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Abstract

The wavelet frame systems have been widely investigate@dpplied for image restoration and
many other image processing problems over the past decatthémting to their good capabil-
ity of sparsely approximating piece-wise smooth functismsh as images. Most wavelet frame
based models exploit tHe norm of frame cofficients for a sparsity constraint in the past. The
authorsin|[50, 17] proposed & minimization model, where thg norm of wavelet frame cdg-
cients is penalized instead, and have demonstrated tméficégt improvements can be achieved
compared to the commonly usedminimization model. Very recently, the authorslin/[11] pro-
posedlp-1, minimization model, where the nonlocal prior of frame fimgents is incorporated.
This model proved to outperform the sind¢eminimization based model in terms of better re-
covered image quality. In this paper, we propose a trundgtedminimization model which
combines sparsity, nonlocal and support prior of the fraoetficients. The extensive experi-
ments have shown that the recovery results from the propegpdarization method performs
better than existing state-of-the-art wavelet frame basetthods, in terms of edge enhancement
and texture preserving performance.

Keywords: image restoration, wavelet frame, truncaligthinimization,lo minimization,
nonlocal, iterative support detection

1. Introduction

Image restoration, including image denoising, deblurringainting, etc., is one of the most
important fields in imaging sciences. Its main purpose igittaace the quality of an observed
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image that is corrupted in various ways during the processafling, acquisition and commu-
nication, and enable us to obtain a better and visually ingmtomage. Image restoration tasks
are often formulated as solving a linear inverse problem:

f=Au+e (1.1)

wheref is the observed corrupted imagajenotes the additive white Gaussian noise with vari-
ancec?, the matrixA is a linear operator. [ierent image restoration problems corresponding
to different types ofA, e.g., an identity operator for image denoising, a projectiperator for
inpainting, or a convolution operator for deconvolutiott,. eMost image recovery tasks are ill-
posed inverse linear problems, which makes soling (1.&ptmes nontrivial. Therefore, proper
regularization techniques should be exploited to regedeitie recovery process. Among them,
variational models and wavelet frame based methods ardyradepted.

The trend of variational models for image processing sidriem the popular Rudin-Osher-
Fatemi (ROF) model which penalizes the total variation (Tg)m of the image [40]. The ROF
model is dfective for recovering images that are piece-wise constamf) as binary images.
However, it is well known that TV regularization oftenfiers from so-called stair-caséect.

In order to overcome this drawback, many other types of tiarial models have been further
proposed and we refer the readers 1o |5]} [45], [1] and theresfces therein for more details.

In recent years, the sparsity-based prior based on wawveletef has been playing a very
important role in the development offective image recovery models. The key idea behind the
wavelet frame based image restoration models is that tleeeisted image is compressible in
this transform domain. In other words, most important infation of the interested image can
be preserved by using only few frame @dgents. Therefore, the regularized process can be
chosen by minimizing the functional that promotes the spao$ the underlying solution in the
transform domain. One commonly utilized regularizer teamthe wavelet frame based models
is thel; norm of transform coicients. The connection of wavelet frame based approactibs wi
variational and PDE based approachesis also studied iS{#h connections explain the reason
why wavelet frame based approaches are often superior te gbthe variational based models.
It is because the multiresolution structure and redundanagerty of wavelet frames allow to
adaptively select proper fiierential operators according to the order of the singylaritthe
underlying solutions for dierent regions of a given image.

There are several flerent wavelet frame based models in the literature inctuttie synthe-
sis based approaches|[16, 29, 130,/31, 32], the analysis bapedachl[6, 27, 43] and the bal-
anced based approach|[7| B, 9]. These approaches are ¢jeddfatent due to the redundancy
of wavelet frame systems. In other words, the mapping froagieu to its wavelet frame coef-
ficients is not one-to-one, i.e., the representationiofthe wavelet frame domain is not unique.
However, what these models share in common is that they ynpstialize thd; norm of the
wavelet frame co@cients one way or another for sparse representation. Itliknawn that the
I norm based approaches are capable of obtaining sparsesbisdf the operatoA satisfies
certain conditions according to compressed sensing #®degveloped by Candes and Donoho
[13,114,[15]. For image restoration tasks, unfortunatélg, donditions are not necessarily sat-
isfied. Therefore, th& norm based models often achieves suboptimal performaneeeridy,
Zhang et.all[50] proposed to penalized thénorm” of wavelet frame cofficients instead, and
they developed an algorithm called penalty decomposifid) (to solve the analysis approach
with lg minimization. However, due to the non-convexity@fnorm”, the computational cost of
PD method is a little bit high. Then, Dong et.al[17] develdpenore €icient algorithm for this
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lo minimization model, called mean doubly augmented laga@m@DAL) method. Numerical
experiments in [17] demonstrated that this analysis bagpach based dg minimization can
obtain higher quality recovery than those counterpartedasl, minimization.

In recent years, a class of nonlocal image recovery methaxsdirawn much attention. The
nonlocal approaches are built on the observation that irsigetures of small regions tend to
repeat themselves in spatial domain, which is suitableXploiting the redundancy information
in natural images. They have shown to be vedfgaive for texture recovery. There are two types
of nonlocal schemes developed to exploit such a nonlocat.p@ne is the so-called nonlocal
means proposed by Buades et.al [3] for image denoising anthdwn extended to solve other
inverse problems in image processing tasks; see g.g., 8&0. Another is the patch-based
method, where the nonlocal idea is combined with patchediary methods, see [21,]22,/23,
31,124] for more details. The performance of nonlocal basethous is impressive for image
restoration. However, since a large number of image patshesld be clustered and sparsely
coded during the iteration, the computational burden isictrably high.

