N

N

Effective NC machining simulation with OptiX ray
tracing engine
Marc Jachym, Sylvain Lavernhe, Charly Euzenat, Christophe Tournier

» To cite this version:

Marc Jachym, Sylvain Lavernhe, Charly Euzenat, Christophe Tournier. Effective NC machining sim-
ulation with OptiX ray tracing engine. The Visual Computer, 2018, 35, pp.281-288. 10.1007/s00371-
018-1497-7 . hal-01742413

HAL Id: hal-01742413
https://hal.science/hal-01742413
Submitted on 24 Mar 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01742413
https://hal.archives-ouvertes.fr

Effective NC machining simulation with OptiX ray tracing

engine

Marc Jachym - Sylvain Lavernhe -

Abstract The manufacturing of high added-value prod-
ucts in multi-axis machining requires advanced simu-
lation in order to validate the process. Whereas CAM
software editors provide simulation software that allows
the detection of global interferences or local gouging, re-
search works have shown that it is possible to consider
multi-scale simulations of the surface, with a realistic
description of both the tools and the machining path.
However, computing capacity remains a problem for in-
teractive and realistic simulations in 5-axis continuous
machining. In this context, using general-purpose com-
puting on graphics processing units as well as Nvidia
OptiX Ray Tracing Engine makes it possible to develop
a robust simulation application. Thus, the aim of this
paper is to evaluate the use of Nvidia OptiX Ray Trac-
ing Engine compared to a fully integrated CUDA soft-
ware, in terms of computing time and development ef-
fort. Experimental investigations are carried out on dif-
ferent hardware such as Xeon CPU, Quadro4000, Tesla
K40 and Titan Z GPUs. Results show that the devel-
opment of such an application with the OptiX devel-
opment kit is very simple and that the performances
in roughing simulations are very promising. Developed
software as well as dataset can be downloaded from
http://webserv.lurpa.ens-cachan.fr /simsurf.

Keywords Machining simulation - ray tracing - GPU
computing - CUDA architecture - OptiX

Christophe Tournier

LURPA, ENS Paris-Saclay, Université Paris Sud, Université
Paris-Saclay, 94230 Cachan, France

Tel.: 433 1 47 40 27 52

Fax: +433 1 47 40 22 20

E-mail: christophe.tournier@ens-paris-saclay.fr

Charly Euzenat -

Christophe Tournier

1 Introduction

In molds and dies industry, simulation of machining
process is mandatory to validate the tool path gen-
erated with the CAM software before launching the
production of parts with very high added value. In-
deed, machining operations including roughing, reworks
and finishing are particularly time-demanding, espe-
cially for large size parts as for example in the auto-
motive industry. Thus, the occurrence of defects in the
final stages of the process has a dramatic impact on
manufacturing companies. CAM software editors there-
fore provide cutting simulation applications that allow
to validate the paths from a macroscopic point of view,
i.e. to test the presence of collisions. However, these
simulations don’t incorporate any features of the ac-
tual process likely to deteriorate the surface finish dur-
ing machining operations. Finally, these simulations do
not provide the accuracy required within a reasonable
time or the possibility for the user to select an area in
which he would have a greater precision. On the other
hand, high-performance simulation software prototypes
are developed in laboratories in order to offset the pre-
ceding shortcomings, but they require significant com-
puter resources. Many methods have been published in
the literature to perform machining simulations. Some
of them are based on partitioning the space whether
by lines [6], by voxels [5] or by planes [11], other are
based on meshes [3]. Previous works have shown that
it is possible to simulate the resulting geometry of the
surface with Z- or N-buffer methods applied to a realis-
tic description of both the tools and the machining path
in a few minutes [7]. Simulation results are very close
to experimental results but the simulated surfaces have
an area of some few square millimeters with microm-
eter resolution. Therefore, to overcome the limits in

terms of computing capacity, some works deal with the
use of GPGPU (general-purpose computing on graphics
processing units) and especially Nvidia GPU (graphics
processing units) and CUDA (Compute Unified Device
Architecture) technology in the field of manufacturing
simulation [4,9]. In this context we have developed a
software called SIMSURF1 in order to simulate very
quickly a selected machined area at different scales cho-
sen by the user [1]. This tool, which is very fast, is based
on the Z-buffer method and relies on GPU/Cuda tech-
nology or many CPU cores [10]. However, the devel-
opment of such applications requires an extended and
deep knowledge of these architectures. Low-level CUDA
library has to be used and every aspect of the multi
GPU-core architecture on which CUDA is based has to
be managed, from the distribution of the parallel calcu-
lations on the cores to the memory exchanges between
the CPU and the GPU.

