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Abstract

The wavelet frame systems have been widely investigated andapplied for image restoration and
many other image processing problems over the past decades,attributing to their good capabil-
ity of sparsely approximating piece-wise smooth functionssuch as images. Most wavelet frame
based models exploit thel1 norm of frame coefficients for a sparsity constraint in the past. The
authors in [50, 17] proposed anl0 minimization model, where thel0 norm of wavelet frame coeffi-
cients is penalized instead, and have demonstrated that significant improvements can be achieved
compared to the commonly usedl1 minimization model. Very recently, the authors in [11] pro-
posedl0-l2 minimization model, where the nonlocal prior of frame coefficients is incorporated.
This model proved to outperform the singlel0 minimization based model in terms of better re-
covered image quality. In this paper, we propose a truncatedl0-l2 minimization model which
combines sparsity, nonlocal and support prior of the frame coefficients. The extensive experi-
ments have shown that the recovery results from the proposedregularization method performs
better than existing state-of-the-art wavelet frame basedmethods, in terms of edge enhancement
and texture preserving performance.

Keywords: image restoration, wavelet frame, truncatedl0 minimization,l0 minimization,
nonlocal, iterative support detection

1. Introduction

Image restoration, including image denoising, deblurring, inpainting, etc., is one of the most
important fields in imaging sciences. Its main purpose is to enhance the quality of an observed
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image that is corrupted in various ways during the process ofimaging, acquisition and commu-
nication, and enable us to obtain a better and visually improved image. Image restoration tasks
are often formulated as solving a linear inverse problem:

f = Au + ǫ (1.1)

where f is the observed corrupted image,ǫ denotes the additive white Gaussian noise with vari-
anceσ2, the matrixA is a linear operator. Different image restoration problems corresponding
to different types ofA, e.g., an identity operator for image denoising, a projection operator for
inpainting, or a convolution operator for deconvolution, etc. Most image recovery tasks are ill-
posed inverse linear problems, which makes solving (1.1) becomes nontrivial. Therefore, proper
regularization techniques should be exploited to regularize the recovery process. Among them,
variational models and wavelet frame based methods are widely adopted.

The trend of variational models for image processing started from the popular Rudin-Osher-
Fatemi (ROF) model which penalizes the total variation (TV)norm of the image [40]. The ROF
model is effective for recovering images that are piece-wise constant,such as binary images.
However, it is well known that TV regularization often suffers from so-called stair-case effect.
In order to overcome this drawback, many other types of variational models have been further
proposed and we refer the readers to [5], [45], [1] and the references therein for more details.

In recent years, the sparsity-based prior based on wavelet frame has been playing a very
important role in the development of effective image recovery models. The key idea behind the
wavelet frame based image restoration models is that the interested image is compressible in
this transform domain. In other words, most important information of the interested image can
be preserved by using only few frame coefficients. Therefore, the regularized process can be
chosen by minimizing the functional that promotes the sparsity of the underlying solution in the
transform domain. One commonly utilized regularizer term for the wavelet frame based models
is thel1 norm of transform coefficients. The connection of wavelet frame based approaches with
variational and PDE based approaches is also studied in [4].Such connections explain the reason
why wavelet frame based approaches are often superior to some of the variational based models.
It is because the multiresolution structure and redundancyproperty of wavelet frames allow to
adaptively select proper differential operators according to the order of the singularity of the
underlying solutions for different regions of a given image.

There are several different wavelet frame based models in the literature including the synthe-
sis based approaches [16, 29, 30, 31, 32], the analysis basedapproach [6, 27, 43] and the bal-
anced based approach [7, 8, 9]. These approaches are generally different due to the redundancy
of wavelet frame systems. In other words, the mapping from imageu to its wavelet frame coef-
ficients is not one-to-one, i.e., the representation ofu in the wavelet frame domain is not unique.
However, what these models share in common is that they mostly penalize thel1 norm of the
wavelet frame coefficients one way or another for sparse representation. It is well known that the
l1 norm based approaches are capable of obtaining sparsest solution if the operatorA satisfies
certain conditions according to compressed sensing theories developed by Candes and Donoho
[13, 14, 15]. For image restoration tasks, unfortunately, the conditions are not necessarily sat-
isfied. Therefore, thel1 norm based models often achieves suboptimal performance. Recently,
Zhang et.al [50] proposed to penalized thel0 “norm” of wavelet frame coefficients instead, and
they developed an algorithm called penalty decomposition (PD) to solve the analysis approach
with l0 minimization. However, due to the non-convexity ofl0 “norm”, the computational cost of
PD method is a little bit high. Then, Dong et.al [17] developed a more efficient algorithm for this
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l0 minimization model, called mean doubly augmented lagrangian (MDAL) method. Numerical
experiments in [17] demonstrated that this analysis based approach based onl0 minimization can
obtain higher quality recovery than those counterparts based onl1 minimization.

In recent years, a class of nonlocal image recovery methods have drawn much attention. The
nonlocal approaches are built on the observation that imagestructures of small regions tend to
repeat themselves in spatial domain, which is suitable for exploiting the redundancy information
in natural images. They have shown to be very effective for texture recovery. There are two types
of nonlocal schemes developed to exploit such a nonlocal prior. One is the so-called nonlocal
means proposed by Buades et.al [3] for image denoising and has been extended to solve other
inverse problems in image processing tasks; see e.g., [36, 48, 20]. Another is the patch-based
method, where the nonlocal idea is combined with patch-dictionary methods, see [21, 22, 23,
37, 24] for more details. The performance of nonlocal based methods is impressive for image
restoration. However, since a large number of image patchesshould be clustered and sparsely
coded during the iteration, the computational burden is considerably high.

Very recently, Quan et.al [38] and Cai et.al [10] proposed a data-driven local or nonlocal
wavelet frame for image restoration. However, the computation costs of these methods are even
higher than some patch-based approaches, e.g., the MATLAB implementation of the algorithm
in [38] takes about 9 minute for a natural image with size 256× 256, on a normal laptop. Chen
et.al [11] proposed anl0-l2 minimization model to balance the computational time and recovery
quality. In their proposed model, nonlocal prior of the frame coefficients is incorporated in the
variational model, in terms of thel2 norm. It plays an important role of estimating the frame
coefficients that contain the textures and finer details of images.Numerical experiments have
demonstrated the effectiveness of the addedl2 regularization term.