Very recently, Quan et.al [38] and Cai et.all[10] proposechtadiriven local or nonlocal
wavelet frame for image restoration. However, the comparatosts of these methods are even
higher than some patch-based approaches, e.g., the MAThpBementation of the algorithm
in [38] takes about 9 minute for a natural image with size 25%6, on a normal laptop. Chen
et.al [11] proposed alp-l; minimization model to balance the computational time amdvery
quality. In their proposed model, nonlocal prior of the feanodficients is incorporated in the
variational model, in terms of thie norm. It plays an important role of estimating the frame
codficients that contain the textures and finer details of imad&sgnerical experiments have
demonstrated theffectiveness of the addéglregularization term.

Sharp edges are essentially helpful to make a recovereceinviagally clear. In our previ-
ous work [35], we proposed a wavelet frame based trundatetdnimization model for image
inpainting problem, where the support prior of frame ficéents is respected. This model can
generate a recovery image with much better enhanced edaesth counterpart based on sin-
gle I; minimization orlg minimization. Aiming at having the best of both edge enhadreed
texture preserved approaches, this paper proposed a tedrigd, scheme which will allow
to simultaneously exploit three image priors: (i) spargitior of local intensity variations; (ii)
self-repetition prior of local image structures in spatlamain; (iii) the nonzerupport prior
of frame codicients in the domain of wavelet frame transform. The maieaesh motivation
is to better preserve sharp edges. The mdiiedinces between our proposed method and most
existing wavelet frame based image restoration approarkedsiefly summarized as follows:

¢ In contrast to wavelet frame baskar Iy minimization modell[6, 17], where only sparsity
prior is utilized, the addeld regularizer term exploits the self-recurrence prior ofldm-
age structures in spatial domain [5], i.e., the nonlocalmis also incorporated. Therefore,
the textures and tiny details can be preserved well in themegimage.

o Different with the truncateld minimization model proposed for image inpainting problem
in our previous work/[35]. The new truncatedminimization model is proposed and the
corresponding ficient algorithm is developed here. In addition, the nonligcer of
frame codficients is added for the purpose of better preserving impbittaage details.

o Different with thelp-I, minimization model proposed in [11], where both sparsitppr
and nonlocal prior are exploited, the support prior of frasneficients is also respected
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in our developed truncatdg-l, minimization model, leading to significantly better edge
preserving performance.

The rest of this paper is organized as follows. In the nextiecwe first give a brief
review of wavelet tight frames. Then we further revisit therent wavelet frame based image
recovery models using either the singler I regularization term [6, 17], and the combirigd,
minimization modell[11]. In section 3, we propose a hew watvfame based image recovery
model utilizing the truncateld-l, regularizer and develop a correspondifige@gent algorithm in
the spirit of iterative support detection. Section 4 is dedao the experimental evaluation of
the proposed image restoration method. We compare it witbrakbstate-of-art methods such
as the split bregman method for solving the wavelet framedblasminimization modell[6], the
MDAL method for solving thd, regularization model [17], the algorithm proposedlin [14d] f
lo-I2 regularizer, and the famous lterative Decoupled DeblgrBM3D (IDD-BM3D) algorithm
[18,/19]. Section 5 is devoted to the conclusion of this pawef discussions on some possible
future work.

2. Preliminariesand Previousworks

2.1. Tight wavelet frames and wavel et frame based image processing methods

In this section, we briefly introduce some preliminariesight wavelet frames, and then
revisit some of the current typical wavelet frame based enagtoration models and the cor-
responding #icient algorithms. We refer the interested readers t01[39426 25] for further
detailed introduction of wavelet frame and its applicasion

Tight wavelet frame are widely utilized in image processi®ge wavelet frame fdr,(R) is
a system generated by the shifts and dilations of a finitefgmeratord = {¥1, ¥1,...,¥n} C
Lz(R):

X(¥P) = {Prjk1< l,jeZ,keZ}

whereW, jx = 21/29)(2) - —k). Such seX(¥) is called tight frame of »(R) if

f=Z< fu >y, ¥ e Ly(R).

eV

The construction of framelets can be obtained accordirfgganitary extension principle (UEP).
We refer the readers to [25,/12] for more details. Followimg tommon experiment implemen-
tations, the linear B-spline framelet is used by considgtite balance of the quality and time.
The linear B-spline framelet has two generators and thecagsd maskshg, hy, hy} are

V2
4
Given the 1D tight wavelet frame, the framelets feR?) can be easily constructed by using
tensors products of 1D framelets.

In the discrete setting, we will us&/ € R™" with m > n to denote the transform matrix
of framelet decomposition and u¥é' to denote the fast reconstruction. Then according to the
unitary extension principle we haW®™ W = |. The matrixW is called the analysis (decomposi-
tion) operator, and its transpo®€ is called the synthesis (reconstruction) operator. Tevel
framelet decomposition af will be further denoted as:

Wu=(...W,u,...) for 0<1<L-1ljerl
4

ho = %[1,2, 1];hy = [1,0,-1]; hy = %1[—1,2,—1].



where denotes the index set of the framelet bands\ahai € R" is the wavelet frame cdéi-
cients ofu in bandsj at levell. The frame cofiicientsW ju can be constructed from the masks
associated with the framelets. We consider lthieevel undecimal wavelet tight frame system
without the down-sampling and up-sampling operators heeehy denote the mask associated
with the scaling function an¢hy, hy, .. ., hy} denote the masks associated with other framelets.
Denote

h{ = hg « hg s« - - hg <y (2.2)

I-1

wherex denotes the discrete convolution operator. Tién corresponds to the Toeplitz-plus-
Hankel matrix that represents the convolution operbﬂbunder Neumann boundary condition.