This is why the use of an application framework such
as NVIDIA OptiX Ray Tracing Engine would facilitate
the development of high-performance ray tracing appli-
cations [2]. Thus, the proposed SIMSURF2 approach
aims at taking advantage of the OptiX Ray Tracing
Engine in order to facilitate the writing of a machining
simulation software based on the GPU parallel calcu-
lation platform. For this purpose, OptiX provides in-
tegrated features such as the possibility of modifying
the acceleration structure for each tool posture, i.e. po-
sition and orientation in the 3D space, without recal-
culating it completely. With OptiX and the specialized
subset OptiX Prime, which is dedicated to the high-
speed calculation of intersections between rays and tri-
angles, gains are expected regarding the software devel-
opment speed as well as regarding the optimization in
the use of the CUDA architecture which, in turn, could
accelerate the whole machining simulation process. We
propose in this article to compare the performances of
the OptiX Ray Tracing engine with the developments
previously achieved in SIMSURF1 and updated here as
an implementation for NVIDIA Tesla K40 and Titan
Z GPU. The rest of the paper is organized as follows:
the computation algorithm and the low-level approach
used in SUMSURF1 are summarised in section 2, Op-
tiX ray tracing engine and its associated features are
described in section 3 and section 4 is dedicated to the
experimental investigations and benchmarking of both
approaches.

2 Computation algorithm and CUDA
architecture

The computation algorithm relies on the Z-buffer method
which consists in partitioning the space around the sur-

face to be machined in a set of lines, which are equally
distributed in the x-y plane and oriented along the z-
axis. The machining simulation is carried out by com-
puting the intersections between the lines and the tool
along the tool path. The geometry of the tool is modeled
by a triangular mesh including cutting edges, which al-
lows to simulate the effect of the rotation of the tool on
the surface topography. The tool path is either a 3-axis
tool path with a fixed tool axis orientation or a 5-axis
tool path with variable tool axis orientations. In order
to simulate the material removal, all the intersections
with a given line are compared and the lowest is reg-
istered. The complete simulation requires the compu-
tation of the intersections between the N lines (~1.e6)
and the T triangles (~1.e4) of the tool mesh at every
tool posture P (~1.e6) on the tool path. Thus simula-
tions with 1.e16 potential intersections to compute are
commonly encountered without taking into account the
use of bounding boxes. For instance, in the case blade
roughing described in Tab 1, the computation time is
about 11 hours without any parallelization on the Xeon
CPU described in section 4.

The developed algorithm can run on both CPU and
GPU hardware. The implementation of the SIMSURF'1
algorithm on CPU is based on the use of the OpenMP
API and 7for” loops as well as Streaming SIMD Ex-
tensions (SSE) instructions. The optimization of the
code executed on GPUs is more difficult and it re-
quires to divide the computation into threads and then
blocks to take advantage of CUDA’s massively parallel
architecture. Indeed, the strength of the CUDA pro-
gramming model lies in its capability to achieve high
performance through its massively parallel architecture
(Fig. 1). In order to achieve high throughput, the al-
gorithm must be divided into a set of tasks with min-
imal dependencies. Tasks are mapped into lightweight
threads, which are scheduled and executed concurrently
on the GPU. The 32 threads within a same warp are al-
ways executed simultaneously; maximum performance
is therefore achieved if all the 32 threads execute the
same instruction at each cycle. Warps are themselves
grouped into virtual entities called blocks; the set of all
blocks forms the grid, representing the parallelization
of the algorithm. Threads from the same block can be
synchronized and are able to communicate efficiently
using a fast on-chip memory, called shared memory,
whereas threads from different blocks are executed in-
dependently and can only communicate through global
(GDDR) memory of the GPU. The number of threads
executed simultaneously can be two orders of magni-
tude larger than on a classical CPU architecture. As a
consequence, task decomposition should be fine-grained
opposed to the traditional coarse-grained approach for

CPU parallelization. The basic algorithm consists in
determining whether there is an intersection between a
line and a triangle associated to a tool posture. The
intersection algorithm is based on triangle rasteriza-
tion [12]. If this algorithm requires more operations
and memory than the one developed in [8], this disad-
vantage is compensated by an extremely fast inclusion
test of the intersection in each triangle. Given these
three variables on which the algorithm iterates during
the sequential computation, there are numerous possi-
ble combinations to affect threads and browse the set
of lines, triangles and positions. Only one possibility is
used hereafter which is the most appropriate for macro
scale simulations [1]. Each thread is assigned to a posi-
tion of the tool and applies the Z-buffer algorithm for
every triangle of the tool mesh for this position. The
pseudo code of both algorithms executed on the host
(CPU) and on the device (GPU) is provided hereafter.
The granularity of tasks is high: if the number of trian-
gles to be processed is large, each thread will run for a
long time. If the computation time between threads is
heterogeneous, some threads of a warp may no longer
be active, and therefore the parallelism is lost. A thread
may affect the cutting height of several lines so a line
can be updated by multiple threads and global memory
access conflicts appear. Atomic operations proposed by
CUDA are then used to allow concurrent update of the
height of the lines.