Sharp edges are essentially helpful to make a recovered image visually clear. In our previ-
ous work [35], we proposed a wavelet frame based truncatedl1 minimization model for image
inpainting problem, where the support prior of frame coefficients is respected. This model can
generate a recovery image with much better enhanced edges than the counterpart based on sin-
gle l1 minimization orl0 minimization. Aiming at having the best of both edge enhanced and
texture preserved approaches, this paper proposed a truncated l0-l2 scheme which will allow
to simultaneously exploit three image priors: (i) sparsityprior of local intensity variations; (ii)
self-repetition prior of local image structures in spatialdomain; (iii) the nonzero/support prior
of frame coefficients in the domain of wavelet frame transform. The main research motivation
is to better preserve sharp edges. The main differences between our proposed method and most
existing wavelet frame based image restoration approachesare briefly summarized as follows:

• In contrast to wavelet frame basedl1 or l0 minimization model [6, 17], where only sparsity
prior is utilized, the addedl2 regularizer term exploits the self-recurrence prior of local im-
age structures in spatial domain [5], i.e., the nonlocal prior is also incorporated. Therefore,
the textures and tiny details can be preserved well in the restored image.

• Different with the truncatedl1 minimization model proposed for image inpainting problem
in our previous work [35]. The new truncatedl0 minimization model is proposed and the
corresponding efficient algorithm is developed here. In addition, the nonlocal prior of
frame coefficients is added for the purpose of better preserving important image details.

• Different with thel0-l2 minimization model proposed in [11], where both sparsity prior
and nonlocal prior are exploited, the support prior of framecoefficients is also respected
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in our developed truncatedl0-l2 minimization model, leading to significantly better edge
preserving performance.

The rest of this paper is organized as follows. In the next section, we first give a brief
review of wavelet tight frames. Then we further revisit the current wavelet frame based image
recovery models using either the singlel1 or l0 regularization term [6, 17], and the combinedl0-l2
minimization model [11]. In section 3, we propose a new wavelet frame based image recovery
model utilizing the truncatedl0-l2 regularizer and develop a corresponding efficient algorithm in
the spirit of iterative support detection. Section 4 is devoted to the experimental evaluation of
the proposed image restoration method. We compare it with several state-of-art methods such
as the split bregman method for solving the wavelet frame based l1 minimization model [6], the
MDAL method for solving thel0 regularization model [17], the algorithm proposed in [11] for
l0-l2 regularizer, and the famous Iterative Decoupled Deblurring BM3D (IDD-BM3D) algorithm
[18, 19]. Section 5 is devoted to the conclusion of this paperand discussions on some possible
future work.

2. Preliminaries and Previous works

2.1. Tight wavelet frames and wavelet frame based image processing methods
In this section, we briefly introduce some preliminaries of tight wavelet frames, and then

revisit some of the current typical wavelet frame based image restoration models and the cor-
responding efficient algorithms. We refer the interested readers to [39, 26, 42, 25] for further
detailed introduction of wavelet frame and its applications.

Tight wavelet frame are widely utilized in image processing. One wavelet frame forL2(R) is
a system generated by the shifts and dilations of a finite set of generatorsΨ = {Ψ1,Ψ1, . . . ,Ψn} ⊂
L2(R):

X(Ψ) = {Ψl, j,k, 1 ≤ l, j ∈ Z, k ∈ Z}
whereΨl, j,k = 2j/2Ψl(2j · −k). Such setX(Ψ) is called tight frame ofL2(R) if

f =
∑

ψ∈Ψ
< f , ψ > ψ,∀ f ∈ L2(R).

The construction of framelets can be obtained according to the unitary extension principle (UEP).
We refer the readers to [25, 12] for more details. Following the common experiment implemen-
tations, the linear B-spline framelet is used by considering the balance of the quality and time.
The linear B-spline framelet has two generators and the associated masks{h0, h1, h2} are

h0 =
1
4

[1, 2, 1]; h1 =

√
2

4
[1, 0,−1]; h2 =

1
4

[−1, 2,−1].

Given the 1D tight wavelet frame, the framelets forL2(R2) can be easily constructed by using
tensors products of 1D framelets.

In the discrete setting, we will useW ∈ R
m×n with m ≥ n to denote the transform matrix

of framelet decomposition and useWT to denote the fast reconstruction. Then according to the
unitary extension principle we haveWT W = I. The matrixW is called the analysis (decomposi-
tion) operator, and its transposeWT is called the synthesis (reconstruction) operator. TheL-level
framelet decomposition ofu will be further denoted as:

Wu = (. . . ,Wl, ju, . . .) for 0 ≤ 1 ≤ L − 1, j ∈ I
4



whereI denotes the index set of the framelet bands andWl, ju ∈ Rn is the wavelet frame coeffi-
cients ofu in bandsj at levell. The frame coefficientsWl, ju can be constructed from the masks
associated with the framelets. We consider theL-Level undecimal wavelet tight frame system
without the down-sampling and up-sampling operators here.Let h0 denote the mask associated
with the scaling function and{h1, h2, . . . , hn} denote the masks associated with other framelets.
Denote

h(l)
j = h0 ∗ h0 ∗ · · · h0
︸            ︷︷            ︸

l−1

∗h j (2.2)

where∗ denotes the discrete convolution operator. ThenWl, j corresponds to the Toeplitz-plus-
Hankel matrix that represents the convolution operatorh(l)

j under Neumann boundary condition.