2.2. Thesinglel; and | minimization model

Due to the redundancy of the wavelet frame systewi/{ # 1), there are several fierent
wavelet frame based models. These models mostly penakde tiorm of the wavelet frame
codficients one way or another for sparsity constraint. Detailescription of these fferent
models can be found in_[25, 44]. Numerical experiments. if] fBBmonstrated that the quality
of the restored images by these models is approximately amabte. In this paper, we only
consider the following analysis based approach:

1
mu|n§||Au— flI3+ 114 - Wullp (2.3)

wherep = 1 or p = 2 corresponds to anisotropfg norm and isotropi@; norm, respectively.
The generalized;-norm here is defined as

= p
1+ Wullyp = ||Z[Z /h,;IWL,-UIP] I (2.4)
1=0

jer

where| - |P and ()% are entrywise operations. If letting = Wu and substitute it intd (213), we
can get the rewritten form of (2.3) as follows

1
m|n§||Au—f||§+||/l-a||1,p st. o =Wu (2.5)
U,

As mentioned above, most of the frame based models expklithorm of frame cofi-
cients as the sparsity regularizer, and canfhieiently solved via lots of fi-the-shelf methods,
such as the famous split bregman method or alternatingtitiremultipliers method [6, 34, 28,
2]. Recentlyl, quasi-norm (0< p < 1) regularization was further investigated to recover the
image with more sharped edges. The authors in [50] proposesktthd, “norm” instead of the
[1 norm in the analysis model:

-1
min SI1Au = f3 + 4 I(Wu)illo (2.6)

where the multi-index is used here andNu); (similar for 4; ) denotes the value diVu at a
given pixel location within a certain level and band of watdtame transformy; is the positive
regularization parameter. Thg“norm” is defined to be the number of the non-zero elements of
Wu. Note that its proximity operator can be easily computedhgyttard-thresholding operator.
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An algorithm called PD method was proposed to solve the akhprenimization problem
in [50]. Recently, a morefécient algorithm, called MDAL method is developed for solyitne
same problem in literature [17]. It can be seen as an extertfithe augmented Lagrangian
(DAL) method [41, 49] to handle the non-convex regulariagetsasly minimization. Letting
a = Wu and substituting it intd(2]6), ones can obtain a constrhfoem:

1
muII’IEHAU—f||§+/li||(a’)i||o, st. a=Wu (2.7)

Then, the DAL method can be formulated as

u+ = argmin, 2l1Au— 12 + SlIWu — o + B4 + llu - k|3
{ a1 = argmin, [|4- all + §lle — (WUt + bR)|Z + 3]l — N2 (2.8)
bk+l — bk + Wuk+l _ a,k+l
whereu > 0 is a penalty parameter, and the parameter O controls the regularity of the
iterative sequence.

Although it seems to be reasonable to apply the DAL algori{@m) to solve thdg min-
imization problem, the numerical experimentslin/ [17] destoate that the iteration sequence
generated vid(218) may be unstable or at least the converggreed is quite slow. Therefore,
the authors in [17] utilized the arithmetic means of the 8ofusequence, denoted by

k k
1 1
&« L ke ~k_ _ T k
U—k+1Eu, a k+1Ea/. (2.9)

as the final output instead of the sequenéed®) itself. The authors called this algorithm mean
doubly augmented Lagrangian (MDAL) method. Numerical expents show that the sequence
(U, a*) generated by the MDAL method is really convergent, and lioghconvergence speed
and the quality of recovery are superior to the PD method [50]

2.3. The combined |g-1, minimization model

Note that the wavelet frame ciieients can be obtained via the discrete convolution operato
such as the definition in_(3.2), which implies the fact thaytmepresent the results offidir-
ent types of finite-dference operators defined in the neighborhood. Therefespired by the
previous work|[22, 23], the authors in [11] proposed a noalestimation method of the frame
codficients.

The frame cofficient of imageu in bandj at levell, is denoted aa, ; = W, ju. Assume that
the codficienta j is generated by convoluting the imagevith the operatohg') defined in[(2.R).
It is well known that the convolution is performed in the lbraage regions. Therefore, for any
pixel indexe9 andq, the neighborhoods around the pixplandg of the image are similar, and
we have that

() ~ a1,§(q) (2.10)

The relationship in{2.10) means that the similarity of twanfie cofficients can be measured by
the similarity of the corresponding image patches. Henesfiame cofficient corresponding to
a given patch can be approximately estimated by the fram@cieats obtained by the similar
patches.



Denote the image patch centered at the gixasu,, which is defined as, = {uq, 0 € N(p)}.
Here N(p) denotes a neighborhood at the pigelThen from the collection afh similar patches

{Up,, Up,, ..., Up }, the nonlocal estimation of frame d@ieientse, ;(p) can be obtained by
m
£Li) = ) wiaj(py) (2.11)
i=1

wherew; is the weight based on patch similarity. Similarly to the lo@al means method|[3],
the weight is inversely proportional to the distance betwike patches, anduy,

1
Wi = Zexp(-llup - up,lI3/h) (2.12)
whereh is the filtering parameter ar@is the normalizing factor.
Therefore, combining the sparse prior and nonlocal esiimaif the frame coficients, the
authors inl[11] proposed the wavelet frame bdgdg minimization image restoration model

