39], the
NCSR-CS method [19], the adaptively learned sparsifying based CS recovery
via minimization [48] (denoted as the ALSB), and the MRK-CS method [49].
The source codes of all bench methods [19, 39, 46–49] were obtained from the
authors’ websites. To have a fair comparison among the competing methods,
we used the built-in parameter settings in each implementation which per-
formed optimally.

In the first experiment, the numerical performance comparison of the pro-
posed ASNR method was as follows. The PSNR comparison results of recov-
ered images by competing CS recovery methods are shown in Table 3. The
ASNR method consistently outperformed other methods on most of the test
images over different numbers of CS measurements, which further increases
the performance advantage of the proposed ASNR method (e.g., the ASNR
can outperform eight comparative methods by up to 6.75 dB, 5.16dB, 3.90dB,
2.52dB, 0.66dB, 0.58dB, 1.77dB and 1.22dB, respectively). On average, the
proposed ASNR method outperforms all previous benchmark methods. The
PSNR gains of the ASNR over the BCS, NESTA, COS, BM3D-CS, ASD-CS,
NCSR-CS, ALSB, and MRK-CS can be as much as 9.70dB, 9.83dB, 5.74dB,
4.15dB, 1.06dB, 0.71dB, 1.32dB and 3.34dB, respectively on Barbara image -
the most favorable situation for an adaptive sparse nonlocal regularization and
the split Bregman iteration algorithm is exploited. In many cases, it has to be
pointed out that the gain of the proposed ASNR method with low sampling
ratios is larger than with high sampling ratios. The reason for this is that the
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self-adaptive PCA dictionary learning method can capture the local image fea-
ture better and greatly reduce visual artifacts in the case of low sampling ratios
than some predefined transform and some over-complete dictionary learning
methods.

4.3 Visual quality comparisons

To facilitate the evaluation of subjective qualities, some of the reconstructed
images are shown in Figs.6-11. From them, we can see that the BCS and NES-
TA methods cannot reconstruct sharp edges and fine image details. The COS,
BM3D-CS, ASD-CS, NCSR-CS, ALSB and MRK-CS methods can generate
better visual quality than the BCS and NESTA methods. However, the COS,
BM3D-CS and NCSR-CS still suffer from some undesirable over-smooth phe-
nomena, such as the loss of some fine image details and visual artifacts that can
still be clearly observed from the ASD-CS, ALSB and MRK-CS. By contrast,
the proposed ASNR approach not only removes most of the visual artifacts and
ring effects, but also effectively preserves large-scale sharp edges and small-
scale fine image details in comparison with the other competing methods. The
high performance of the proposed ASNR approach is attributed to the follow-
ing facts: First, to exploit the self-adaptive PCA sub-dictionary can effectively
capture the local image feature to greatly reduce visual artifacts. Second, an
adaptive sparse nonlocal regularization can be introduced to further enhance
the CS image reconstruction performance. Third, the split Bregman iteration
algorithm is developed to improve the computational efficiency of the proposed
ASNR method.

(a) (b) (c) (d) (e)

(f) (g) (h) (j)(i)

Fig. 6: CS reconstruction foreman image with 0.1N measurements. (a) original image; (b)
BCS reconstruction [44] (29.76dB); (c) NESTA reconstruction [45] (29.94dB); (d) COS
reconstruction [46] (24.66dB); (e) BM3D-CS reconstruction [47] (32.68dB); (f) ASD-CS
reconstruction [39] (35.03dB); (g) NCSR-CS reconstruction [19] (34.18dB); (h) ALSB
reconstruction [48] (34.34dB); (i) MRK-CS reconstruction [49] (35.29dB); (j) Proposed

ASNR reconstruction (36.11dB).
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(a) (b) (c) (d) (e)

(f) (g) (h) (j)(i)

Fig. 7: CS reconstruction Bone image with 0.1N measurements. (a) original image; (b)
BCS reconstruction [44] (24.93dB); (c) NESTA reconstruction [45] (24.82dB); (d) COS
reconstruction [46] (24.49dB); (e) BM3D-CS reconstruction [47] (27.39dB); (f) ASD-CS
reconstruction [39] (29.23dB); (g) NCSR-CS reconstruction [19] (29.14dB); (h) ALSB
reconstruction [48] (27.93dB); (i) MRK-CS reconstruction [49] (29.09dB); (j) Proposed

ASNR reconstruction (29.38dB).