2.2. The single l1 and l0 minimization model

Due to the redundancy of the wavelet frame systems (WWT
, I), there are several different

wavelet frame based models. These models mostly penalize the l1 norm of the wavelet frame
coefficients one way or another for sparsity constraint. Detaileddescription of these different
models can be found in [25, 44]. Numerical experiments in [25] demonstrated that the quality
of the restored images by these models is approximately comparable. In this paper, we only
consider the following analysis based approach:

min
u

1
2
||Au − f ||22 + ||λ ·Wu||1,p (2.3)

wherep = 1 or p = 2 corresponds to anisotropicℓ1 norm and isotropicℓ1 norm, respectively.
The generalizedℓ1-norm here is defined as

||λ ·Wu||1,p = ||
L−1∑

l=0





∑

j∈I
λl, j|Wl, ju|p





1/p

||1 (2.4)

where| · |p and (·)
1
p are entrywise operations. If lettingα = Wu and substitute it into (2.3), we

can get the rewritten form of (2.3) as follows

min
u,α

1
2
||Au − f ||22 + ||λ · α||1,p s.t. α = Wu. (2.5)

As mentioned above, most of the frame based models exploit the l1-norm of frame coeffi-
cients as the sparsity regularizer, and can be efficiently solved via lots of off-the-shelf methods,
such as the famous split bregman method or alternating direction multipliers method [6, 34, 28,
2]. Recently,lp quasi-norm (0≤ p ≤ 1) regularization was further investigated to recover the
image with more sharped edges. The authors in [50] proposed to use thel0 “norm” instead of the
l1 norm in the analysis model:

min
u

1
2
||Au − f ||22 + λi||(Wu)i||0 (2.6)

where the multi-indexi is used here and (Wu)i (similar for λi ) denotes the value ofWu at a
given pixel location within a certain level and band of wavelet frame transform.λi is the positive
regularization parameter. Thel0 “norm” is defined to be the number of the non-zero elements of
Wu. Note that its proximity operator can be easily computed by the hard-thresholding operator.
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An algorithm called PD method was proposed to solve the abovel0 minimization problem
in [50]. Recently, a more efficient algorithm, called MDAL method is developed for solving the
same problem in literature [17]. It can be seen as an extension of the augmented Lagrangian
(DAL) method [41, 49] to handle the non-convex regularizer such asl0 minimization. Letting
α = Wu and substituting it into (2.6), ones can obtain a constrained form:

min
u

1
2
||Au − f ||22 + λi||(α)i||0, s.t. α = Wu (2.7)

Then, the DAL method can be formulated as






uk+1 = arg minu
1
2 ||Au − f ||22 +

µ

2 ||Wu − αk + bk ||22 +
γ

2 ||u − uk||22
αk+1 = arg minα ||λ · α|| + µ

2 ||α − (Wuk+1 + bk)||22 +
γ

2 ||α − αk ||22
bk+1 = bk +Wuk+1 − αk+1

(2.8)

whereµ > 0 is a penalty parameter, and the parameterγ > 0 controls the regularity of the
iterative sequence.

Although it seems to be reasonable to apply the DAL algorithm(2.8) to solve thel0 min-
imization problem, the numerical experiments in [17] demonstrate that the iteration sequence
generated via (2.8) may be unstable or at least the convergence speed is quite slow. Therefore,
the authors in [17] utilized the arithmetic means of the solution sequence, denoted by

ūk =
1

k + 1

k∑

j=0

uk; ᾱk =
1

k + 1

k∑

j=0

αk. (2.9)

as the final output instead of the sequence (uk, αk) itself. The authors called this algorithm mean
doubly augmented Lagrangian (MDAL) method. Numerical experiments show that the sequence
(ūk, ᾱk) generated by the MDAL method is really convergent, and boththe convergence speed
and the quality of recovery are superior to the PD method [50].

2.3. The combined l0-l2 minimization model

Note that the wavelet frame coefficients can be obtained via the discrete convolution operator
such as the definition in (2.2), which implies the fact that they represent the results of differ-
ent types of finite-difference operators defined in the neighborhood. Therefore, inspired by the
previous work [22, 23], the authors in [11] proposed a nonlocal estimation method of the frame
coefficients.

The frame coefficient of imageu in band j at levell, is denoted asαl, j = Wl, ju. Assume that
the coefficientαl, j is generated by convoluting the imageu with the operatorh(l)

j defined in (2.2).
It is well known that the convolution is performed in the local image regions. Therefore, for any
pixel indexesp andq, the neighborhoods around the pixelsp andq of the image are similar, and
we have that

αl, j(p) ≈ αl, j(q) (2.10)

The relationship in (2.10) means that the similarity of two frame coefficients can be measured by
the similarity of the corresponding image patches. Hence one frame coefficient corresponding to
a given patch can be approximately estimated by the frame coefficients obtained by the similar
patches.

6



Denote the image patch centered at the pixelp asup, which is defined asup = {uq, q ∈ N(p)}.
HereN(p) denotes a neighborhood at the pixelp. Then from the collection ofm similar patches
{up1

, up2
, . . . , upm

}, the nonlocal estimation of frame coefficientsαl, j(p) can be obtained by

βl, j(p) =
m∑

i=1

ωiαl, j(pi) (2.11)

wherewi is the weight based on patch similarity. Similarly to the nonlocal means method [3],
the weight is inversely proportional to the distance between the patchesup andupi

wi =
1
C

exp(−||up − upi
||22/h) (2.12)

whereh is the filtering parameter andC is the normalizing factor.
Therefore, combining the sparse prior and nonlocal estimation of the frame coefficients, the

authors in [11] proposed the wavelet frame basedl0-l2 minimization image restoration model

min
u,β

1
2
||Au − f ||22 + λi||(Wu)i||0 +

ν

2
||Wu − β||22 (2.13)

whereβ = [βl, j]0≤l≤L−1, j∈I denotes the nonlocal estimation ofWu. In this combinedl0-l2 model,
the second regularization term plays the role of recoveringboth the smoothness of homogeneous
regions and the sharpness of edges, the third regularization term related to the nonlocal estimator
is utilized to preserve the coefficients that contain textures and finer details. The variablesu and
β are updated alternatively. When the value ofβ is fixed, the minimization problem (2.13) can
be rewritten as a constrained optimization problem as follows:

min
u,α

1
2
||Au − f ||22 + λi||(Wu)i||0 +

ν

2
||α − β||22, s.t. α = Wu (2.14)

Similar to the MDAL method applied to the singlel0 optimization problem, the DAL method
applied to (2.14) is reformulated as follows:






uk+1 = arg minu
1
2 ||Au − f ||22 +

µ

2 ||Wu − αk + bk||22 +
γ

2 ||u − uk ||22
αk+1 = arg minα ||λ · α|| + ν

2 ||α − β||22 +
µ

2 ||α − (Wuk+1 + bk)||22 +
γ

2 ||α − αk ||22
bk+1 = bk +Wuk+1 − αk+1

(2.15)