1 v
min SAu - FIIE + AillWUillo + 51IWu - B3 (2.13)

whereg = [ jlo<i<L-1,jer denotes the nonlocal estimation\. In this combinedo-l; model,
the second regularization term plays the role of recovdsoth the smoothness of homogeneous
regions and the sharpness of edges, the third regularizgtiom related to the nonlocal estimator
is utilized to preserve the cfiients that contain textures and finer details. The var&abénd

3 are updated alternatively. When the valugsa$ fixed, the minimization probleni (Z113) can
be rewritten as a constrained optimization problem asvi@lo

1 %
min E||Au — fI5 + All(Wu)illo + §||a ~BlI3, st a=Wu (2.14)
Similar to the MDAL method applied to the singlg optimization problem, the DAL method
applied to[[2.11) is reformulated as follows:

u':“l = arg min, 3/|Au— f[2 + 5lIWu — o* + bY|2 -:-( Zju —ku"||§ )
ot = argmin, |4 -l + 3lla — BlIZ + 5l — (WU + B3 + lla — X3 (2.15)
bk+l — bk + Wuk+l _ a,k+l

Itis easy to show that each of the subproblem§of {2.15) hssad form solution

uk+l = (AT + (u+Y))HATT + yuk + W' (a/k - bk))
@ = Hy 0 (8, WU + bK o) (2.16)
bk+l — bk + Wuk+l _ a,k+l

where the operatoH is a generalized component-wisely hard-threhsoldingatpedefined as
follows:

0 if |VXi+/1yi+YZi| < 24
H XV, 2)i = Ve A vty vty 2.17
(Hurr (%Y. D) POLYE otherwise (2.17)

When theu is fixed, the update ¢ relies on the frame cdéicientsae = Wu. If we use the current
estimaten® to approximater, the estimation of at the k + 1)-th iteration can be updated via
the following formula:

i) = ) wiaf (o) (2.18)
i=1



As for the initialization of nonlocal estimatigf, the authors first use the standard Tikhonov
regularization method to obtain an initial imagetfien the similarity weight can be obtained
according tau; and finally the initial estimatiog® is computed by

BY(p) = ) W ;0(p;) (2.19)
i=1

The arithmetic means of the sequenua€ ¢¥) are treated as the actual output of the algorithm,
which is the same as the strategy (9). So we call it as nor-tnean doubly augmented La-
grangian method (Non-local MDAL) in the section of numeliegperiments.

3. Our Proposed Model and Algorithm

3.1. Genesisof theidea

The main idea of our developed model in this paper comes franpmposed iterative sup-
port detection (ISD) for sparse signal recovery in comgvessensing|[46]. To make the paper
self-contained, we first briefly revisit the idea of ISD. Cawgsive sensing reconstructs a un-
derlying sparse signal from a small set of linear projectidretx denote &-sparse signal and
b = Axrepresent a set @f linear projections ok. The optimization problem

(lo)  minfixlo st Ax=bh. (3.20)
X

where||X||o is defined as the number of nonzero componenis can exactly reconstrugtfrom
O(k) random projections. However, becauis#y is nonconvex and combinatorial, it is really a
challenging task to solve thig minimization optimization problem. A general alternatisehe
Basis Pursuit (BP) problem

(BP/l)  miniXly st Ax=b, (3.21)

Unlike the BP problem which is a one-stage convex relaxati@thod, ISD is a multi-stage
convex relaxation method, alternatively calling its twargubnents: support detection and signal
reconstruction. ISD starts from solving a standard BP @wbllf the BP model returns a correct
sparse solution, things are fine and ISD stops there. Otkeyfrom the incorrect reconstruction,
support detection will be performed to identify an index lsewvhich contain some elements of
supp) = {i : Xi # 0}. After the acquiring of detected support information, tleresponding
expected nonzero elements will be truncated fromé&hesgularization term and the resulted
model is as follows

(Truncated BHl;) mxin||xT||1 st. Ax=h. (3.22)

whereT = 1€ and||xr|ly = 3, %]. Those entries of supgYin | will help (3.22) reconstruct a
better solution compared tb (3]121). From this better soiytsupport detection will be able to
identify more entries of supg) and then yield an even betterIn this way, the two components
of ISD work together to gradually recover sugpénd improve the reconstruction result.
Intuitively, the truncatedy model is similar in the spirit of above truncatidminimization
model, after the acquiring of reliable support detectiohe €orresponding elements should be
not forced to move closer to 0 and therefore we move it out filearegularization term. In fact,
8



once the nonzero locations are identified, their influencdmignweighted in order to allow the
true nonzero components should not be shrunk. Therefaedhesponding elements can also
be truncated from the origindgd regularization term in the same way. The resulted trundated
model is

(Truncated Ig) mXin||xT||o st. Ax=Dh. (3.23)

wherext is the truncated subvector &f and||xt||o is defined to be the number of the non-zero
elements oks.

In most cases, the true signaltself is not sparse or compressible. However, its represen
tation under a certain basis, frame, or dictionary can besspar compressible. In such a case,
assuming thay = Wx is sparse or compressible for a certain linear transféfnone should
minimize||Wx||; and||(WX)7||1 as a substitute respectively, instead of minimizjrigy and||X||7.

From the inexact intermediate reconstruction, ISD trieshitain a reliable support detec-
tion, which can be able to take advantages of the featurep@odinformation about the true
signalx. The authors in [46] focus on the sparse or compressiblakignth elements having
a fast decaying distribution of nonzeros. For these kindsigrials, they proposed to perform
the support detection by thresholding the solutionof (8.28d called the corresponding sup-
port detection methothreshold-ISD. We emphasize that the fast decaying property is a mild
assumption because in fact most natural images satisfptoperty in an appropriate basis, for
instance, wavelets, curvelets and wavelet frames et aldditian, it should be pointed out that
the fast decaying property is not even necessary if thetsireiinformation of the underlying
solution is exploited, and we refer the interested reade|33] for more details.