Algorithm 1 Simsurfl pseudo-code for the CPU host

1: Lines < load Z-buffer description from file
2: path < load tool path from file
3: toolMesh < load tool description from mesh file

4: nbThreads <— query GPU configuration

5: allocate GPU memory for Z-buffer
allocate GPU memory for toolMesh
7: allocate GPU memory for toolpath

&

8: matrixz transformation + Compute matrix transfor-

mation from tool path file
9: move piece, toolMesh, matrix decriptions from CPU

memory to GPU memory

10: while every block of tool positions not done do
11: allocate nbThreads to GPU CUDA kernels for the

current block
12: launch the parallelized threads (GPU CUDA kernels)

13: end while

14: move Z-buffer results from GPU memory to CPU
memory
15: create the STL file resulting from the intersections

Algorithm 2 Simsurfl pseudo-code for the GPU par-
allelized CUDA kernels

1: for every triangle do

2: apply transformation matrix to the triangle

3: compute the 2D bounding box circumscribed to the
triangle in the xy plane

4: for each line in the bounding box do
5: perform the actual intersection between lines and
triangles
6: atomicMin < Z-buffer height updating by
using atomic operation
7 end for
8: end for

3 OptiX ray tracing engine

Nvidia OptiX is an engine for ray tracing 3D-rendering.
It allows the developer to concentrate on the objects in
a scene whose geometry is defined by the algorithms for
the ray-object intersections and on the behavior of the
light when it encounters some material. Those elements
are the entry points to the ray-tracing parallel calcula-
tion engine that executes on the CUDA architecture.
The OptiX engine is based on acceleration structures,
which are hierarchies of bounding boxes, to determine
which of the scene areas are empty and do not need any
calculation. OptiX Prime is an OptiX’s subset which is
dedicated to the high-speed calculation of intersections
between rays and triangle meshes. There is no notion
of material properties in OptiX Prime and thus, it has
nothing to do with optic rules and 3D object render-
ing. Rather, it provides a hopefully optimized way to
use a hidden acceleration structure suited to triangle
meshes and to perform a high-speed rays-triangles in-

GPU Grid

Block (0, 0)

Block (1, 0)

|

Thread (0,0) Thread (1, 0)

i FYvS i FY v

-

e

Thread (0, 0) | Thread (1, 0)

ot

i FYvs i FYyy
A

A

CPU

Fig. 1 Cuda architecture

GPU device Optix
(l Context
. Optix
Optix g Il Scene model

Tool model
| triangles mesh

set acceleration

tool mesh (stl) structure ()

IR

Fig. 2 OptiX engine process overview

tersection on the underlying CUDA architecture. By
hidden, we mean hidden to the software developer who
is freed from researching methods for reducing the num-
ber of possible intersections that the GPU will have to
calculate.

Within SIMSURF1, the software programmer has to
devise by himself clever methods to determine empty
areas in the scene in order to avoid that the GPU would
have to calculate every possible intersection between
any ray and any triangle. Within SIMSURF2, the pro-
grammer has to choose between different possibilities
regarding acceleration structures and traversal meth-
ods, whether he has to manage static vs dynamic scenes
or whether his objects are defined with geometric for-
mulas or meshes. OptiX Prime simplifies this greatly
because the best possible choices, regarding Nvidia ex-
perience in acceleration structures and traversal algo-
rithms, have been made for a static scene based on tri-
angle meshes (Fig. 2). The calculation of the accelera-
tion structures is the slowest stage of the process and,
with previous OptiX Prime versions, an acceleration
structure has to be built at every step of the loop even
if the geometry of the tool is not changed but is sim-
ply moved along the planned path. This problem has
been addressed with OptiX Prime 3.9 which offers a
new possibility called instancing. From a model object;
in the sense of Object Oriented Programming; which
associates a triangle mesh and its dedicated acceler-
ation structure, instancing composes complex scenes
using existing triangle models. Then OptiX Prime is
able to create a global acceleration structure for the
whole scene without duplicating the elementary mod-
els’ description. The programmer has to create a mem-
ory structure to associate each instance of a model ob-
ject in the scene with a transformation descriptor, i.e.
a translation, a rotation or/and a scaling matrix. The

Tool postures along the path
(translations & rotations)

hits

tool instances
translations & rotations

part (stl)

—

setinstances()
set global acceleration structure()

fact that the basic model description is not duplicated
in memory allows to process much bigger path buffers.

