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Abstract

A fundamental task in criminal intelligence analysis is to analyze the similarity of crime cases, called comparative case analysis
(CCA), to identify common crime patterns and to reason about unsolved crimes. Typically, the data are complex and high
dimensional and the use of complex analytical processes would be appropriate. State-of-the-art CCA tools lack flexibility in
interactive data exploration and fall short of computational transparency in terms of revealing alternative methods and results.
In this paper, we report on the design of the Concept Explorer, a flexible, transparent and interactive CCA system. During
this design process, we observed that most criminal analysts are not able to understand the underlying complex technical
processes, which decrease the users’ trust in the results and hence a reluctance to use the tool. Our CCA solution implements
a computational pipeline together with a visual platform that allows the analysts to interact with each stage of the analysis
process and to validate the result. The proposed visual analytics workflow iteratively supports the interpretation of the results
of clustering with the respective feature relations, the development of alternative models, as well as cluster verification. The
visualizations offer an understandable and usable way for the analyst to provide feedback to the system and to observe the
impact of their interactions. Expert feedback confirmed that our user-centered design decisions made this computational
complexity less scary to criminal analysts.

Keywords Crime intelligence analysis · Visual analytics · Clustering · System design · Human–computer interaction ·
Sequential pattern mining · Text analysis · Dimensionality reduction

1 Introduction

Comparative case analysis (CCA), also called similar fact
analysis (SFA) [26] is an important tool for criminal inves-
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tigation and crime theory extraction [25]. Given a collection
of crime reports, the idea is to analyze the commonalities
between crime cases in order to support reasoning and deci-
sion making. For example, examining solved crimes that have
similar characteristics as an unsolved crime may help the
analyst generate a new hypothesis during a criminal investi-
gation, and understanding the uneven distribution of crimes
in terms of spaces, types of offenders and victims may help
the police to allocate police resources more effectively [9].
The latter lies in the responsibility of a Tactical Analyst (TA)
who examines sets of crimes periodically to find new trends.
CCA starts with the extraction of relevant headings (features)
that are considered to be useful for the understanding of the
crime cases. Information is then collated under the headings,
resulting in a CCA table where each row is a crime case. As
well as common headings such as day of week or time of day,
the main focus is on extracting concepts from free text fields
such as the modus operandi (MO) (see Fig. 1). Manually
analyzing an excessive number of such crime cases (extract-
ing and analyzing the relevant information for each crime)
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Fig. 1 A typical modus operandi (MO) of a burglary crime report. The
extracted terms are underlined

is a tedious and complex task for criminal analysts. General
purpose analysis tools (e.g., IBM I2 [17], Jigsaw [33]) and
existing analysis approaches from text or high-dimensional
data analysis (e.g., Ruppert et al. [27] and Jäckle et al. [18])
can be applied to criminal intelligence analysis. However,
most of the work does not allow the analyst to develop
and validate computational alternatives (transparency of the
results) and does not allow the user to form the familiar struc-
tured CCA tables. In many real-world data analysis scenarios,
it is necessary to iteratively improve, adapt and combine a set
of analysis methods to solve the analysis task. This results
in complex pipelines that need to be analyzed from different
perspectives.

In this paper, we present our ongoing research on the
design of a visual comparative case analysis tool called
the Concept Explorer, which comprises several component
views (Fig. 2). The work is part of the EU-funded project
“Visual Analytics for Sense-making and Criminal Intelli-
gence Analysis (VALCRI)” [37]. The aim of the project is
to develop a visual analytics (VA) system to improve the
effectiveness of current criminal intelligence analysis solu-
tions. According to our police partners, traditionally CCA
is carried out manually on a spreadsheet. The task becomes
increasingly difficult due to the growing volume and com-
plexity of today’s crime data. When introduced to automatic
analysis techniques, such as feature extraction and cluster-
ing, that could help with the analysis tasks, the analysts found
them “scary,” principally due to the lack of understanding of
the algorithms and the impossibility to examine alternatives.
In order to design a CCA tool that capitalizes on the machine
intelligence and at the same time provides sufficient level of
usability, we designed our system in close collaboration with
one police officer with an extensive analysis background,
and received feedback on a regular basis from several police
forces across Europe. The system design is based on a num-
ber of analytical tasks we derived through the discussion with
our end users, including:

Task 1. Understand Cluster Characteristics A major task
of CCA is to identify groups of crimes that have similar
patterns and to understand the key features that define their
main characteristics.

Task 2. Develop Alternative Clusterings The analyst needs
to be able create several alternative clustering results.

Task 3. Verify Cluster Robustness The analyst needs to verify
the robustness and stability of clustering result. This includes
examining changes of grouping caused by different feature
weightings (i.e., removing or adding features) as well as
checking if the clustering result is stable across different com-
putation methods.

Driven by these tasks, we designed a VA approach in a
user-driven design study with TAs and other domain experts.
The system instantiates the process model for interactive
dimensionality reduction (DR) proposed by Sacha et al. [30]
with the aim to provide an interactive visual platform for the
analyst to examine groups of similar crimes as well as their
main characteristics.

The main contribution of this paper is a comprehensive
and flexible criminal intelligence analysis tool that imple-
ments a hybrid analysis approach to interactively analyze
the data and feature space in parallel (Fig. 2). The sys-
tem takes free text fields of crime reports as input, extracts
key features from the reports using a series of NLP tech-
niques, calculates frequent sequences of the key features, and
allows the analyst to select features of interest and set their
weight/importance for similarity computation. The result is
displayed in a 2D data similarity space that can be clustered.
The features are displayed simultaneously in a similar fash-
ion allowing the exploration and interpretation of the feature
space. A table, inspired by the traditional spreadsheet table,
combines the two spaces and enables the TA to undertake a
CCA.

Additionally, we elaborate the design process that was car-
ried out over a period of 2 years and we are able to report
and subsequently reflect on four major design phases. Fig-
ure 3 depicts this system evolution with four instances of the
framework. Each step embeds the DR pipeline (bottom row)
in an iterative exploration process (right) with several ways
to provide interactive feedback to the underlying analytics
(top row).