3.2. Wavelet frame based truncated lo-I, image restoration model

In the above section, we have briefly reviewed some typicalelea frame based image
restoration models and their correspondifficeent algorithms. The single or lp minimization
model utilizes the sparsity prior of local intensity vaidets, i.e., sparsity prior of the frame
codficients. The combineth-l, minimization model further exploits self-repetition priof
local image structures in spatial domain, i.e., the norlpdar of the frame cofficients. In this
paper, the support prior of the frame ¢idgents will be self-learning via ISD and be respected
with the aim to better preserve the sharp edges, and we mrapesruncateth-l, minimization
model and develop a corresponding@ent algorithm, which allow the regularization model
simultaneously to exploit three important image priorsarsfly, nonlocal and support prior of
the frame coficients in the transform domain of wavelet frame.

1 14
min S11Au = Iz + (W) lIWurllo + 7 IWu - Iz (3.24)

where (Wu);)y is the truncated version ofAu);, and||((Wu);)t|lo denotes the number of the
non-zero elements of\({{u);)r.

3.2.1. Component 1: Solving the truncated lo-I, minimization problem
The equivalent constraint optimization problem[of (3.24) i

1 v
min Zl1Au - FIE+ (Wrli(enllo + Sller = Bll3, st e =Wu (3.25)



When theg is fixed, the DAL method applied t6 (3.25) is formulated as

in 1
ukk”l = arg min, 3||Au - f|2 + &[Iwu —2ak + b5+ %Llul— ukll|§2 .
= argmin, [|(1- )7l + 3lla = BI5 + 5lla — (WU + b9)[I5 + Slla — X|i3 (3.26)
bk+1 — bk + Wuk+1 _ (Ik+1

Fortunately, each subproblem Bf(3.26) has a closed foratisal Specifically,
@ = Hr 1, (B, WU 4 B, 0¥) (3.27)

where the operatoH is a generalized component-wisely selective hard-thidivep operator
defined as follows:

if ieTang2a) o 2

0]
X, 7)) = 2 L ) V+u+y V+u+y 2
(i, 2) { U, otherwise (3.28)

We can see that the above computation &f in fact a selective hard-threhsolding procedure.
It is known that the edges of an image should correspond ttathe nonzero cdicients in the
domain of wavelet transform. Assuming that we can acquieeéfiable large nonzero support
set, some components will not be shrunk if we believe that #re really nonzero elements via
this selective hard-threhsolding operator, leading téebbetdge-enhanced recovered image. As
a multi-stage refinement of the corresponding non-cotyé&xmodel, our proposed method is
expected to achieve an even better performance as long aetibeted support information is
reliable enough. Experiments confirmed tifieetiveness of our proposed method.

When theu is fixed, the update @8 relies on the frame cdicientsa = Wu, which is the
same ad(2.18) and (2]19). In addition, the arithmetic me&ttee solution sequence is used as
the final output.

3.2.2. Component 2: Truncation determination based on iterative support detection

In this part, we develop artlective support detection method for images with a fast dagay
distribution of codficients under wavelet frame transform. The support detedtidoased on
thresholding, fois-th stage, the support indexes are obtained as follows:

1D = i - |(Wu)i| > €9} (3.29)

wheres = 0,1,2,... andT = I¢. It should be pointed out that support index sets are not
necessarily increasing or nested, il€, c 152 may not hold for alls. This is very important
because the support index set we get from the recent intéateesblution may contains wrong
detections by(® thresholding. Not requiring(® to be monotonic leaves the chance for support
index set to remove previous wrong detections, and mERdsss sensitive te(. This waye(®

is easier to choose. Similarly to ttierehsold-ISD strategy inl[46], we set

¥ = max(|(Wu){¥]} /oG, (3.30)

with p > 0. An excessively largg results in too many false support detections and leads to low
solution quality, while an excessively smaltends to cause a large number of iterations. It will
be quite &ective with an appropriate, though the proper range pfmight be case-dependent.
Empirically, the performance of is not very sensitive to theice ofp.

10



3.2.3. Thealgorithmic framework for our proposed model
Now we summarize the overall algorithmic framework for otoposed truncateg-l, model.
Algorithm 1 Wavelet frame based truncatkd, Image Restoration
Given an observed imageand the convolution operatéx.
1. Initialization:
Set the initial support estimation as empty set, |&).= 0.
2. Outer loop (support detection): iteration ®= 1,2,...,S
(a) Update the support estimation ¥ieeshold-ISD method[(3.29).
(b) Inner loop (solving the truncatety-I, model [3.2#))
While the stopping condition is not satisfied, iteratekon 1,2, ...,K Do
(1) Image estimate* = (AT + (u + y)1)"H(AT f + yuk + uWT (oX - bY)).
(1) Computea®*t = Hr 4., (8, WU + b, o) via (3.28).
(1) Updateb*1 = bk + Wul+t — o1,
(IV) If mod(k, 2) = 0. Updateg, j(p) = £y wiakt (p;) via (ZI8).
End

It is easy to see that our proposed algorithm is a multi-sptgeedure. Note that since
1M = g, the first iteration of outer loop, i.e., the first stage of @&ighm 1, reduces to the
standardp-I, model. We emphasize that the computational cost time of mpgsed algorithm
is not necessary several times more than that of Non-locahAMiDethod, if the looser stopping
tolerance (except the final stage) and warm-starting styedee adopted. Empirically, the best
recovered results can be achieved when the outer iteratiotber is 2 or 3 in most cases. In
this paper, the looser stopping strategy is not adoptedh®purpose of better presenting the
intermediate recovery results. We mainly pay our attentiornthe recovery quality and our
proposed algorithm performs much better than the correfipgrsingle-stage method in this
aspect. However, the image quality is improved enough to tthwthe extra computational
cost. In such cases, Algorithm 1 is often 2-3 times longen than-local MDAL method in our
experiments.