It is easy to show that each of the subproblems of (2.15) has a closed form solution





uk+1 = (AT + (µ + γ)I)−1(AT f + γuk + µWT (αk − bk))
αk+1 = Hλ,ν,µ,γ(β,Wuk+1 + bk, αk)
bk+1 = bk +Wuk+1 − αk+1

(2.16)

where the operatorH is a generalized component-wisely hard-threhsolding operator defined as
follows:

(Hλ,ν,µ,γ(x, y, z))i =






0, if | νxi+µyi+γzi

ν+µ+γ
| < 2λi

ν+µ+γ
νxi+µyi+γzi

ν+µ+γ
, otherwise

(2.17)

When theu is fixed, the update ofβ relies on the frame coefficientsα = Wu. If we use the current
estimateαk to approximateα, the estimation ofβ at the (k + 1)-th iteration can be updated via
the following formula:

βl, j(p) =
m∑

i=1

ωiα
k
l, j(pi) (2.18)
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As for the initialization of nonlocal estimationβ, the authors first use the standard Tikhonov
regularization method to obtain an initial image ˆu, then the similarity weight can be obtained
according to ˆu, and finally the initial estimationβ0 is computed by

β0
l, j(p) =

m∑

i=1

ωiWl, jû(pi) (2.19)

The arithmetic means of the sequence (uk, αk) are treated as the actual output of the algorithm,
which is the same as the strategy (9). So we call it as non-local mean doubly augmented La-
grangian method (Non-local MDAL) in the section of numerical experiments.

3. Our Proposed Model and Algorithm

3.1. Genesis of the idea

The main idea of our developed model in this paper comes from our proposed iterative sup-
port detection (ISD) for sparse signal recovery in compressive sensing [46]. To make the paper
self-contained, we first briefly revisit the idea of ISD. Compressive sensing reconstructs a un-
derlying sparse signal from a small set of linear projections. Let x̄ denote ak-sparse signal and
b = Ax̄ represent a set ofm linear projections of ¯x. The optimization problem

(l0) min
x
||x||0 s.t. Ax = b. (3.20)

where||x||0 is defined as the number of nonzero components ofx, can exactly reconstruct ¯x from
O(k) random projections. However, because||x||0 is nonconvex and combinatorial, it is really a
challenging task to solve thisl0 minimization optimization problem. A general alternativeis the
Basis Pursuit (BP) problem

(BP/l1) min
x
||x||1 s.t. Ax = b. (3.21)

Unlike the BP problem which is a one-stage convex relaxationmethod, ISD is a multi-stage
convex relaxation method, alternatively calling its two components: support detection and signal
reconstruction. ISD starts from solving a standard BP problem. If the BP model returns a correct
sparse solution, things are fine and ISD stops there. Otherwise, from the incorrect reconstruction,
support detection will be performed to identify an index setI, which contain some elements of
supp(x̄) = {i : x̄i , 0}. After the acquiring of detected support information, the corresponding
expected nonzero elements will be truncated from theℓ1 regularization term and the resulted
model is as follows

(Truncated BP/l1) min
x
||xT ||1 s.t. Ax = b. (3.22)

whereT = IC and||xT ||1 =
∑

i<I |xi|. Those entries of supp( ¯x) in I will help (3.22) reconstruct a
better solution compared to (3.21). From this better solution, support detection will be able to
identify more entries of supp( ¯x) and then yield an even betterI. In this way, the two components
of ISD work together to gradually recover supp( ¯x) and improve the reconstruction result.

Intuitively, the truncatedl0 model is similar in the spirit of above truncatedl1 minimization
model, after the acquiring of reliable support detection. The corresponding elements should be
not forced to move closer to 0 and therefore we move it out fromthe regularization term. In fact,
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once the nonzero locations are identified, their influence isdownweighted in order to allow the
true nonzero components should not be shrunk. Therefore, the corresponding elements can also
be truncated from the originall0 regularization term in the same way. The resulted truncatedl0
model is

(Truncated l0) min
x
||xT ||0 s.t. Ax = b. (3.23)

wherexT is the truncated subvector ofx, and||xT ||0 is defined to be the number of the non-zero
elements ofxT .

In most cases, the true signal ¯x itself is not sparse or compressible. However, its represen-
tation under a certain basis, frame, or dictionary can be sparse or compressible. In such a case,
assuming that ¯y = Wx̄ is sparse or compressible for a certain linear transformW, one should
minimize ||Wx||1 and||(Wx)T ||1 as a substitute respectively, instead of minimizing||x||1 and||x||T .

From the inexact intermediate reconstruction, ISD tries toobtain a reliable support detec-
tion, which can be able to take advantages of the features andprior information about the true
signal x̄. The authors in [46] focus on the sparse or compressible signals with elements having
a fast decaying distribution of nonzeros. For these kinds ofsignals, they proposed to perform
the support detection by thresholding the solution of (3.22), and called the corresponding sup-
port detection methodthreshold-ISD. We emphasize that the fast decaying property is a mild
assumption because in fact most natural images satisfy thisproperty in an appropriate basis, for
instance, wavelets, curvelets and wavelet frames et al. In addition, it should be pointed out that
the fast decaying property is not even necessary if the structure information of the underlying
solution is exploited, and we refer the interested readers to [33] for more details.

3.2. Wavelet frame based truncated l0-l2 image restoration model

In the above section, we have briefly reviewed some typical wavelet frame based image
restoration models and their corresponding efficient algorithms. The singlel1 or l0 minimization
model utilizes the sparsity prior of local intensity variations, i.e., sparsity prior of the frame
coefficients. The combinedl0-l2 minimization model further exploits self-repetition prior of
local image structures in spatial domain, i.e., the nonlocal prior of the frame coefficients. In this
paper, the support prior of the frame coefficients will be self-learning via ISD and be respected
with the aim to better preserve the sharp edges, and we propose the truncatedl0-l2 minimization
model and develop a corresponding efficient algorithm, which allow the regularization model
simultaneously to exploit three important image priors: sparsity, nonlocal and support prior of
the frame coefficients in the transform domain of wavelet frame.

min
u,β

1
2
||Au − f ||22 + (λi)T ||((Wu)i)T ||0 +

ν

2
||Wu − β||22 (3.24)

where ((Wu)i)T is the truncated version of (Wu)i, and ||((Wu)i)T ||0 denotes the number of the
non-zero elements of ((Wu)i)T .