The work is based on a previous short paper publica-
tion which described an intermediate state of our current
solution [28]. The work was published at the international
EuroVis workshop on visual analytics (EuroVA). The related
work in the next section highlights various related VA sys-
tems as well as systems specialized on criminal intelligence
analysis. Section 3 details four phases of the design process
showing the evolution of each component and ultimately the
whole system. We describe the current system in Sect. 4 and
explain how the components are embedded into the VALCRI
framework. Additionally, we present a use case, reflecting
on its use by TAs. Feedback from the experts on the cur-
rent system is reported in Sect. 4.2 and then lessons learned
during the design process are summarized in Sect. 5. Con-
clusions are drawn in Sect. 6 and future perspectives are
outlined.
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Fig. 2 Concept Explorer: a visual, interactive interface for comparative
case analysis. Crime cases and clusters are shown in the center within the
Crime Cluster Table (CCT). On the left-hand side, a hybrid analysis per-
spective on the data and feature space is provided: A two-dimensional
embedding of the crime similarities and the clustering is shown in the
Similarity Space Selector (S3). Another two-dimensional embedding
of the feature similarities based on the shared crimes is shown in the

Sequence Similarity Space Selector (S4). The respective features are
also shown in the Pattern Selector (PS) on the right-hand side. Tracked
interactions and configurations are displayed in the Weight Observer
Component (WOC). All views are linked and allow criminal analysts
to develop and verify alternative clusterings from different tightly inte-
grated perspectives

2 Related work

Our analysis approach combines many analytical techniques,
such as textual feature extraction, sequential pattern mining,
high-dimensional data analysis, and visual interactive clus-
tering applied to criminal intelligence analysis. We illustrate
these with examples.

2.1 Comparative case analysis

Comparative case analysis (CCA) is based on the notion of
comparison, which is a fundamental technique used by many
social science and scientific domains [8]. CCA starts with
processing the text to extract key features, followed by rea-
soning and sense making based on similarity comparison.
One challenge of CCA is to extract features. In the liter-
ature, this is a manual process as presented by Bennell et
al. [4] who manually extracted features from modus operandi
(MO) of 86 solved commercial burglaries committed by 43
serial offenders in order to compare the similarity between
burglary cases. The findings were used to examine whether
a high-degree of similarity between them enables different
cases to be validly linked to a common offender. This requires

a significant amount of work even with this relatively small
amount of data. Another challenge is the comparison. Given
a set of crimes, what to compare and how to compare has to
be decided by the analyst [26]. Work carried out by Canter et
al. [7] used the Jaccard coefficient to measure the proportion
of co-occurring features in crimes. The work also applied
multidimensional scaling on the data to investigate the con-
sistency of features across organized and disorganized cases.
The research revealed that disorganized features were either
easy to identify or occur more commonly, probably due to
their vast number compared to organized features. To the best
of our knowledge, no work has been reported on automatic
feature extraction, feature selection and weighting for CCA.

2.2 Automated feature extraction for CCA

For the feature generation, we use a custom framework
based on components from Stanford CoreNLP [23] and
Apache OpenNLP [1]. For characterization of concepts and
automated class assignments, two different resources, Word-
net [24] and Framenet [3] are used. Besides customized
retrieval and classification methods, the analytic parts are
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Fig. 3 The four phases of our design study. Each is represented by
an instantiation of the visual interactive dimensionality reduction (DR)
process described by Sacha et al. [30]. The pipelines show what core-
parts were modified and extended during the phases. The pipeline

delineates (from left to right) data (blue), pre-processing and feature
generation (turquoise), DR and clustering methods (green), and visual
interfaces (red). End user involvement increases as the project pro-
gresses

based upon state-of-the-art techniques as described by Man-
ning et al. [22] or Jurafsky and Martin [21].

For our system, we use a sequential pattern mining algo-
rithm to mine for frequent sequences of terms occurring in
the MO of the crime reports (see Fig. 1 for an example).
The problem was formally defined by Agrawal et al. [2]. In
order to avoid redundant patterns, we mine for a set of closed
sequential patterns [16,43]. We use a dimensionality reduc-
tion (DR) on the mined frequent patterns and visualize them
in a feature similarity space. Similarity measures for sequen-
tial patterns exist [31]; however, in order to be consistent
with the data similarity space, we use a binary feature vector
containing the crime reports where a bit is set to one if the
sequence occurs in that crime report.

2.3 Visual analytics for CCA

Automatic analysis methods such as feature extraction, pat-
tern mining, clustering and DR provide effective means
of analyzing large amount of crime data and extract pat-
terns in it. But visual analytics (VA) tools for supporting
CCA are scarce. Software systems such as IBM I2 [17] and
Jigsaw [33] were developed for the general purpose of crim-
inal intelligence analysis, but little work has been carried
out to improve on the manual CCA process. Jäckle et al.

proposed a projection-based approach [18] for analyzing
similarity between textual data items, but the approach does
not allow police officers to form the customary structured
tables. The Spherical Similarity Explorer system developed
by Zhang et al. [45] allows the analyst to project crime data
onto a spherical surface for similarity analysis. The tool
focuses on one DR algorithm with limited interaction possi-
bilities.

2.4 Interactive visual machine learning

A VA system should effectively involve the analyst by inter-
acting with the data and the models at different stages of
the analytical pipeline in order to iteratively improve, adapt,
and combine analysis methods to solve the analysis task at
hand [29]. Recent work by Sacha et al. [30] surveyed exist-
ing visual DR tools and highlighted interaction possibilities
to improve the effectiveness of the tools. The interpretability
of results and the usability of interactive DR systems, espe-
cially for domain expert users (without technical and data
analysis background), is a major area for improvement.

Existing visual text analytics approaches such as IN-
SPIRE [40] (and its predecessors [5,12]), or recent works
described by Ruppert et al. [27], shed light on the possibil-
ity of automatically processing textual documents to obtain
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and explore document clusters. These systems adopt different
DR and/or clustering techniques to generate visual embed-
dings of the high-dimensional data to enable the analyst to
compare the similarity between data items and examine inter-
esting patterns in the data. Given that DR and clustering are
complex processes that involve a series of selection, com-
putation and validation, input from human analyst is often
beneficial and largely unavoidable. Wenskovitch et al. [39]
provide an overview of how to combine DR and clustering
and also recommend design decisions.

2.5 Hybrid views

Hybrid views, also often referred as dual views, aim to pro-
vide simultaneous access to the data and feature space. Van
der Corput and Van Wijk [38] are using I F -F I tables to sup-
port access to both spaces. Turkay et al. [36] and Yuan et
al. [44] use two tightly coupled scatter plots. We follow this
strategy by creating these scatter plots through DR. However,
additionally we use one table where both, data and features,
are combined and the clusters generated in the data space can
be interpreted. Demiralp [10] uses a heatmap-matrix diagram
in combination with a scatter plot in order to interpret clus-
tering results. We follow this approach; however, we utilize
bar charts in a table to enable the user to perform a cluster
comparison.