4. Numerical Experiments

In this section, we compare the proposed algorithm (showAkigarithm 1) with the PBOS
algorithm for the non-local TV model [48], the Split Bregmalgorithm for thel; minimization
problem [6], the MDAL method for thé& minimization modell[1/7] and the non-local MDAL
method for thelp-I, minimization problem|[11]. The specific image restoratiaskt that we
consider is image deconvolution here, though other kindasks can be considered in a similar
way. In the following experiments, four standard naturahgas (see Figure 1), which consist
of complex components in fierent scales and with fierent patterns, are used in our tests. The
intensity of a pixel of these test gray-scale images rangas 0 to 255. We compare the quality
of the recoveries not only in terms of quantitative measer@s(i.e., the increasing of PSNR
and SSIM values, defined in the following part), but also tisély detailed improvements of the
restored images. All the experiments were performed undeddWws 7 and MATLAB v7.10.0
(R2010a) running on a desktop with an Intel(R) Core(TM) ¥B@ CPU (3.60GHz) and 32GB
of memory.
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Figure 1:Original 4 test images (from the left to right: cameramarathpebral, zebra2, respectively).
Sizes of them are: 256 256 256 x 256 250 167, 600x 431, respectively.

4.1. Experiments Settings and Choices of Parameters

The four blurred and noisy images in our tests are degradéalles’s. Since the periodic
boundary condition is used to generate the convolutionaipem E&,E’vﬁh] we use the same
boundary condition to blur the test images. Four types ofrlslg kernels are used, type I:
fspecial (motion,10,20), type II: fspecial (gaussian]2&), type Ill: 9x 9 uniform and type IV:
fspecial (motion,15,30). The blurred images are furtherugated by Gaussian noise with zero
mean and standard deviation®@f= 3.0,4.0 in kernel type I = V2 intype ll,oc = V0.3 in
type lll, o = 3.0,4.0 in type 1V, respectively.

In Figure 2, we show that the magnitude of sorted wavelet éap#ficients of the 4 tested
images has a fast decaying property, which demonstratethéh&ast decaying condition under
wavelet frame transform is a mild assumption. The qualityegbvered image is quantitatively
measured by means of the peak signal-to-noise ratio (PShlitled as

. llu—urfl2
PSNR@, u*) = 20Ig{ TN } (4.31)
whereu and u* denote the original and recovered images, respectivilydenotes the total
number of pixels in the image. In addition, we also use another image quality assessment:
Structural SIMilarity (SSIM) index between two images pospd in I[ZJ?], which aims to be
more consistent with human eye perception. Besides, wesehtbe following stopping criterion

for all the wavelet frame based methods:

» {uuk—uk-lnz A — £l
[P

According to the suggestion dﬂll], linear B-spline fragtés adopted for our experiments.
Considering that the framelet decomposition level to bed éemmonly desirable choicE[ll],
we fix itto be 1 (i.e.L = 1) for all wavelet frame based methods, for fair compariseor.all the
cases, we fix the penalty parametet 0.05 for the split bregman method, and wefix 0.01,

v = 0.003 for the MDAL method. In addition, we select the best ragahtion parametet for
optimal image recoveries. For the Non-local MDAL methodsdraon the suggestion E[ll], the
sizes of image patches and the searching window are fixed3ocdeand 11x 11 respectively,
for the computation of the nonlocal weights. The 15 nearasthes (i.e.m = 15) are used for
the computation of the nonlocal prior. We fix the penalty paeteru = 0.01 andy = 0.003,
and the regularization parameterandv are selected for optimal PSNR and SSIM values. In
Figure[3, we show the PSNR and SSIM variation trends as thenpeterst andv vary. Here
for the conciseness of the paper, we only show the obsenstibtest image cameraman, since
12
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Testimage Blur type Non-local TV [48] | Split Bregman [6]| MDAL [17] | Non-local MDAL [11] Proposed Oracle

/Noise level PSNRSSIM PSNRSSIM PSNRSSIM PSNRSSIM PSNRSSIM | PSNRSSIM

Typel/o =30 27.480.8230 27.230.8414 | 28.380.8487 28.320.8568 28.85/0.8589 | 32.420.9228

Typel/ o =40 26.670.7889 26.380.8200 | 26.930.8248 27.430.8311 27.68/0.8327 | 30.060.8601
Cameramarl__ypell/o = V2 27.080.8543 27.030.8596 | 27.250.8655 27.490.8684 27.62/0.8695 | 33.640.9243
Typelll/ o = V0.3 28.230.8733 27.9J0.8669 | 28.850.8875 28.870.8864 29.60/0.8929 | 33.260.9121
TypelV/o =30 26.690.7826 26.420.8147 | 27.630.8289 27.430.8317 28.03/0.8349 | 31.970.9149

TypelV/o =4.0 25.900.7416 25.630.7966 | 26.440.8003 26.730.8066 27.10/0.8091 | 29.670.8473

Typel/o =30 27.670.8168 27.430.8137 | 28.260.8305 28.400.8375 28.59/0.8394 | 32.400.9243