3.2.1. Component 1: Solving the truncated l0-l2 minimization problem
The equivalent constraint optimization problem of (3.24) is

min
u,β

1
2
||Au − f ||22 + (λi)T ||(αi)T ||0 +

ν

2
||α − β||22, s.t. α = Wu (3.25)

9



When theβ is fixed, the DAL method applied to (3.25) is formulated as






uk+1 = arg minu
1
2 ||Au − f ||22 +

µ

2 ||Wu − αk + bk ||22 +
γ

2 ||u − uk ||22
αk+1 = arg minα ||(λ · α)T || + ν

2 ||α − β||22 +
µ

2 ||α − (Wuk+1 + bk)||22 +
γ

2 ||α − αk ||22
bk+1 = bk +Wuk+1 − αk+1

(3.26)

Fortunately, each subproblem of (3.26) has a closed form solution. Specifically,

αk+1 = HT,λ,ν,µ,γ(β,Wuk+1 + bk, αk) (3.27)

where the operatorH is a generalized component-wisely selective hard-threhsolding operator
defined as follows:

(HT,λ,ν,µ,γ(x, y, z))i =






0, if i ∈ Tand| νxi+µyi+γzi

ν+µ+γ
| < 2λi

ν+µ+γ
νxi+µyi+γzi

ν+µ+γ
, otherwise

(3.28)

We can see that the above computation ofα is in fact a selective hard-threhsolding procedure.
It is known that the edges of an image should correspond to thelarge nonzero coefficients in the
domain of wavelet transform. Assuming that we can acquire the reliable large nonzero support
set, some components will not be shrunk if we believe that they are really nonzero elements via
this selective hard-threhsolding operator, leading to better edge-enhanced recovered image. As
a multi-stage refinement of the corresponding non-convexl0-l2 model, our proposed method is
expected to achieve an even better performance as long as thedetected support information is
reliable enough. Experiments confirmed the effectiveness of our proposed method.

When theu is fixed, the update ofβ relies on the frame coefficientsα = Wu, which is the
same as (2.18) and (2.19). In addition, the arithmetic meansof the solution sequence is used as
the final output.

3.2.2. Component 2: Truncation determination based on iterative support detection
In this part, we develop an effective support detection method for images with a fast decaying

distribution of coefficients under wavelet frame transform. The support detection is based on
thresholding, fors-th stage, the support indexes are obtained as follows:

I(s+1) := {i : |(Wu)i| > ǫ(s)} (3.29)

where s = 0, 1, 2, . . . and T = IC. It should be pointed out that support index sets are not
necessarily increasing or nested, i.e.,I(s) ⊂ I(s+1) may not hold for alls. This is very important
because the support index set we get from the recent intermediate solution may contains wrong
detections byǫ(s) thresholding. Not requiringI(s) to be monotonic leaves the chance for support
index set to remove previous wrong detections, and makesI(s) less sensitive toǫ(s). This wayǫ(s)

is easier to choose. Similarly to thethrehsold-ISD strategy in [46], we set

ǫ(s) := max{|(Wu)(s)
i |}/ρ

(s+1). (3.30)

with ρ > 0. An excessively largeρ results in too many false support detections and leads to low
solution quality, while an excessively smallρ tends to cause a large number of iterations. It will
be quite effective with an appropriateρ, though the proper range ofρ might be case-dependent.
Empirically, the performance of is not very sensitive to thechoice ofρ.
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3.2.3. The algorithmic framework for our proposed model
Now we summarize the overall algorithmic framework for our proposed truncatedl0-l2 model.

Algorithm 1 Wavelet frame based truncatedl0-l2 Image Restoration
Given an observed imagef and the convolution operatorA.
1. Initialization:

Set the initial support estimation as empty set, i.e.,I(1) = ∅.
2. Outer loop (support detection): iteration ons = 1, 2, . . . , S

(a) Update the support estimation viathreshold-ISD method (3.29).
(b) Inner loop (solving the truncatedl0-l2 model (3.24))

While the stopping condition is not satisfied, iterate onk = 1, 2, . . . ,K Do
(I) Image estimateuk+1 = (AT + (µ + γ)I)−1(AT f + γuk + µWT (αk − bk)).
(II) Computeαk+1 = HT,λ,ν,µ,γ(β,Wuk+1 + bk, αk) via (3.28).
(III) Updatebk+1 = bk +Wuk+1 − αk+1.
(IV) If mod(k, 2) = 0. Updateβl, j(p) =

∑m
i=1ωiα

k+1
l, j (pi) via (2.18).

End

It is easy to see that our proposed algorithm is a multi-satgeprocedure. Note that since
I(1) = ∅, the first iteration of outer loop, i.e., the first stage of Algorithm 1, reduces to the
standardl0-l2 model. We emphasize that the computational cost time of our proposed algorithm
is not necessary several times more than that of Non-local MDAL method, if the looser stopping
tolerance (except the final stage) and warm-starting strategy are adopted. Empirically, the best
recovered results can be achieved when the outer iteration number is 2 or 3 in most cases. In
this paper, the looser stopping strategy is not adopted for the purpose of better presenting the
intermediate recovery results. We mainly pay our attentionon the recovery quality and our
proposed algorithm performs much better than the corresponding single-stage method in this
aspect. However, the image quality is improved enough to be worth the extra computational
cost. In such cases, Algorithm 1 is often 2-3 times longer than Non-local MDAL method in our
experiments.