3 Design studymethodology

We adopted a design study methodology [32] to iteratively
build and refine our visual analytics (VA) approach based on
several rounds of expert feedback from different user groups.
We worked in close collaboration with one expert with a
data analysis background on a regular basis while we con-
ducted less frequent expert evaluations with different police
forces. In the early phases, the feedback was provided as
we demonstrated prototypes or versions of the tool to small
expert groups. Later, the experts had to use the tool to per-
form particular tasks with a given data set. We are able to
reflect on four major design phases:

Phase 1. Proof of Concept The research focus was to test
whether we can extract useful features from the given crime
cases and whether DR makes sense. The result was a basic
pipeline (Fig. 3, Phase 1) with some basic interactive visual-
izations: a 2D projection and a crime matrix which represent
early versions of S3 and CCT (Fig. 2).

Phase 2. Design We enriched the computational and interac-
tion capabilities. The resulting system calculated similarities
and crime clusters based on a variety of configurations and
parameterizations with visual components for each pipeline
stage (S3, Matrix, CCM Tables—as described later in this
section). However, during guided demonstrations of the

prototype, the criminal analysts were overwhelmed by the
apparent computational complexity.

Phase 3. Integration and Adaption All developed com-
ponents were integrated into the consortium’s VALCRI
framework. With the additional components, such as a geo-
graphic map or timeline, we could investigate some more
realistic use cases together with our domain experts. This
resulted in reducing the computational complexity and sim-
plifying the user interface, as stated in our previous work [28]
(Fig. 3, Phase 3).

Phase 4. Evaluation and Usability Observations during task-
based evaluation sessions with crime analysts from our
partner police forces were particularly useful, especially as
one of our users reported being “scared to death” by the clus-
tering when they were asked to work independently with the
system. Various changes were introduced to alleviate this.
Henceforth, the user interface (UI) strictly separated dif-
ferent configurations and the parameter tuning process was
greatly simplified. We incorporated a sequential pattern min-
ing (SPM) algorithm and extended our analysis in order to
improve the feature selection and emphasis process. A sec-
ond perspective on the feature space (hybrid analysis of data
and feature space) was added to help the users understand
relations and patterns of crime clusters. The current version
of the system is shown in Fig. 3, Phase 4.

Phase 5. End User Training and Evaluation With the current
prototype, we are now transitioning into the end user training
and evaluation phase, with the aim to further improve some
UI elements.

The following sections describe the evolution of the major
components of these design phases, giving an insight into
some of the important design decisions made.

3.1 Feature generation

We developed a text analytics solution that generates feature
vectors for each input modus operandi (MO) text (Fig. 1),
where each position in the feature vector refers to a concept
indicating the occurrence of a term in the input data. This
effectively generates the headings of a comparative case anal-
ysis (CCA) table, automating the data processing conducted
by police analysts.

Phase 1 To find some structure in the text data, we imple-
mented a basic natural language processing (NLP) pipeline,
based on part-of-speech tagging and a lemmatizer to cope
with inflected terms. This counted occurrences of dis-
tinct, adjective and noun combinations. The visualization
(Fig. 4, Phase 1) was a heat map-like matrix view, that dis-
played each unique adjective plus noun combinations (rows)
per input document (columns). This provided an overview
of our analysis results for a large number of documents.
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Fig. 4 Phase 1 shows a visual interface to visualize occurrences of
adjective noun combinations where the frequency is mapped to colors
from black (zero occurrences) to cyan (max occurrences). A prototype
to demonstrate similarity in the generated feature space is displayed in

phase 2. Phases 3 and 4 are omitted because no further visual prototype
was developed. Instead, the feature extraction was refined with experts
and a sequential pattern mining algorithm was introduced

However, this generic approach yielded too many results
to be of use, although the approach of representing the
MO text fields by short extracts was regarded as possibly
useful.

Phase 2 To reduce the number of possible features, we
experimented in two different directions: 1) implemented a
tf-idf-based term weighting scheme [21]; and 2) designed
a data and offense-specific text analysis matching system,
that utilized domain knowledge in order to identify relevant
parts of the MO. Domain experts provided good insights into
the structure of current CCA table creation and what they
regarded as potentially relevant features. We implemented
a prototype using the selected terms for similarity-based
retrieval of data records (see Fig. 4, Phase 2), where the
cut-off of terms and selections of the types of term com-
binations (bigrams and trigrams) could be adjusted. Using
a variety of settings, police analysts compared the results
with the actual crime reports. However, the feedback ses-
sions were not promising, as the results were considered to
be fairly random.

Phase 3 It became clear that the CCA task uses features and
concepts that are very specific to the offense and, hence, we
started to integrate sets of concept terms in the text analysis
process. A two-stage analysis process was developed, that
firstly identifies all possible combinations of corresponding
terms (unigrams, bigrams, and trigrams) and then created the
text feature space based on offense-specific concept lists. As
the VALCRI crime dataset was mostly burglaries, a relevant
set of concept terms were collected in order to demonstrate
the text analysis process to our end users. These included

8 different types of concepts, for example, parts of a build-
ing, colors, and a frequency-based list from the dataset. We
discussed missing or wrongly identified features with the
domain experts.

Phase 4 We extended the amount of expert knowledge by
refining the concept lists (feedback from Phase 3). Experi-
ments with the S3 prototype (see Sect. 3.2) showed that some
of the created features were too fine-grained to be of good
use for the CCA process. Additionally, crime investigators
are, for example, interested in crimes where a burglar enters
the building through a window. A simple extracted term win-
dow, however, does not provide enough information as it
probably includes crimes where the burglar exited through
the window. To cope with such problems, we experimented
with a SPM algorithm, which extracts frequent sequences
of terms as they occur in the crime reports [19]. The order
of the terms is important, but gaps are allowed to filter out
extremely infrequent terms that would obstruct a sequence
from being frequent. Sequences allow a more fine-grained
similarity space. For example, the sequence window steal
door probably describes only MOs where a burglar enters
through a window and exits through a door. The experts
reported that features consisting of term sequences are use-
ful as they provide a better picture of the MO. We make use
of a minimum support parameter (minSup) set to 5%, so
a pattern has to occur in 5% of the crimes to be included
in the results. Hence, reducing the amount of data will
reveal more fine-grained patterns containing more terms (see
Sect. 4.1).
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3.2 Similarity space selector: S3

S3, a data projection view, provides a simple interface for
the crime investigators to understand the relations and sim-
ilarities among multiple crimes across different DR and
clustering results. It represents the two-dimensional data
space with crimes arranged according to feature similarities
(i.e., if they contain similar crime patterns).