(a) (b) (c) (d) (e)

(f) (g) (h) (j)(i)

Fig. 8: CS reconstruction boats image with 0.2N measurements. (a) original image; (b)
BCS reconstruction [44] (27.05dB); (c) NESTA reconstruction [45] (28.30dB); (d) COS
reconstruction [46] (31.43dB); (e) BM3D-CS reconstruction [47] (30.99dB); (f) ASD-CS
reconstruction [39] (33.15dB); (g) NCSR-CS reconstruction [19] (33.56dB); (h) ALSB
reconstruction [48] (31.92dB); (i) MRK-CS reconstruction [49] (32.37dB); (j) Proposed

ASNR reconstruction (33.63dB).
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Table 3: THE PSNR(dB) RESULTS FOR CS IMAGE RECONSTRUCTION METHODS

Images Method
Number of Measurements

M=0.1N M=0.2N M=0.3N M=0.4N M=0.75N

House

BCS [44] 26.90 30.58 32.87 34.67 40.79
NESTA [45] 28.84 33.27 35.38 37.07 41.83
COS [46] 27.98 35.20 37.00 38.58 43.96

BM3D-CS [47] 31.70 34.40 36.36 37.64 44.86
ASD-CS [39] 33.07 35.74 38.13 40.33 45.51
NCSR-CS [19] 34.14 37.24 38.13 40.39 46.60

ALSB [48] 30.87 35.26 37.98 40.25 46.30
MRK-CS [49] 32.43 36.36 38.35 40.04 46.24

ASNR 33.56 37.16 39.31 40.89 46.80

Barbara

BCS [44] 22.80 24.31 25.70 27.19 33.88
NESTA [45] 22.31 23.96 24.92 26.45 35.59
COS [46] 22.78 26.54 30.07 33.26 41.00

BM3D-CS [47] 22.71 28.85 32.39 35.64 42.04
ASD-CS [39] 26.30 32.27 35.93 38.43 44.13
NCSR-CS [19] 27.22 33.27 36.17 38.27 43.89

ALSB [48] 27.35 31.86 34.75 36.90 44.92
MRK-CS [49] 24.44 27.99 32.64 36.17 44.42

ASNR 28.52 33.40 36.37 38.51 45.56

Leaves

BCS [44] 18.54 21.24 23.31 25.22 32.36
NESTA [45] 15.99 21.78 27.39 31.17 40.79
COS [46] 18.68 26.71 30.54 33.65 43.12

BM3D-CS [47] 18.13 25.97 32.50 35.68 45.07
ASD-CS [39] 21.00 27.87 32.53 35.98 46.08
NCSR-CS [19] 23.46 30.77 33.86 36.55 44.50

ALSB [48] 21.13 27.41 30.84 34.24 45.30
MRK-CS [49] 22.04 27.75 32.37 35.53 44.80

ASNR 24.18 30.66 34.78 37.71 47.49

boats

BCS [44] 24.52 27.05 28.93 30.60 36.99
NESTA [45] 23.94 28.30 31.52 33.97 40.32
COS [46] 24.66 31.43 34.33 36.58 43.41

BM3D-CS [47] 25.39 30.99 34.00 36.05 44.29
ASD-CS [39] 28.34 33.15 36.34 38.87 44.30
NCSR-CS [19] 27.95 33.56 36.40 38.91 44.22

ALSB [48] 27.05 31.92 35.49 38.23 45.97
MRK-CS [49] 28.32 32.37 34.97 37.20 43.70

ASNR 28.97 33.63 36.70 39.17 46.07

foreman

BCS [44] 29.76 32.88 35.13 37.04 43.68
NESTA [45] 29.94 35.63 38.29 40.45 46.14
COS [46] 26.18 36.99 38.81 40.63 45.68

BM3D-CS [47] 32.68 36.66 40.05 41.51 47.15
ASD-CS [39] 35.03 37.85 39.78 41.62 46.47
NCSR-CS [19] 34.18 37.43 39.26 41.17 45.57