4. Numerical Experiments

In this section, we compare the proposed algorithm (shown asAlgorithm 1) with the PBOS
algorithm for the non-local TV model [48], the Split Bregmanalgorithm for thel1 minimization
problem [6], the MDAL method for thel0 minimization model [17] and the non-local MDAL
method for thel0-l2 minimization problem [11]. The specific image restoration task that we
consider is image deconvolution here, though other kinds oftasks can be considered in a similar
way. In the following experiments, four standard natural images (see Figure 1), which consist
of complex components in different scales and with different patterns, are used in our tests. The
intensity of a pixel of these test gray-scale images ranges from 0 to 255. We compare the quality
of the recoveries not only in terms of quantitative measurements (i.e., the increasing of PSNR
and SSIM values, defined in the following part), but also the visibly detailed improvements of the
restored images. All the experiments were performed under Windows 7 and MATLAB v7.10.0
(R2010a) running on a desktop with an Intel(R) Core(TM) i7-4790 CPU (3.60GHz) and 32GB
of memory.
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Figure 1:Original 4 test images (from the left to right: cameraman, boat, zebra1, zebra2, respectively).
Sizes of them are: 256× 256, 256× 256, 250× 167, 600× 431, respectively.

4.1. Experiments Settings and Choices of Parameters

The four blurred and noisy images in our tests are degraded asfollows. Since the periodic
boundary condition is used to generate the convolution operator in [6, 17, 11], we use the same
boundary condition to blur the test images. Four types of blurring kernels are used, type I:
fspecial (motion,10,20), type II: fspecial (gaussian,25,1.6), type III: 9× 9 uniform and type IV:
fspecial (motion,15,30). The blurred images are further corrupted by Gaussian noise with zero
mean and standard deviation ofσ = 3.0, 4.0 in kernel type I,σ =

√
2 in type II,σ =

√
0.3 in

type III,σ = 3.0, 4.0 in type IV, respectively.
In Figure 2, we show that the magnitude of sorted wavelet frame coefficients of the 4 tested

images has a fast decaying property, which demonstrates that the fast decaying condition under
wavelet frame transform is a mild assumption. The quality ofrecovered image is quantitatively
measured by means of the peak signal-to-noise ratio (PSNR) defined as

PSNR(u, u∗) = −20lg

{

||u − u∗||2
255N

}

(4.31)

whereu and u∗ denote the original and recovered images, respectively.N denotes the total
number of pixels in the imageu. In addition, we also use another image quality assessment:
Structural SIMilarity (SSIM) index between two images proposed in [47], which aims to be
more consistent with human eye perception. Besides, we choose the following stopping criterion
for all the wavelet frame based methods:

min

{

||uk − uk−1||2
||uk||2

,
||Auk − f ||2
|| f ||2

}

< 5× 10−4 (4.32)

According to the suggestion of [11], linear B-spline framelet is adopted for our experiments.
Considering that the framelet decomposition level to be 1 isa commonly desirable choice [11],
we fix it to be 1 (i.e.,L = 1) for all wavelet frame based methods, for fair comparison.For all the
cases, we fix the penalty parameterµ = 0.05 for the split bregman method, and we fixµ = 0.01,
γ = 0.003 for the MDAL method. In addition, we select the best regularization parameterλ for
optimal image recoveries. For the Non-local MDAL method, based on the suggestion in [11], the
sizes of image patches and the searching window are fixed to be5× 5 and 11× 11 respectively,
for the computation of the nonlocal weights. The 15 nearest patches (i.e.,m = 15) are used for
the computation of the nonlocal prior. We fix the penalty parameterµ = 0.01 andγ = 0.003,
and the regularization parameterλ andν are selected for optimal PSNR and SSIM values. In
Figure 3, we show the PSNR and SSIM variation trends as the parametersλ andν vary. Here
for the conciseness of the paper, we only show the observations of test image cameraman, since
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Test image
Blur type Non-local TV [48] Split Bregman [6] MDAL [17] Non-local MDAL [11] Proposed Oracle
/Noise level PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Cameraman

Type I / σ = 3.0 27.48/0.8230 27.23/0.8414 28.38/0.8487 28.32/0.8568 28.85/0.8589 32.42/0.9228
Type I / σ = 4.0 26.67/0.7889 26.38/0.8200 26.93/0.8248 27.43/0.8311 27.68/0.8327 30.06/0.8601
Type II / σ =

√
2 27.08/0.8543 27.03/0.8596 27.25/0.8655 27.49/0.8684 27.62/0.8695 33.64/0.9243

Type III / σ =
√

0.3 28.21/0.8733 27.91/0.8669 28.85/0.8875 28.87/0.8864 29.60/0.8929 33.26/0.9121
Type IV / σ = 3.0 26.69/0.7826 26.42/0.8147 27.61/0.8289 27.48/0.8317 28.03/0.8349 31.91/0.9149
Type IV / σ = 4.0 25.90/0.7416 25.63/0.7966 26.44/0.8003 26.73/0.8066 27.10/0.8091 29.61/0.8473

Boat

Type I / σ = 3.0 27.67/0.8168 27.43/0.8137 28.26/0.8305 28.40/0.8375 28.59/0.8394 32.40/0.9243
Type I / σ = 4.0 26.93/0.7848 26.65/0.7869 27.12/0.7991 27.51/0.8096 27.64/0.8115 29.88/0.8892
Type II / σ =

√
2 27.93/0.8399 28.02/0.8390 28.09/0.8501 28.34/0.8501 28.43/0.8512 33.46/0.9220

Type III / σ =
√

0.3 28.89/0.8563 28.27/0.8401 29.26/0.8684 29.29/0.8704 29.87/0.8776 32.33/0.8956
Type IV / σ = 3.0 26.80/0.7725 26.58/0.7663 27.35/0.7952 27.44/0.7992 27.73/0.8043 31.71/0.9121
Type IV / σ = 4.0 25.96/0.7361 25.73/0.7383 26.43/0.7557 26.67/0.7672 26.82/0.7709 29.33/0.8824

Zebra1

Type I / σ = 3.0 25.75/0.8243 24.53/0.8048 25.85/0.8317 26.14/0.8353 26.94/0.8410 30.15/0.9206
Type I / σ = 4.0 24.71/0.7942 23.60/0.7684 24.73/0.7996 25.25/0.8088 25.67/0.8122 27.58/0.8900
Type II / σ =

√
2 25.42/0.8313 25.58/0.8307 25.45/0.8230 25.85/0.8327 26.05/0.8337 30.58/0.9074

Type III / σ =
√

0.3 26.05/0.8298 25.09/0.8185 25.89/0.8299 25.76/0.8233 26.46/0.8348 28.36/0.8882
Type IV / σ = 3.0 24.25/0.7478 23.55/0.7389 24.71/0.7705 24.80/0.7699 25.63/0.7806 29.33/0.8923
Type IV / σ = 4.0 23.16/0.7111 22.77/0.7042 23.87/0.7358 24.11/0.7419 24.69/0.7501 26.96/0.8633