Typel/ o =40 26.930.7848 26.650.7869 | 27.120.7991 27.570.8096 27.64/0.8115 | 29.880.8892

Boat Typell/o = V2 27.930.8399 28.020.8390 | 28.090.8501 28.340.8501 28.43/0.8512 | 33.460.9220
Typelll/ o = V0.3 28.890.8563 28.270.8401 | 29.260.8684 29.290.8704 29.87/0.8776 | 32.330.8956
TypelV/o =3.0 26.800.7725 26.580.7663 | 27.350.7952 27.440.7992 27.73/0.8043 | 31.730.9121
TypelV/o =4.0 25.960.7361 25.730.7383 | 26.430.7557 26.670.7672 26.82/0.7709 | 29.330.8824
- Typel/o =30 25.750.8243 24.530.8048 | 25.850.8317 26.140.8353 26.94/0.8410 | 30.150.9206
w| Typel/oc=40 24.770.7942 23.600.7684 | 24.730.7996 25.250.8088 25.67/0.8122 | 27.580.8900
Zebral Typell/o = V2 25.420.8313 25.580.8307 | 25.450.8230 25.850.8327 26.05/0.8337 | 30.580.9074
Typelll/ o = V0.3 26.050.8298 25.090.8185 | 25.890.8299 25.760.8233 26.46/0.8348 | 28.360.8882
TypelV/o =3.0 24.250.7478 23.550.7389 | 24.730.7705 24.800.7699 25.63/0.7806 | 29.330.8923
Type IV/ o =4.0 23.160.7111 22.770.7042 | 23.870.7358 24.170.7419 24.69/0.7501 | 26.960.8633
Typel/o =30 27.670.8008 27.160.8114 | 28.560.8250 28.580.8287 29.19/0.8363 | 32.370.8991
Typel/ o =40 26.660.7696 26.250.7851 | 27.530.7973 27.800.8027 28.12/0.8034 | 30.290.8717
Zebra2 Typell/o = V2 29.790.8758 30.000.8757 | 29.340.8705 30.28/0.8780 30.260.8771 | 33.690.9020
Typelll/ o = V0.3 28.370.8381 27.220.8132 | 28.370.8403 28.410.8445 29.33/0.8518 | 32.230.8702
TypelV/o =3.0 26.150.7633 27.250.7720 | 27.250.7948 27.060.7966 27.94/0.8017 | 31.570.8828
Type IV/ o =4.0 25.270.7256 24.960.7481 | 26.240.7660 26.360.7708 26.92/0.7736 | 29.640.8606




Test image Blur type IDD-BM3D: Initial [18] | IDD-BM3D: Final [19] Proposed
/Noise level PSNRSSIM PSNRSSIM/(Time) PSNRSSIM/(Time)

Typell/o = V2 27.460.8415 28.18/0.868%(86.46) | 27.620.8694/(63.97)
Cameramar Type IV/o =3.0 27.190.8131 28.60/0.8451/(85.61) | 27.970.8350(63.65)
Type IV/o =40 26.400.7944 27.47/0.8254/(85.63) | 27.040.809%(72.03)
Typell/o = V2 25.780.8097 26.12/0.8384/(61.45) | 26.000.8335/(35.89)
Zebral | TypelV/o = 3.0 24.640.7112 25.64/0.7729(67.44) | 25.500.7791/(54.01)
Type IV/o =4.0 23.940.6840 24.72/0.7356(67.97) | 24.630.7494/(58.36)

Table 2: Performance comparison of the proposed methodBMIBD [18,(19]. The given
values are PSNR (dBSIM/CPU time (second). Bold values denote the highest PSNR or

SSIM values.

Magnitude Viaue

05 2

1 15
Entries sorted by magnitude

25

x10°

Figure 2:The sorted magnitudes of the wavelet framefiicients of the 4 test images have the property

of fast decaying property.

the other cases have the similar conclusions. For our peabAlorithm 1, for simplicity, the
parameters are set to be the same as Non-local MDAL methodddition, we sep = 3 in

(3.30). Empirically, the performance of the proposed athar is unsensitive to the settings of
these parameters. We believe our comparison will be faieutitese specific settings.

In what follows, we also show the oracle recovered resulisusfproposed algorithm, i.e.,
the support estimation i (3.29) is based on the underlyimgimage. Clearly, this case is not
possible in practice. However, it demonstrates the adgerig exploiting the support prior of
frame codicients, which serves as a benchmark and chalks out a patk foraxplore: serving
as an ideal golden upper bound of the performance of supptettion based methods.

4.2. Resultsand discussions

In this subsection, we report the experiments results, esimg the proposed algorithm with
the PBOS algorithm for the nonlocal TV model, the Split Bregnmethod for the wavelet frame
based; minimization model, MDAL method for thi model, Nonlocal MDAL method for the
lo-I> model, and the famous IDD-BM3D algorithm.

First of all, in Table 1, we summarize the results of the figoathms for all the test images
with different blur kernels and noise levels. Note that the PBOS igihgofor the nonlocal TV
model can not satisfy the stopping criterion based on tha éetween two successive iteration
values such agu“** — u¥|o/|lu¥l> < 5 x 10~ for many iterations, hence the stopping criterion
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Figure 3:The PSNR and SSIM values of Non-local MDAL method with thegpagterst andy vary.
The first column and second column correspond to the recaesnjts of blur kernel Type | with noise
level o = 3.0. The third column and fourth column correspond to the regpvesults of blur kernel Type
Il with noise levelo = V2. Testimage: cameraman.

of |[Ku® — f|l, < o adopted|[48] is also used here, i.e., the iterative process sf either of
the two criterions is satisfied. We can observe that our gegalgorithm has an overall better
performance than the other methods in terms of both PSNR &hd &alues.