ALSB [48] 34.34 37.59 40.07 42.19 49.35
MRK-CS [49] 35.29 38.62 40.72 42.39 47.29

ASNR 36.11 38.85 40.94 42.63 49.46

Goldhill

BCS [44] 25.46 27.66 29.29 30.80 36.74
NESTA [45] 24.54 28.22 30.72 32.83 38.87
COS [46] 24.48 29.49 31.64 33.58 40.30

BM3D-CS [47] 24.22 29.40 32.24 34.74 43.24
ASD-CS [39] 27.36 30.53 32.91 34.96 42.35
NCSR-CS [19] 27.43 31.01 33.43 35.43 41.03

ALSB [48] 26.31 29.48 31.95 33.85 41.66
MRK-CS [49] 27.36 30.11 32.49 34.48 41.85

ASNR 26.93 30.79 33.06 35.21 42.45

starfish

BCS [44] 22.71 25.27 27.17 28.97 35.81
NESTA [45] 21.10 25.70 28.77 31.71 38.89
COS [46] 20.98 26.85 30.24 32.70 41.02

BM3D-CS [47] 20.38 26.96 30.45 33.67 42.11
ASD-CS [39] 25.17 29.94 32.79 35.23 43.21
NCSR-CS [19] 25.24 30.11 33.18 35.76 42.99

ALSB [48] 23.16 26.92 29.58 31.89 41.86
MRK-CS [49] 25.26 29.18 32.01 35.01 43.21

ASNR 24.54 29.94 33.28 36.14 44.10

Monarch

BCS [44] 21.69 25.21 27.67 29.75 37.53
NESTA [45] 20.71 28.21 32.29 35.13 41.76
COS [46] 22.10 28.66 32.21 34.91 43.01

BM3D-CS [47] 23.10 29.94 34.32 35.78 45.19
ASD-CS [39] 26.26 31.50 35.14 37.92 45.00
NCSR-CS [19] 26.64 32.07 35.90 38.54 44.59

ALSB [48] 23.92 28.42 31.13 34.31 43.17
MRK-CS [49] 26.97 31.28 34.25 36.66 44.80

ASNR 26.05 31.57 34.86 37.71 47.49

Brain

BCS [44] 23.42 27.52 30.26 32.65 41.12
NESTA [45] 21.40 27.16 31.42 34.79 44.63
COS [46] 21.87 27.90 28.19 28.47 37.93

BM3D-CS [47] 25.14 30.22 33.63 37.03 46.68
ASD-CS [39] 27.34 33.85 38.05 41.13 49.24
NCSR-CS [19] 27.69 33.99 36.77 37.36 47.77

ALSB [48] 27.42 32.46 36.37 39.53 48.15
MRK-CS [49] 27.66 32.79 36.14 39.06 47.00

ASNR 28.63 33.70 37.39 40.46 49.35

Bone

BCS [44] 24.93 28.59 30.96 32.87 39.26
NESTA [45] 24.82 28.09 30.21 32.91 39.56
COS [46] 24.49 30.79 34.02 35.99 41.85

BM3D-CS [47] 27.39 32.32 34.64 36.50 39.17
ASD-CS [39] 29.23 33.45 35.70 37.63 43.67
NCSR-CS [19] 29.14 33.21 35.73 37.65 42.34

ALSB [48] 27.93 31.49 33.47 35.09 42.09
MRK-CS [49] 29.09 32.78 34.88 36.63 43.09

ASNR 29.38 33.00 34.78 36.52 42.81

Average

BCS [44] 24.07 27.03 29.13 30.98 37.82
NESTA [45] 23.36 28.03 31.09 33.65 40.84
COS [46] 23.42 30.35 32.58 34.83 41.10

BM3D-CS [47] 25.08 30.57 34.06 36.42 43.98
ASD-CS [39] 27.91 32.62 35.73 38.21 45.00
NCSR-CS [19] 28.31 33.26 35.88 38.00 44.35

ALSB [48] 26.95 31.28 34.16 36.64 44.88
MRK-CS [49] 27.88 31.92 34.88 37.32 44.64

ASNR 28.69 33.27 36.15 38.50 46.16
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(a) (b) (c) (d) (e)

(f) (g) (h) (j)(i)

Fig. 9: CS reconstruction Barbara image with 0.2N measurements. (a) original image; (b)
BCS reconstruction [44] (24.31dB); (c) NESTA reconstruction [45] (23.96dB); (d) COS
reconstruction [46] (26.54dB); (e) BM3D-CS reconstruction [47] (28.85dB); (f) ASD-CS
reconstruction [39] (32.27dB); (g) NCSR-CS reconstruction [19] (33.27dB); (h) ALSB
reconstruction [48] (31.86dB); (i) MRK-CS reconstruction [49] (27.99dB); (j) Proposed

ASNR reconstruction (33.40dB).