Zebra2

Type I / σ = 3.0 27.67/0.8008 27.16/0.8114 28.56/0.8250 28.58/0.8287 29.19/0.8363 32.37/0.8991
Type I / σ = 4.0 26.66/0.7696 26.25/0.7851 27.51/0.7973 27.80/0.8027 28.12/0.8034 30.29/0.8717
Type II / σ =

√
2 29.79/0.8758 30.00/0.8757 29.34/0.8705 30.28/0.8780 30.26/0.8771 33.69/0.9020

Type III / σ =
√

0.3 28.37/0.8381 27.22/0.8132 28.37/0.8403 28.41/0.8445 29.33/0.8518 32.23/0.8702
Type IV / σ = 3.0 26.15/0.7633 27.25/0.7720 27.25/0.7948 27.06/0.7966 27.94/0.8017 31.51/0.8828
Type IV / σ = 4.0 25.21/0.7256 24.96/0.7481 26.24/0.7660 26.36/0.7708 26.92/0.7736 29.64/0.8606
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Test image
Blur type IDD-BM3D: Initial [18] IDD-BM3D: Final [19] Proposed
/Noise level PSNR/SSIM PSNR/SSIM/(Time) PSNR/SSIM/(Time)

Cameraman
Type II / σ =

√
2 27.46/0.8415 28.18/0.8681/(86.46) 27.62/0.8694 /(63.97)

Type IV / σ = 3.0 27.19/0.8131 28.60/0.8451 /(85.61) 27.91/0.8350/(63.65)
Type IV / σ = 4.0 26.40/0.7944 27.47/0.8254 /(85.63) 27.04/0.8091/(72.03)

Zebra1
Type II / σ =

√
2 25.78/0.8097 26.12/0.8384 /(61.45) 26.00/0.8335/(35.89)

Type IV / σ = 3.0 24.64/0.7112 25.64/0.7729/(67.44) 25.50/0.7791 /(54.01)
Type IV / σ = 4.0 23.94/0.6840 24.72/0.7356/(67.97) 24.63/0.7494 /(58.36)

Table 2: Performance comparison of the proposed method withBM3D [18, 19]. The given
values are PSNR (dB)/SSIM/CPU time (second). Bold values denote the highest PSNR or
SSIM values.
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Figure 2:The sorted magnitudes of the wavelet frame coefficients of the 4 test images have the property
of fast decaying property.

the other cases have the similar conclusions. For our proposed Algorithm 1, for simplicity, the
parameters are set to be the same as Non-local MDAL method. Inaddition, we setρ = 3 in
(3.30). Empirically, the performance of the proposed algorithm is unsensitive to the settings of
these parameters. We believe our comparison will be fair under these specific settings.

In what follows, we also show the oracle recovered results ofour proposed algorithm, i.e.,
the support estimation in (3.29) is based on the underlying true image. Clearly, this case is not
possible in practice. However, it demonstrates the advantage by exploiting the support prior of
frame coefficients, which serves as a benchmark and chalks out a path for us to explore: serving
as an ideal golden upper bound of the performance of support detection based methods.

4.2. Results and discussions

In this subsection, we report the experiments results, comparing the proposed algorithm with
the PBOS algorithm for the nonlocal TV model, the Split Bregman method for the wavelet frame
basedl1 minimization model, MDAL method for thel0 model, Nonlocal MDAL method for the
l0-l2 model, and the famous IDD-BM3D algorithm.

First of all, in Table 1, we summarize the results of the five algorithms for all the test images
with different blur kernels and noise levels. Note that the PBOS algorithm for the nonlocal TV
model can not satisfy the stopping criterion based on the error between two successive iteration
values such as||uk+1 − uk||2/||uk||2 < 5 × 10−4 for many iterations, hence the stopping criterion
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Figure 3:The PSNR and SSIM values of Non-local MDAL method with the parametersλ andν vary.
The first column and second column correspond to the recoveryresults of blur kernel Type I with noise
levelσ = 3.0. The third column and fourth column correspond to the recovery results of blur kernel Type
II with noise levelσ =

√
2. Test image: cameraman.

of ||Kuk − f ||2 < σ adopted [48] is also used here, i.e., the iterative process stops if either of
the two criterions is satisfied. We can observe that our proposed algorithm has an overall better
performance than the other methods in terms of both PSNR and SSIM values.

In Figure 4, we present the recovery results of the intermediate stages of our proposed algo-
rithm. Due to the page limit, we just choose to show the results of the test image cameraman
here, since the other cases have the similar conclusions. Recall that the first stage of our pro-
posed algorithm is to run the Non-local MDAL method, and we can observe that our proposed
algorithm can bring gradual improvements as the support detection proceeds. Empirically, our
proposed algorithm achieves the best final results when the maximum stage number is only 2 or
3 in most cases.

In what follows, we further analyze the advantage of the proposed algorithm through the vi-
sual comparisons between different methods. We choose the test images cameraman and zebra1
here, and the images are convoluted by blur type IV and contaminated by noise withσ = 4.0.
We can observe that the proposed algorithm has the potentialto recover the edge regions and
textures simultaneously. In addition, in order to make the visual comparisons more clear, we
give the close-up details (zoom-ins) of recovery results displayed in Figure 5, and in Figure 6,
respectively. It can be observed that our proposed algorithm brings significant visual enhance-
ments in the sharp edges of the recovery images compared to the other methods, e.g., the tripod
of the cameraman image and the stipes of the zebra1 image.