Phase 1 A first prototype explored the capability of DR tech-
niques to spread out the data based on the sparse extracted
concepts. Initially, we used the number of occurrences of
each concept in a crime and tried out different feature com-
binations (e.g., building parts of a house combined with
actions or movements, e.g., smashed door). The web-based t-
SNE implementation [35] provided promising results (Fig. 5,
Phase 1) with each dot representing one crime report. The
central view shows the current projection while the small
multiples on the side offer alternatives, based on different
concept sets, that might show promising patterns to the user.
Feedback showed that the actual number of occurrences was
not important and that users have difficulties in identifying
the extent of possible clusters in the projected space.

Phase 2 The underlying data structure was changed to a
binary feature vector where each bit represents one term.
The effectiveness of other DR algorithms were explored. Fig-
ure 5, Phase 2 shows the different DR results for PCA [14],
MDS [6] and t-SNE [34] in the columns left to the main plot.
The rows show projections for specific feature configura-
tions (e.g., all features or subsets of specific concept families,
such as movements, colors or building parts), which formed
a matrix of small multiples. Clicking on any of these small
multiples moved it to the central view, with the previous one
joining a history list. The visual clustering was improved by
coloring a convex hull (and the points) based on the results
of k-means clustering [14]. The CCA table (see Sect. 3.3)
is tightly coupled with the S3 component, showing concept
data from crime reports in selected clusters. However, exper-
iments demonstrated that users’ trust in the system was low
because they did not understand the projection techniques.
Although we anticipated that the multiple plots would gen-
erate interesting patterns, they just added confusion.

Phase 3 To simplify the UI, we reduced the component to
its main view, giving the user the option to change the DR
algorithm, and also added an animated transitions between
the results (Fig. 5, Phase 3). Initially, clusters were recom-
puted directly after changing either the importance (weight)
of a term or applying a different DR algorithm. However, it
was difficult for analysts to keep track of the changes, despite
using animated transitions, and this reduced their understand-
ing of the impact of their actions. Automatic re-clustering
was therefore disabled which allowed our users to track the

animated transitions of the dots (crimes) and clusters. More
importantly, it was now possible to track and assess the clus-
ter robustness (by investigating the distortion of the cluster
hull and the crime colors) and the impact of the changes (e.g.,
feature removal or change to type of DR). This step was a
quantum leap for the users to better understand the different
DR techniques and to understand the cluster dynamics. The
user must actively re-cluster the data to obtain new cluster
colors and hulls. Here, the animated transitions of the colors
and the cluster hulls are also helpful. The DBSCAN cluster-
ing technique [14] was added, which provided better results
in some cases. However, it was still up to the analyst to select
a clustering technique and to enter the respective parame-
ters (k for k-means, or eps and min Pts for DBSCAN). The
transition from Phase 2 significantly reduced complexity for
the user interface but manual parameterization still confused
some users to such as extent that one end user stated: “Your
clustering scares me to death!”.

Phase 4 Figure 5, Phase 4 illustrates that the UI has been fur-
ther simplified. Buttons were renamed (PCA to linear, MDS
to distances and t-SNE to neighbors) giving the user a bet-
ter understanding of what they can expect from the different
DR techniques. A similar measure was taken for the visual
clustering algorithms: k-means to non-overlap (because the
clusters are clearly separated), hierarchical clustering [14] to
overlap (this clustering algorithm was added to allow over-
lapping clusters) and DBSCAN to outliers (as this density
based algorithm allows outliers that are not part of any clus-
ter). Moreover, the parameters for each clustering algorithm
were replaced by one single slider to control the respective
parameters. The slider has the same semantics as it shows
more clusters when it is dragged to the right. Pre-computing
all clusterings for specific parameters enables our users to
explore the parameter spaces of the respective clusterings
with a simple slider interaction providing instant feedback.
Another beneficial measure is the clear distinction between
the DR techniques (on the top) and the visual clustering tech-
niques (below).

3.3 Crime cluster table: CCT

The CCT supports the CCA task and is, therefore, a central
component of our UI. Crime investigators manually maintain
such spreadsheets where crimes are listed with user identified
crime characteristics as columns.

Phase 1 Our first visualization was a Crime Comparison
Matrix (CCM, Fig. 6, Phase 1). Here, the extracted concept-
term combinations (e.g., Building Part→door) are displayed
as rows (sorted in a descending order according to their over-
all frequency) and the crime cases as columns. The cells are
color-coded when the respective term occurs in the crime
report. The analysts had no difficulty in understanding the
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Fig. 5 The evolution of S3 beginning with a proof of concept to test
the usefulness of dimensionality reduction for displaying crime report
similarities. We experimented with different DR and clustering algo-
rithms and weight models in the second design phase. Phase 3 shows
the integration and simplification of the components to focus on one

projection. The user interface complexity was further reduced in Phase
4, for example, by introducing a simple slider interaction for all visual
clusterings and by strictly separating different computations (DR—top,
clustering—bottom)

Fig. 6 The evolution of the CCT component starts with an instantiation of a CCA spreadsheet table. Multiple instances are created in Phase 2 to
compare different clusters. The table is modified in Phase 3 to increase its scalability. In Phase 4, the table is optimized for comparing clusters

component. However, it showed that such a matrix does not
scale well with many crimes and/or many features and that a
single representation cannot be used for comparing different
sets of crimes.

Phase 2 Multiple CCMs (Fig. 6, Phase 2) were used to sup-
port the comparison task of the clusters that are generated
by the S3 component (data projection view). The coloring
of the cells corresponds to the color of clusters in S3. The
users welcomed this step as it enabled them to interpret the
clusters. We understood that the scalability issue is not yet
solved.

Phase 3 In a first step, the multiple CCMs were reduced
into a single CCM (Fig. 6, Phase 3). The cells are colored
according to the respective cluster, and the feature weights
are mapped to the labels’ font-size. The latter can be changed
in steps by mouse clicks. To cope with the scalability issues, a
secondary view called the Crime Classification Table (CCT)
was developed, taking advantage of the two-level hierarchy

in the features (e.g., Building Part→door). Here, only the
concepts are displayed in separate rows, while the corre-
sponding terms, if they occur in the crime report, are directly
written into the cells. Semantic zooming was introduced that
decreased the font-size of the views and reduced the spac-
ing. This enabled many crimes/features on a single display
but could make it hard to read the labels. The users stated that
they felt comfortable with this view and thus were bolder to
experiment with the given features. We observed that the
users mainly counted how often a feature occurred in a clus-
ter.