(a) (b) (c) (d) (e)

(f) (g) (h) (j)(i)

Fig. 10: CS reconstruction Leaves image with 0.3N measurements. (a) original image; (b)
BCS reconstruction [44] (23.31dB); (c) NESTA reconstruction [45] (27.39dB); (d) COS
reconstruction [46] (30.54dB); (e) BM3D-CS reconstruction [47] (32.50dB); (f) ASD-CS
reconstruction [39] (32.53dB); (g) NCSR-CS reconstruction [19] (33.86dB); (h) ALSB
reconstruction [48] (30.84dB); (i) MRK-CS reconstruction [49] (32.37dB); (j) Proposed

ASNR reconstruction (34.78dB).

4.4 Effect of the dictionary selection

For this sub-section, another experiment was conducted to further evaluate
the influence of different dictionary on the proposed ASNR reconstruction
method. All the parameters were the same as specified in Section 4.1, ex-
cept for the usage of the proposed dictionaries, including the standard DCT
dictionary (SDCT), over-complete DCT dictionary (ODCT), and the global-
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(a) (b) (c) (d) (e)

(f) (g) (h) (j)(i)

Fig. 11: CS reconstruction starfish image with 0.3N measurements. (a) original image; (b)
BCS reconstruction [44] (27.17dB); (c) NESTA reconstruction [45] (28.77dB); (d) COS
reconstruction [46] (30.24dB); (e) BM3D-CS reconstruction [47] (30.45dB); (f) ASD-CS
reconstruction [39] (32.79dB); (g) NCSR-CS reconstruction [19] (33.18dB); (h) ALSB
reconstruction [48] (29.58dB); (i) MRK-CS reconstruction [49] (32.01dB); (j) Proposed

ASNR reconstruction (33.28dB).

ly trained dictionary (GDIC), as shown in Fig.12. For different dictionaries,
the CS reconstruction results for the image Starfish with 0.3N measurements
are shown in Fig.13. It is obvious that the reconstruction error images of the
proposed self-adaptive PCA dictionary have less texture features than those
of other dictionary learning methods, as shown in Fig.13 (g)-(j) and Fig.13
(l)-(o), respectively. In other words, the proposed self-adaptive PCA learning
dictionary method generates better results than other competing dictionary
learning methods. The reason is that over-complete redundant dictionary is
potentially unstable and tends to generate visual artifacts, while the proposed
PCA sub-dictionary can capture the local image feature better and greatly
reduce artifacts. In addition, we compare the proposed PCA sub-dictionary,
which is learned from natural image dataset and the reconstructed image itself.
We use the training dataset 2 as natural image dataset in [14]. From Fig.14
and Fig.15, we can see that the dictionary learned from natural image dataset
loses of the fine details, while the dictionary learned from the reconstructed
image itself can obtain fine details and produce more effective results than the
dictionary learned from natural image dataset. The reason is that the natural
image dataset can not always give fine description for various matching tex-
tures. However, the similar texture can be found in the reconstructed image
without any doubt.

4.5 Effect of the number of best matched patches

In this sub-section, we will discuss how to select the best-matching patch
numbers L for enhancing the performance of the proposed ASNR method.
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(a)                                                                      (b)                               (c)

Fig. 12: Three different types of dictionaries. (a) SDCT. (b) ODCT. (c) GDIC.

(a)                                (b)                  (c)                          (d)                                 (e)

(f)                                 (g)                                 (h)                            (i)                           (j)

(k)                                  (l)                                  (m)                               (n)     (o)

Fig. 13: CS reconstruction Starfish image with 0.3N measurements by different
dictionaries. (a) original image; (b) SDCT reconstruction (28.22dB); (c) DCT

reconstruction (29.21dB); (d) GDIC reconstruction (30.19dB); (e) Proposed self-adaptive
PCA dictionary reconstruction (33.28dB); (f) and (k) different local magnification patch
of the original image, respectively. (g-j) and (l-o) are the reconstruction error images by (f)

and (k) with different dictionaries, respectively.