In Figurel4, we present the recovery results of the interateditages of our proposed algo-
rithm. Due to the page limit, we just choose to show the resufitthe test image cameraman
here, since the other cases have the similar conclusionzallReat the first stage of our pro-
posed algorithm is to run the Non-local MDAL method, and we olserve that our proposed
algorithm can bring gradual improvements as the suppoettion proceeds. Empirically, our
proposed algorithm achieves the best final results when thémum stage number is only 2 or
3 in most cases.

In what follows, we further analyze the advantage of the psag algorithm through the vi-
sual comparisons betweerfldrent methods. We choose the test images cameraman antl zebra
here, and the images are convoluted by blur type 1V and cdnted by noise withr = 4.0.
We can observe that the proposed algorithm has the potémtiacover the edge regions and
textures simultaneously. In addition, in order to make ttsaial comparisons more clear, we
give the close-up details (zoom-ins) of recovery resukspldiyed in Figur€]5, and in Figuré 6,
respectively. It can be observed that our proposed algoriifings significant visual enhance-
ments in the sharp edges of the recovery images compared tglthr methods, e.g., the tripod
of the cameraman image and the stipes of the zebral image.

Finally, we compare the proposed algorithm with the norllpae&ch-based image deblurring
IDD-BM3D algorithm [19], which is one of the state-of-the-enethod in this field. To guaran-
tee the performance of IDD-BM3D algorithm, the two-satgprapch BM3DDEB|[18] is used
as an initial estimation. Two blur types are consider herae @ the blur type 1l with noise
o = V2, and the other is blur type IV with noige = 3.0, 4.0, respectively. In Table 2, we list
the PSNR and SSIM values of the recovery results fietént algorithms. In Figufd 7, we give
the visual comparisons between our proposed algorithmiatDD-BM3D algorithm. As can
be seen from both the TaHlé 2 and visual restored resultsetiozvery quality of our proposed
algorithm is approximately comparable with IDD-BM3D alghm. Specifically, our proposed
method outperform the IDD-BM3D algorithm in some cases it of better SSIM values,
which is more consistent with human eye perception. To ma&ecomparison more clear, in
Figurel8, we also display the zoom in views correspondingdare[. we can observe that our
proposed method tends to generate more sharper image édgethé IDD-BM3D algorithm.
The excellent edge preservation owes to the implement gfatiprior of the frame cd@cients.

In addition, as can be seen from the Tdble 2, the CPU time opmposed method is less than
the IDD-BM3D algorithm. We emphasize that the code of the iBM3D algorithm is available
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at|http//www.cs.tut.fi~foi/GCF-BM30OyBM3D.zig. The computationally most intensive parts
have been written in €+ due to the high computational complex, while all the partswfalgo-
rithm are written in MATLAB language. Therefore, compareithvthe IDD-BM3D algorithm,
our proposed method is computationally mofigcéent in this aspect.

5. Conclusionsand possible futurework

In this paper, we propose a new wavelet frame based imageaien modell(3.24) which
exploits the sparsity, nonlocal and support prior of frarefficients simultaneously. In the
proposed model, the penalization of taemorm plays the role of preserving the ¢eents that
contain textures and finer details, and the penalizatioruoiceted, “norm” is used to recover
the smoothness of homogeneous regions and sharp edge=. #ettpening of the edges in the
recovered results is observed compared with the corregpplydnorm” based alternatives. The
corresponding algorithm is a multi-stage process congjgif solving a series of truncatégl,
minimization problem. The proposed method can bring siggifi enhancements at the sharp
edges of the restored images, since the large wavelet frasfigc@ents reflect the singularities
of the underlying true solution and are not been shrunk. Téyedomponent of our proposed
method is the reliable support detection, and therefora#xéstep along this line of research is
to develop moreféective support detection methods.
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Figure 4:The intermediate stage results of propgsed algorithm. Wither first to fourth columns are
corresponding to the blurry and noisy image, thé resultgsif§tage, second stage and third stage,
respectively.
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Split Bregman,PSNR: 25.63dB,SSIM: 0.7966
S e

Non-local TV,PSNR: 25.72dB,SSIM: 0.7427
o

Blurry and Noisy image

Figure 5:The visual comparison betweerfidrent methods. From the left to right and up to down: the
original image, the blurry and noisy image (blur kernel Tygavith noise levelo- = 4.0), recovered
results by Non-local TV methoﬁhS], Split Bregman metHab DAL method [IJ!], Non-local MDAL
method|[[11], Proposed method, Oracle method, respectively
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Non-local TV

Figure 6:The zoom in visual detail comparisons betweeffiedent methods corresponding to Figure 5.
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BM3D(Final) PSNR: 28.18dB, SSIM: 0.8681

BM3D(Initial) PSNR: 27.46dB, SSIM: 0.8415

Blurry and Noisy image Proposed,PSNR: 27.62dB, SSIM: 0.8694

BM3D(Final),PSNR: 26.12dB,SSIM: 0.8384

Figure 7:The visual comparisons between proposed method with BM3Mads [13[ 10]. The first
column to fourth column correspond to the blurry and noisgige (blur kernel Type Il with noise level
o = V2), recovered results of Proposed method, IDD-BM3D inistimate, IDD-BM3D final estimate,

respectively.

Proposed BM3D(Initial) BM3D(Final)

BM3D(Final)

Figure 8:The zoom in visual detail comparisons between Proposedaustith BM3D methods
corresponding to Figufd 7.
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