Phase 4 In the transition to this phase, we learned that one
key to understanding a cluster is to check how frequent a fea-
ture occurs in a cluster and whether it does not occur in any
other cluster. Such distinctive features are interesting to the
users and can be steered by their weights. The CCT shown in
Fig. 6, Phase 4 was modified to display aggregated clusters as
rows [28] and the feature frequencies as columns. This sim-
plified the display considerably, while still making it possible
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Fig. 7 S4 evolution: starting with a simple list showing the frequency
of the features (see Fig. 8, Phase 1). Phase 2 introduces a correlation
matrix where highly co-occurring features are displayed in blue, neg-
ative correlations are displayed in red. Phase 3 shows a wrapped list

instead of the matrix to simplify the navigation. The component is dras-
tically changed in Phase 4 and uses the analogy of the S3 component
showing similarities in the feature space

to investigate individual crimes by expanding clusters. The
overall frequency of a feature is displayed in the header via a
bar chart in the background of each label. Similarly, the size
of the clusters (number of crime reports) is displayed in each
cluster summary row. The features (columns) can be sorted
by frequency, alphabetically, or interestingness. The latter
favors the most distinctive features of the clusters (sorting
left to right) in order to support the analyst in interpreting
the differences of the clusters (Sect. 1, Task 1). To reflect
the change of emphasis, the component was renamed as the
Crime Cluster Table (CCT) (Fig. 2).

3.4 Sequence similarity space selector: S4

S4 is a feature projection view that offers an important per-
spective on the feature space, supporting the feature selection
and emphasis task to improve the data clusters of the projec-
tions in the data projection view S3. The visual clusters are
only as good and useful as the features; therefore, the user
needs to understand feature characteristics of the analyzed
dataset including overlaps, redundancies, correlations and
outliers.

Phase 1 An early version of this view (Fig. 8, Phase 1) con-
sisted of a basic feature frequency lists. Even though it did
not reveal any similarities, the overall frequency of a fea-
ture is important for an analytical task as detailed later on
in this section. We experienced that similarity is difficult to
visualize in a list view. Therefore, we started to develop two
separate components. The following phases will outline the

evolution of the similarity view. The further development of
the list view is detailed in Sect. 3.5.

Phase 2 During the design phase, we focused on revealing
similar features and added a correlation matrix, as depicted
in Fig. 7, Phase 2. The matrix shows highly co-occurring fea-
tures in a saturated blue color and mutually exclusive features
in a saturated red color. The correlation values for hovered
feature combinations are shown in a tool tip. Negatively cor-
relating features can be used to split the data, while positively
correlating features are largely redundant. As the latter tend
to dominate the projection, users could directly remove them
by clicking on the respective cells.

Phase 3 The matrix did not scale well to an increasing fea-
ture space and showed many uninteresting, less correlating
feature pairs, which are not regarded as that useful by the
experts. To overcome these problems, we created a corre-
lation sorted list where all combinations with a correlation
between − 0.3 and 0.3 are omitted (Fig. 7, Phase 3). This
simplified the navigation and allowed the users to spot the
interesting correlations faster.

Phase 4 User feedback revealed that more fine-grained fea-
ture combinations are needed to distinguish crime reports
(see Sect. 3.1, Phase 4). With experience of the data projec-
tion view S3, the users better understood the concept of DR.
Therefore, we provided a similar view for the feature space:
the Sequence Similarity Space Selector (S4) which illustrates
the similarities of the features (sequential patterns) based on
shared data items (crimes). The length of a sequence (num-
ber of terms) is mapped onto the length of the rectangles and
the support of a feature is mapped onto the opacity (Fig. 7,
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Fig. 8 The evolution of the Pattern Selector component starts with a
list displaying the features and their frequencies. A simple frequency
list is used in Phase 1. In Phase 2, a table is created that makes use of

the two-level hierarchy of the features. A separate prototype uses a list
to display sequences. This prototype is integrated and slightly modified
to show the clustering information as generated by S3

Phase 4). To help the user better distinguish between data and
feature space, all items in the feature space use a rectangular
shape and no color coding while the data space uses rounded
corners. The bottom part of the component is replaced by two
range sliders. The upper one sets the frequency range, so it is
possible to exclude features with either low or high frequen-
cies; for example in the removal of outliers (see Sect. 4.1, Step
5). The lower slider sets bounds for the length of a sequence.
Longer sequences are typically more specific and, thus, less
frequent. To provide rapid feedback, the chart is updated
while dragging the slider. On release, the DR is recalculated
and the updated weights are propagated to the other compo-
nents.

3.5 Pattern selector: PS

The Pattern Selector allows the user to browse and explore
multiple feature patterns.

Phase 1 and 2 In Phase 1, this component was equal to the
feature space component (see Sect. 3.4, Phase 1). In Phase 2
(Fig. 8), the concept selector leverages the two-level hierar-
chy of the terms (e.g., door) and their corresponding concepts
(e.g., Building Part). Both are represented in a table where
concepts can be expanded to view the individual terms. The
number of occurrences, as well as the selection, were dis-
played accordingly. Deselected terms set the corresponding
weights, used in the DR, to zero. Disabling a concept disables
all underlying terms.

Phase 3 The first external prototype using the sequences [19]
was not linked with the data projection view S3; however,
the end users stated that sequences containing three or more
items provide enhanced information to understand the under-
lying MO. In Fig. 8, Phase 3, the sequential ordering of terms
is shown for each pattern. Additionally, the terms are color-

coded to enable users to detect patterns in the sequences. The
list can be filtered by entering a term in the search field.

Phase 4 The prototype was integrated into the VALCRI
framework and revised based on user’s feedback (Fig. 8,
Phase 4). The colors were removed to comply with the design
decision of not using colors in the feature views (see Sect. 3.4,
Phase 4). The number of occurrences is displayed in the first
column. The list can be sorted as in the CCT (see Sect. 3.3,
Phase 4). The cluster information is displayed as bar charts
representing the frequency of the feature in each cluster. The
color of the clusters is linked to S3 (data projection view),
and the top row shows the size of each cluster. Clicking a
feature in the pattern selector provides several actions: i) sets
the weight (0 removes from display), ii) filter for crimes that
contain this feature, and iii) filter for crimes that do not con-
tain this feature. This drill-down operation can be performed
multiple times, with all other components updating automat-
ically (see Sect. 3.1, Phase 4 and Sect. 4.1).