Specifically, to investigate the sensitivity of L , we conducted two experiments
on three test images with respect to different L , ranging from 20 to 140,
in the case of 0.1N measurement and 0.3N measurement, respectively. The
performance comparison with different L is shown in Fig.16. It is clear to see
that all the curves are almost flat in Fig.16, in other words, the performance
of the proposed ASNR method is not too sensitive to L. The best performance
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(a) (b) (c)

Fig. 14: CS reconstruction House image with 0.2N measurements by different dictionaries.
(a) original image; (b) Dictionary learning from natural image dataset (35.56dB); (c)

Dictionary learning from the reconstructed image itself (37.16dB).

(a) (b) (c)

Fig. 15: CS reconstruction Leaves image with 0.2N measurements by different dictionaries.
(a) original image; (b) Dictionary learning from natural image dataset (28.14dB); (c)

Dictionary learning from the reconstructed image itself (28.89dB).

of each case was usually achieved with L in the range [20, 60]. Thus, L was
empirically set to be 40.

4.6 Comparison of the noise level for different methods

To test the noise sensitivity of the proposed ASNR method, we first conduct-
ed experiments with zero-mean Gaussian white noise added to the compressed
sensing measurements. The small noise level was 1e-3, 2e-3, 3e-3, 4e-3 and
5e-3. Fig.17 shows the PSNR versus noise level in test images depicting boats
and Brain under five under-sampling ratios (0.1, 0.2, 0.3, 0.4, and 0.75). It is
obvious that the PSNR of the reconstruction image remains stable for all spec-
ified noise levels, in other words, the proposed ASNR method can adequately
remove the aliasing and noise in the reconstructed image since sparse coding
based on an self-adaptive PCA dictionary and an adaptive sparse nonlocal
regularization has the intrinsic denoising property. In addition, we conduct
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Fig. 16: Performance comparison with different matched patch numbers L for three test
images. (a) the PSNR (dB) results achieved by different L in the case of 0.1N

measurement. (b) the PSNR (dB) results achieved by different L in the case of 0.3N
measurement.

similar experiments with noisy CS measurements to demonstrate the robust-
ness of the proposed ASNR under large noise situation. A significant amount
of additive white Gaussian noise was added to the CS measurements. The
standard derivations of additive noise vary to generate signal-to-noise-ratio
(SNR) between 10dB, 15dB, 20dB, 25dB and 30dB. All the parameters were
the same as specified in Section 4.1, except µ=19, 9, 3.5, 2.5 and 0.25 corre-
sponding to SNR= 10dB, 15dB, 20dB, 25dB and 30dB, respectively. In these
experiments, the NESTA and MRK-CS methods have not included since they
are sensitive to noise. The PSNR comparison of the reconstructed images are
shown in Fig.18. One can observe that the proposed method outperforms other
competing methods in all situations and subjective quality comparison results
with SNR=20dB, 15dB, 10dB for image Barbara, Bone, starfish are shown in
Figs.19-21, respectively. It is obvious that the proposed ASNRmethod achieves
the best performance to suppress noise among all the competing methods.
Therefore, the proposed ASNR method is robust to noise measurement.

4.7 Comparsion Between SBI and IST

In this sub-section, another classical optimization method, the iterative shrink-
age/thresholding (IST) [50] is exploited to solve our proposed ASNR model.
We compared SBI with IST by setting ratio = 0.2 and ratio = 0.3 on test im-
age foreman and Barabar. Fig.22 shows progression curves of the PSNR (dB)
results. It can be seen that SBI method only requires 15 iterations (about 59s
per iteration) to achieve convergence, while IST needs 30 iterations (about 58s
per iteration). Furthermore, the SBI method can achieve better PSNR result-
s than IST method. Therefore, compared to IST method, the proposed SBI
method can achieve better convergence speed with fewer computations.
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(a)                                                                         (b)

Fig. 17: Noise sensitivity analysis of the proposed ASNR method. (a) PSNR results versus
measurement noise level for boats. (b) PSNR results versus measurement noise level for

Brain.

(b)(a)

Fig. 18: PSNR of the different methods from noisy levels. (a) PSNR results versus SNR
with 0.2N measurements for image Barbara. (b) PSNR results versus SNR with 0.2N

measurements for image Bone.