Finally, we compare the proposed algorithm with the nonlocal patch-based image deblurring
IDD-BM3D algorithm [19], which is one of the state-of-the-art method in this field. To guaran-
tee the performance of IDD-BM3D algorithm, the two-satge approach BM3DDEB [18] is used
as an initial estimation. Two blur types are consider here. One is the blur type II with noise
σ =

√
2, and the other is blur type IV with noiseσ = 3.0, 4.0, respectively. In Table 2, we list

the PSNR and SSIM values of the recovery results of different algorithms. In Figure 7, we give
the visual comparisons between our proposed algorithm and the IDD-BM3D algorithm. As can
be seen from both the Table 2 and visual restored results, therecovery quality of our proposed
algorithm is approximately comparable with IDD-BM3D algorithm. Specifically, our proposed
method outperform the IDD-BM3D algorithm in some cases in terms of better SSIM values,
which is more consistent with human eye perception. To make the comparison more clear, in
Figure 8, we also display the zoom in views corresponding to Figure 7. we can observe that our
proposed method tends to generate more sharper image edges than the IDD-BM3D algorithm.
The excellent edge preservation owes to the implement of support prior of the frame coefficients.
In addition, as can be seen from the Table 2, the CPU time of ourproposed method is less than
the IDD-BM3D algorithm. We emphasize that the code of the IDD-BM3D algorithm is available
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at http://www.cs.tut.fi/∼foi/GCF-BM3D/BM3D.zip. The computationally most intensive parts
have been written in C++ due to the high computational complex, while all the parts ofour algo-
rithm are written in MATLAB language. Therefore, compared with the IDD-BM3D algorithm,
our proposed method is computationally more efficient in this aspect.

5. Conclusions and possible future work

In this paper, we propose a new wavelet frame based image restoration model (3.24) which
exploits the sparsity, nonlocal and support prior of frame coefficients simultaneously. In the
proposed model, the penalization of thel2 norm plays the role of preserving the coefficients that
contain textures and finer details, and the penalization of truncatedl0 “norm” is used to recover
the smoothness of homogeneous regions and sharp edges. Better sharpening of the edges in the
recovered results is observed compared with the corresponding l0 “norm” based alternatives. The
corresponding algorithm is a multi-stage process consisting of solving a series of truncatedl0-l2
minimization problem. The proposed method can bring significant enhancements at the sharp
edges of the restored images, since the large wavelet frame coefficients reflect the singularities
of the underlying true solution and are not been shrunk. The key component of our proposed
method is the reliable support detection, and therefore thenext step along this line of research is
to develop more effective support detection methods.
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Blurry and Noisy image 1st stage,PSNR: 28.32dB,SSIM: 0.8568 2nd stage,PSNR: 28.77dB,SSIM: 0.8591 3rd stage,PSNR: 28.85dB,SSIM: 0.8589

Blurry and Noisy image 1st stage,PSNR: 27.43dB,SSIM: 0.8311 2nd stage,PSNR: 27.69dB,SSIM: 0.8327 3rd stage,PSNR: 27.71dB,SSIM: 0.8301

Blurry and Noisy image 1st stage,PSNR: 27.49dB,SSIM: 0.8684 2nd stage,PSNR: 27.62dB,SSIM: 0.8694 3rd stage,PSNR: 27.62dB,SSIM: 0.8695

Blurry and Noisy image 1st stage,PSNR: 28.87dB,SSIM: 0.8864 2nd stage,PSNR: 29.38dB,SSIM: 0.8912 3rd stage,PSNR: 29.60dB,SSIM: 0.8929

Blurry and Noisy image 1st stage,PSNR: 27.48dB,SSIM: 0.8317 2nd stage,PSNR: 27.91dB,SSIM: 0.8350 3rd stage,PSNR: 28.03dB,SSIM: 0.8349

Blurry and Noisy image 1st stage,PSNR: 26.73dB,SSIM: 0.8066 2nd stage,PSNR: 27.04dB,SSIM: 0.8091 3rd stage,PSNR: 27.10dB,SSIM: 0.8072

Figure 4:The intermediate stage results of proposed algorithm. Where the first to fourth columns are
corresponding to the blurry and noisy image, the results of first stage, second stage and third stage,
respectively.
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Original Blurry and Noisy image Non−local TV,PSNR: 25.72dB,SSIM: 0.7427 Split Bregman,PSNR: 25.63dB,SSIM: 0.7966

MDAL,PSNR: 26.44dB,SSIM: 0.8003 Non−local MDAL,PSNR: 26.73dB,SSIM: 0.8066 Proposed,PSNR: 27.10dB,SSIM: 0.8072 Oracle,PSNR: 29.69dB,SSIM: 0.8504

Original Blurry and Noisy image Non−local TV,PSNR: 23.35dB,SSIM: 0.7105 Split Bregman,PSNR: 22.77dB,SSIM: 0.7042

MDAL,PSNR: 23.87dB,SSIM: 0.7358 Non−local MDAL,PSNR: 24.11dB,SSIM: 0.7419 Proposed,PSNR: 24.50dB,SSIM: 0.7442 Oracle,PSNR: 26.96dB,SSIM: 0.8633

Figure 5:The visual comparison between different methods. From the left to right and up to down: the
original image, the blurry and noisy image (blur kernel TypeIV with noise levelσ = 4.0), recovered
results by Non-local TV method [48], Split Bregman method [6], MDAL method [17], Non-local MDAL
method [11], Proposed method, Oracle method, respectively.
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Non−local TV Split Bregman MDAL

Non−local MDAL Proposed Oracle

Non−local TV Split Bregman MDAL

Non−local MDAL Proposed Oracle

Figure 6:The zoom in visual detail comparisons between different methods corresponding to Figure 5.
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Blurry and Noisy image Proposed,PSNR: 27.62dB,SSIM: 0.8694 BM3D(Initial),PSNR: 27.46dB,SSIM: 0.8415 BM3D(Final),PSNR: 28.18dB,SSIM: 0.8681

Blurry and Noisy image Proposed,PSNR: 26.00dB,SSIM: 0.8335 BM3D(Initial),PSNR: 25.78dB,SSIM: 0.8097 BM3D(Final),PSNR: 26.12dB,SSIM: 0.8384

Figure 7:The visual comparisons between proposed method with BM3D methods [18, 19]. The first
column to fourth column correspond to the blurry and noisy image (blur kernel Type II with noise level
σ =

√
2), recovered results of Proposed method, IDD-BM3D initialestimate, IDD-BM3D final estimate,

respectively.

Proposed BM3D(Initial) BM3D(Final)

Proposed BM3D(Initial) BM3D(Final)

Figure 8:The zoom in visual detail comparisons between Proposed method with BM3D methods
corresponding to Figure 7.
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