3.6 Weight observer component:WOC

The WOC (Fig. 2) provides analytic provenance [42] and cap-
tures user interactions [11]. It was initially designed as a tool
for the developers to track and understand how the Concept
Explorer was being used. It tracks and visualizes the feature
weights in a multi line chart and the DR and clustering con-
figuration in state-history charts (Fig. 2). The end users did
not find it particularly useful but suggested that it could be
part of a reporting feature, outlining their exploration of the
data. The Security, Ethics, Privacy & Legal (SEPL) board
highlighted its crucial role in court cases when analysts have
to justify their decision making. We also observed that the
component can be useful as a bookmarking feature to save
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and load configurations and feature weights for specific ana-
lytical tasks.

4 The concept explorer

The Concept Explorer’s components are embedded into the
VALCRI framework which provides additional components
such as a timeline or a map view. The Concept Explorer tar-
gets the structurization of the modus operandi (MO) through
feature extraction (Sect. 3.1) and the exploration of crimes, as
well as the extracted features. The VALCRI framework fea-
tures a web-based dashboard design [41] in the front-end and
a Java-based back-end to perform more complex operations
such as the dimensionality reduction (DR) and clustering.
The user can open a canvas on a screen, each with multiple
components which can be arranged and resized freely. The
components are tightly coupled to provide a better analytical
understanding of the data and its features. In general, hov-
ering over a feature (e.g., in the feature projection view S4)
will highlight the feature in other components (e.g., Pattern
Selector) with all crime reports, described by that feature,
highlighted as well. Similarly, hovering over a crime report
highlights features within that report. This linking and brush-
ing capability is important in understanding the influences of
features in the data similarity space (see Sect. 4.1). The Sim-
ilarity Space Selector (S3, data projection view) creates the
clusters and the cluster information is broadcast to the other
components, such as the Crime Cluster Table (CCT). Filters
can be applied by all components to reduce the crime report
data set and enable users to drill down for a specific set of
crime reports containing a user-defined set of features.

4.1 Use case

The crime set being investigated is normally specific to
a region and a time range and this can be obtained with
the respective components available in the VALCRI frame-
work (map and timeline). Additionally, the set is filtered by
search terms to receive similar types of crimes. This use case
emerged from our experiences within collaborative evalua-
tion sessions with different user groups. It comprises a set
of different analytical steps that have been considered useful
to solve a variety of analytical tasks. The following use case
demonstrates this functionality and has been conducted in
multiple paired-analytics and user training sessions.

Step 1 The user is interested in burglaries in schools. After
opening the data and feature projection views S3 and S4,
the hybrid view is arranged as in Fig. 9 Step 1. S4 (left)
shows three exposed dark quadratic rectangles representing
to three feature sequences, containing a single term, that
occur frequently. These terms are door (red), rear (blue),

and window (green). The fact that these features are exposed
and are highly saturated suggests to the user that the data
similarity space visible in S3 (right) is mainly separated by
these features. We have annotated the regions where the crime
reports are located in the same colors as in S4. The linking
and brushing features of the components are used to obtain
this insight.

Step 2 The user is further interested in these features and
increases the weights for the features door and window and
applies a new clustering to better distinguish the crime reports
(Sect. 1, Task 2). The results are visible in Step 2.1 where S3

shows four clusters. The yellow and the green clusters, cir-
cled in green, contain crime reports with the feature window.
The yellow and the red clusters, circled in red, contain door.
The blue cluster, on top, does not contain any of the these
features. All clusters contain crime reports with the feature
rear meaning that the similarity space is currently not sepa-
rated by this (Sect. 1, Task 1). The user is also interested in
the feature rear and therefore increases its weight. The data
projection view updates immediately resulting in the view
given in Step 2.2 (note that all clusters are rather distorted).
The lower part of the clusters, circled in blue, consists of
crime reports containing the feature rear. The user manually
triggers a re-clustering and also increases the number of clus-
ters using the lower slider in S3 (Sect. 1, Task 2). The result
can be seen in Step 2.3. This sub-workflow presented in Step
2 can be frequently observed. We call it “cluster-mitosis.”

Step 3 The feature characteristics of the clusters can be exam-
ined using the Pattern Selector (Step 3.1) and the CCT (Step
3.2) (Sect. 1, Task 1). Cluster 5 [Fig. 9, Step 3.2 (dark-blue)]
contains only crime reports that have all three features. This
cluster is located in the bottom center location in S3 (Step
2.3). With the CCT (Step 3.2), the user can now perform
typical CCA tasks, such as comparing the features of the
clusters to spot interesting co-occurring features. The fea-
ture sequences rear window and rear door, framed in purple,
are only present in clusters 3, 4 and 5 where the single-term
sequences are present. The bars displaying the frequency of
the feature in the clusters are not full, showing that there
are some crimes which contain the feature sequence door
rear. But this sequence is too infrequent (less than 5% of
the crimes; see Sect. 3.1, Phase 4) to be in the feature result
set and therefore is not visible as a column in the table. Fur-
thermore, the gray bars in the header show that the feature
sequence rear window is more frequent than rear door. The
user expands cluster 5 in the CCT to inspect the individual
crime reports. A similar view is visible in Fig. 2. By click-
ing on one crime report, the crime-card opens showing more
details of that crime including the MO (Step 3.3). As this
cluster only contains crime reports holding all three features,
the user can find these features in the text. Due to the order
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Fig. 9 A frequently observable use case starting with the initial data.
The user identifies the main features separating the data space (Step
1) and increases the weights (importance) of interesting features and
defines a new clustering (Step 2). A CCA analysis with detail on demand

follows (Step 3). The cluster robustness across different DRs is tested
afterward (Step 4). The use case ends with a drill-down operation includ-
ing the pruning of the feature space (Step 5)

of the terms, the crime also contains the sequences rear door
and rear window.

Step 4 The user checks the other projection methods (Sect. 1,
Task 3) such as “distance” (MDS) and “neighbors” (t-SNE).
While the “distances” only show that the clusters expanded a
little (Step 4.1), the “neighbors” projection shows a different
picture (Step 4.2). This projection favors neighborhoods and
therefore shows identical crimes in non-overlapping rings.
These crime-rings can be important in the users’ analysis.
The user learns that there are a few crime-rings containing
the feature sequence climb roof. The feature is highlighted
in Step 4.2 (right side), and the crime reports are highlighted
with a black border in Step 4.2 (left side). The user is further
interested in these crimes and filters the crime data set on the
feature climb roof (drill down).