4.8 Convergence analysis

To elaborate the convergence performance of the proposed ASNR method,
Fig.23 shows the evolutions of the PSNR versus the iteration numbers for the
test images depicting boats and Bone with various sampling ratios. It can be
observed that with the growth of the iteration number, the PSNR curve of the
reconstructed images gradually increases and ultimately tends to be flat and
stable. Therefore, the good convergence performance of the proposed ASNR
method is exhibited in Fig.23.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 19: Denoising performance comparison on the Barbara image with SNR=20dB. (a)
Original image; (b) BCS reconstruction [44] (23.31dB); (c) COS reconstruction [46]

(24.88dB); (d) BM3D-CS reconstruction [47] (23.41dB); (e) ASD-CS reconstruction [39]
(26.00dB); (f) NCSR-CS reconstruction [19] (25.95dB); (g) ALSB reconstruction [48]

(27.48dB); (h) ASNR reconstruction (28.00dB).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 20: Denoising performance comparison on the Bone image with SNR=15dB. (a)
Original image; (b) BCS reconstruction [44] (23.02dB); (c) COS reconstruction [46]

(25.53dB); (d) BM3D-CS reconstruction [47] (21.27dB); (e) ASD-CS reconstruction [39]
(24.19dB); (f) NCSR-CS reconstruction [19] (24.45dB); (g) ALSB reconstruction [48]

(25.75dB); (h) ASNR reconstruction (27.23dB).

5 Conclusion

In this paper, we have presented a new method toward CS image reconstruc-
tion based on adaptive sparse nonlocal regularization. The approach utilizes
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 21: Denoising performance comparison on the starfish image with SNR=10dB. (a)
Original image; (b) BCS reconstruction [44] (18.68dB); (c) COS reconstruction [46]

(21.15dB); (d) BM3D-CS reconstruction [47] (15.30dB); (e) ASD-CS reconstruction [39]
(19.03dB); (f) NCSR-CS reconstruction [19] (18.88dB); (g) ALSB reconstruction [48]

(20.98dB); (h) ASNR reconstruction (21.31dB).

(a)                           (b)

Fig. 22: Comparison between SBI and IST. (a) PSNR results achieved by SBI and IST
with ratio = 0.2 for image foreman. (b) PSNR results achieved by SBI and IST with ratio

= 0.3 for image Barbara.

the nonlocal self-similarity prior integrated into an adaptive regularization to
improve the CS reconstruction performance. Meanwhile, an self-adaptive P-
CA sub-dictionary is exploited to effectively capture the local image feature
and greatly reduce artifacts. Furthermore, we have developed a convenient
implementation using the split Bregman iteration algorithm to optimize the
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(a)                                                                         (b)

Fig. 23: Convergence analysis of the proposed ASNR method. (a) PSNR results versus
iteration numbers for boats. (b) PSNR results versus iteration numbers for Bone.

proposed ASNR model, which can improve the computational efficiency and
achieve good convergence property. The results clearly demonstrate that the
proposed ASNR method outperforms many other state-of-the-art CS image
recovery methods.

APPENDIX A: Proof of Theorem 1

Owing to the assumption that e(j ) follows an independent zero mean distri-
bution with variance σ2, namely, E [e(j )] and Var [e(j )] = σ2. Thus, it can be

deduced that each e(j )
2
is also independent, and the meaning of each e(j )

2

is:
E [e(j )

2
] = Var [e(j )] + [E [e(j )]]2 = σ2, j = 1, 2, ...,N (29)

By invoking the law of Large numbers in probability theory, for any ϵ > 0,
it leads to lim

N→∞
P{| 1NΣN

j=1e(j )
2 − σ2| < ϵ

2} = 1, namely,

lim
N→∞

P{| 1
N
||x − r ||22 − σ2| < ϵ

2
} = 1 (30)

Next, we denote the concatenation of all the patches x i and r i, i =
1, 2, ...,n, by x l and r l , respectively. Meanwhile, we denote the error of each
element of x l−r l by e l(k), k = 1, 2, ...,K. We have also denote e l(k) following
an independent zero mean distribution with variance σ2.

Therefore, the same process applied to e l(k)
2
yields lim

N→∞
P{| 1NΣN

k=1e l(k)
2−

σ2| < ϵ
2} = 1, i.e.,

lim
N→∞

P{| 1
N
Σn

i=1||x l − r l||22 − σ2| < ϵ

2
} = 1 (31)

Obviously, considering Eqs.(30) and (31) together, we can prove Eq.(19).
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