Step 5 The remaining dataset contains 46 crime reports. How-
ever, the set of features has increased to 110 because a pattern
must occur in at least 5% of the crime reports to remain in
the result set which are only two crimes in this case. These
longer and more specific sequences can be already interpreted
by the experts without the need to read the MO (Sect. 3.5,
Phase 3). S4 shows an outlier circled in yellow in Step 5.1.
At this location, three features climb, roof and climb roof are

overplotted. These features are outliers since they describe
all crimes in the result set. Thus, these features are uninter-
esting and do not influence the DR in S3. The user removes
these features by changing the range slider as indicated by
the red arrow in Step 5.1. The user sets the range of the sup-
port for a feature to 2–40. Features that have less or more
occurrences are removed by setting their weights to 0. This
change only affects the outliers. The remaining feature set
contains 107 features, and their similarity space is redrawn
(Step 5.2). Note that this did not change the data similarity
space in S3. While browsing the features in the Pattern Selec-
tor, the user spots one feature climb roof skylight and repeats
the cluster-mitosis step to obtain a cluster for this feature.
These features are described by the red cluster (Step 5.3).
They are overplotted in S4 [Fig. 9, Step 5.2 (purple circle)]
because they are redundant.

This use case was captured by the WOC (Sect. 3.6) as
shown in Fig. 10. Going from left to right, it shows the
weights (importance) were increased for the features window
and door. The upper state-history chart then shows that a new
clustering was triggered manually (change from light blue to
orange). Afterward, the weight for feature rear was increased
in Step 2.2. A re-clustering was executed in Step 2.3 which is
visible in the change of color from orange to light-orange in



1237

Fig. 10 The use case as it is recorded in the WOC component. The
line chart represents the weights of the features. The upper state-history
chart represents the clustering. The different colors represent different
clustering algorithms or changes in the parameters. The lower state-
history chart shows changes of the DR algorithms

the upper state-history chart. The user experimented with the
projections as shown in the lower state-history chart (Steps
4.1 and 4.2). The Tactical Analyst (TA) proceeded with a
drill-down for climb roof and then removed uninteresting
features (their weight was changed to 0 in Step 5.1). The
cluster-mitosis step was repeated with the feature skylight
for Step 5.3.

The use cases represents a possible workflow, highlighting
many of the features of the Concept Explorer. As a toolset, the
respective Steps (1-5) can be freely combined and repeated
to explore the data in depth.

4.2 Expert feedback

We obtained feedback for the current system from a soft-
ware developer and data analyst developing solutions for
police forces (internal expert). We also presented the sys-
tem to criminal investigators of the German police who are
not part of the consortium (external experts) and did not have
any training on the system.

The experts reported that the extracted features are rele-
vant for their analytical tasks and the navigation in the data
and feature space is easy due to the rapid updates and the link-
ing and brushing capabilities. The crime investigators stated
that without any user training the system seems to be very
complex at first glance; however, it is definitely relevant for
TAs as it can provide a much better overview for (large) sets
of crimes. Tooltips provide relevant details on demand. Addi-
tionally, it avoids the cumbersome and very time-consuming
manual extraction of the features. The internal expert states
that the addition of the S4 and Pattern Selector components
provides valuable functionality and is highly relevant for the
tasks of the TAs. All experts agree that the existing instantia-
tion of the CCA table provides easily understandable access
to the data and feature space and is suitable to perform CCA
tasks. The external experts remarked that it would be neces-
sary for users to add new concepts to the concept lists when
dealing with new MOs and crime types.

The WOC is criticized as it looks complex and labels are
missing. The experts affirm that such a component is useful
for the analyst and others in order to explain the decision
making. However, the actual numbers for the weights are
necessary in order to generate reports.

5 Lessons learned

The system was developed in collaboration with domain
experts over a period of 2 years. Hence, we are able to enu-
merate observations and lessons learned.

Our initial user interface (UI) comprised multiple scatter
plots that show visual embeddings using different configura-
tions (dimensionality reduction (DR) types, feature subsets,
etc.). Without much training, our end users reported that it
was difficult to understand the results obtained with the dif-
ferent settings. They considered the concept of DR to be very
abstract and found it hard to interpret and trust the result
shown in scatter plots where the “meaning of axis” is miss-
ing. Although there exists work by Gleicher [15] to provide
meaningful axes, this issue became irrelevant over time as
the users learned that only the distance, not the actual posi-
tion is meaningful. As the CCT UI was familiar in some
respects, it helped the users interpret the results of DR and
visual clustering. We also recommended that the criminal
analysts start with a few clusters that can be interpreted more
easily. This allowed them to anchor particular areas (or spe-
cific crimes) in the projection which could be related to some
specific patterns (e.g., a particular area contains all the “roof”
crimes). The cluster slider allows them to easily increase the
number of clusters, while the animated transitions enable the
tracking of positional changes. Interacting with the system
and observing the changes helped the analysts to understand
how the methods work and how they can interpret the results.
While the users always showed interest, it was observable
that the main interactions drifted to the spreadsheet tables
even though such a comparison required much more effort.
Due to the simplifications of the S3 component, plus a train-
ing effect over time, the users became more confident and
experimented more with the component. However, we also
learned that it is essential to provide the analysts with tools
they are familiar with (e.g., the spreadsheets) and the inter-
pretablity of the results is the key to building trust in the
system, as is providing useful interactive feedback. It is also
worth mentioning that the system helped us (as developers)
to understand the extracted data. We realized that some fea-
tures occur with high frequency, while others are very sparse.
The user can now refine this with the help of the S4 compo-
nent using the range sliders. Training of the users with the
S3 component made this transition easier.

We experienced that consistency in such a complex sys-
tem is vital. Users will immediately ask why certain linking
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and brushing capabilities are not working in one component
or working differently in another. This consistency includes
design decisions such as shapes and colors. Consistency is
also fundamental in helping the user relate and navigate the
data and feature spaces. Combining these two in the CCT
provides additional context. As with many systems, tooltips
are a useful aide-memoire as well as an easy method to show
details on demand.

Users typically show interest in novel components and
methods. With guidance and explanations, the experts were
able to solve the tasks reasonably well. However, on their
own, the users were much more hesitant because they missed
guidance from the system or an analyst. To overcome this,
substantial effort has to be put in to lowering the complexity
of a component while not sacrificing too much functional-
ity. This includes changing labels, so they express what the
users can expect when they interact with it. Here, users and
developers should agree on terms for the labels. Additional
demonstrations and training helped the user to build trust in
the system.

Most of the users are not interested in technical details.
Others are interested in everything, but as non-computer sci-
entists, they are unlikely to understand complex concepts and
importantly, we should not expect them to understand. We
learned that it is better to explain how to react in certain sit-
uations. For example, during demonstrations we explained
that the feature space of the S4 component “does not look
nice” as much space is wasted when there are outliers (see
Sect. 4.1, Step 5.1). In this situation, the user has to rate the
interestingness of such features and react with defining a dif-
ferent weight for it. A clear separation in the UI helps the
users to remember the associated tasks.

Automation comes at a cost to interpretability. While it
saves time, it may greatly increase the complexity, result-
ing in a major decrease of trust in the system. For instance,
disabling the automatic clustering really helped the users
to better understand the difference between the DR and the
visual clustering. In the words of the users: the DR is respon-
sible for moving the crimes while the clustering changes the
colors. Additionally, it helps the user to spatially anchoring
individual crime reports and clusters across different projec-
tions.

Sliders with sensible limits and direct visual feedback and
are a great way to encourage the user to trying different set-
tings. In early versions, the users were reluctant to try out
different alternatives for weights, projections and clusterings.
We also provided them with a cluster interpretation strategy.
Starting with a few clusters allows the users to interpret and
understand the major areas and features within the projec-
tions, that can be iteratively refined. We implemented this
exploration strategy with the clustering slider.

Like many visual analytics (VA) tools, the scalability of
our system is limited. Our domain experts suggested a typ-

ical targeted analysis task (e.g., looking at crimes happened
in last three months in a specific region) involves no more
than 500 crimes. For our use cases, the tool worked rea-
sonably well on 2000 crimes with 300 features. However,
calculating the distances and sorting is bounded by compu-
tational complexity. PCA and MDS work the fastest. T-SNE
is the slowest. Calculating all clustering parameterizations
does not take too long as only 2 dimensions are covered. In
any case, the user sees visual cues hinting that a computation
is being performed. Although the users state that waiting for
a certain computation is acceptable, we do not freeze nor
disable any component, but allow the user to continue the
exploration.

The sequential pattern mining (SPM) processing step,
after the feature extraction, offered valuable advantages. The
number of features is reduced as rare features are pruned, and
the relevance of a feature is related to the overall size of the
current dataset being analyzed. This means that in smaller
and more specific datasets the features are likely to contain
more terms and are therefore more fine-grained. The use of
patterns (sequences of terms) allows crime reports to be better
differentiated. Additionally, this step allowed us to precon-
figure default weights based on the length of a sequence.
Here, we assume that a longer sequence is more valuable to
the user, but typically describes less crime reports (due to the
antimonotonicity of patterns [2]).

We incorporated many changes in the UI to remove or
hide complexity. As in many projects, it took time to find a
common level of expert language to efficiently discuss fea-
tures and issues. We found it beneficial to attend workshops
where experts explained their daily work and detailed their
analytical tasks, including the problems they typically face.
Frequent software updates maintains a welcome degree of
familiarity with the system, helping the experts keep abreast
of the changes and reduces the amount of the training. This
also increases the motivation of the experts, encouraging
them to be more open in stating issues in using the tool,
which eventually increases the productivity.

In contrast to the work of Johansson et al. [20], the
Concept Explorer is specifically designed for expert users.
However, many parallels in the lessons learned are visible.
Users are easily overwhelmed by complexity which can be
partially compensated by frequent user training but remov-
ing or hiding complexity yields a more sustainable effect.
Our end users also expressed the wish for more guidance
but in the same breath, they wanted to keep the freedom and
transparency of the current system (which is required in the
criminal intelligence analysis domain). We experienced pos-
itive feedback during paired-analytics sessions as guidance
from the developers combined with the expert knowledge has
a positive synergy. Overall, we observe a tradeoff between
guidance and the transparency across different algorithmic
alternatives.
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6 Conclusions and future perspectives

We presented our research in designing an interactive Com-
parative Case Analysis (CCA) system in collaboration with
domain experts and detail on how components and the overall
system have changed over time in a design study. The cur-
rent system provides a powerful tool using a hybrid approach
to simultaneously analyze and explore the data and an auto-
matically generated feature space. Dimensionality reduction
(DR) techniques are utilized in a similar fashion to visualize
the similarity spaces. The hybrid view aids the users in draw-
ing conclusions on the effects of features in the data space.
The tight coupling of multiple components allows access to
the data from different perspectives. Our DR pipeline imple-
mentation supports a variety of interactions, but we observed
and learned that analysts may be overwhelmed by an exces-
sive number of visual alternatives and configuration options.
To tackle this problem, we allow the users to interpret the
results and interact directly with them in the crime table
(the tool that they are familiar with). This helped them to
understand and importantly, build trust in the computations.
Our visual interaction design is generalizable to other data
types and applications. To this end, we now include addi-
tional structured metadata, such as the weekday or known
offender properties (e.g., gender, age) in our analysis.

In future work, we aim to enrich the table interactions
with semantic mappings to DR pipeline adaption (inspired
by Endert et al.’s work on semantic interaction [11–13]).
For example, we want to allow the Tactical Analyst (TA) to
re-arrange columns or rows to derive feature weights. An
automatic sorting of the cluster-rows, for example, based on
the td-idf measure could support the analyst in the CCA task.
Similarly, we want to automatically derive which DR type
is closest to the analyst’s feedback (e.g., when the analyst
declares two clusters as similar).

Based on the feedback of the experts, we will also improve
the WOC by hiding unchanged features in the line chart and
showing them only on demand. Furthermore, a filter list can
be used to selectively compare different histories of feature
sets. Labels, as well as the values in numbers will be added
to allow simplify the generation of reports. Annotations in
the WOC can enable the analyst to explain and justify their
decision making. Eventually, this may enable us to generate
templated reports automatically.

The VALCRI project is in its final phase that will focus on
the end user training and evaluations. Our plan is to quanti-
tatively measure which interactions are used, to capture the
analysis processes of different analysts, and to collect more
qualitative feedback.

One important aspect of the Concept Explorer as a tool
for TAs is to manually add new concepts. Additionally, users
reported that many concepts are not useful for a specific case,

so a preconfiguration step selecting and adding features will
be beneficial.

We provide insight into the development of a rather com-
plex tool and show how we gradually decrease and hide the
complexity from the user during the development in order to
make it “less scary.”
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