The surface simulation of a 5-axis machining opera-
tion requires to move and rotate the tool. Regardless of
the machine architecture, the Optix framework allows
to define a transformation matrix for each time step.
The initial tool axis orientation is defined by [0 0 1]T.
Every line of the tool path file is made of three coor-
dinates z,y, z for the tool’s translation plus three co-
ordinates 4,7, k for the tool’s rotation. All values are
related to the global coordinate system. The rigid body
transformation matrix is defined in order to move the
initial tool mesh at the required location under a given
orientation. For a given axis of rotation u and angle ¢
(Fig. 3), the rotation of a vector x is given by :

Fig. 3 Tool orientation parameters

v = cos(p)x + (1 — cos(p))(x.u).u+ sin(p)(u x x) (1)
Applying this equation for u = [j —1i O]T and ¢

defined by cos(p) = k and sin(p) = —/i% + j2 lead to
the following transformation matrix :

S S
Yk tun
—1 —j k z
0 0 01

The algorithm sketching OptiX Prime usage is pro-
vided here after in pseudo-code format and describes
the part-tool intersection main program. In order to
manage large NC files, tool paths are split into blocks
that fit in the GPU memory. It is important to note
that the development and implementation of the SIM-
SURF2 algorithm in OptiX took about one month ver-
sus 6 months for the development of SIMSURF1.

Algorithm 3 Optix Prime pseudo-code

: Create-OptiX-Context (GPU-context)

toolMesh < Create tool mesh from stl file

toolModel <+ Create OptiX Prime Tool Model

toolModel. Create_acceleration_structure()

path < Create transformations buffer from tool path
rotations file

6: boundingBoz <— Compute the bounding box of the
whole scene

7: raysBuffer < Create vertical rays for the bounding
box according to the chosen entensity

8: closestHitsBuffer <— Create the general hits buffer

9: for each block do

current-pos
10: block_number <

NB_POS_PER_BLOCK

11: toollnstances < Create a container for the
models of all tool positions

12: transformations <— Create tool position con-
tainer

13: for every path position in current block do

14: transformations[currentPos] < transform matrix

15: toollnstances[currentPosition] < toolModel

16: end for

17: global_scene < Create the model of the whole scene

with the association of toollnstances
& transformations

18: global_scene. Create_global_acceleration_structure()

19: hitBuffer <— Init buffer for current block

20: Do perform the actual ray tracing on the global-
scene from the raysBuffer

21: closestHitsBuffer < Update with block’s hitBuffer
22: Release the memory used by the global-scene

23: end for

24: Create the stl resulting file from the closestHitsBuffer

4 Experimental investigations

The objective is to compare the computation time ob-
tained with SIMSURF1 and SIMSURF2 for different
NC simulations with different hardware. Several test
cases (table 1) have been investigated in 3 or 5-axis
milling in roughing and finishing with variations in the
number of tool postures on the tool path and trian-
gles in the mesh. The Z-buffer is computed with a grid
of 1024x1024 lines covering the X-Y trajectory range.
Results are gathered in table 2 and in fig. 12.

— 3-axis roughing cases with filleted endmill and grow-
ing number of tool postures and air paths
— Blade roughing (Fig. 4)
— Mask roughing (Fig. 5)
— Wave roughing (Fig. 6)
— b-axis finishing cases with ball endmill and growing
number of tool postures
— Blade finishing (Fig. 7)
— Wave finishing (Fig. 8)
— 3-axis finishing cases with ball endmill and growing
number of tool postures
— Mask finishing (Fig. 9)
— Aero finishing (Fig. 10)

Fig. 4 Blade roughing simulation result

Fig. 5 Ski mask mold roughing simulation result

Fig. 6 Wave surface roughing simulation result
Fig. 10 Aeronautic part finishing simulation result

~#-—SIM1CPU ~*#--SIM2CPU —&—SIM1Q4000 --#--5IM2Q4000
700000
600000
500000
400000

300000

Computation time (ms)

200000

100000

1.Blade 2. Mask 3.Wave 4. Blade 5. Wave 6. Mask 7. Aero
roughing roughing roughing finishing finishing finishing finishing

Fig. 7 Blade 5-axis finishing simulation result . . .
Fig. 11 Computation time on test cases for Xeon CPU and
Quadro4000 GPU with a 1024x1024 Z-buffer

~—#—SIM1K40 ~-4--SIM2K40 ~—e—SIM1TitanZ - -e--SIM2 TitanZ

30000
25000
20000

15000

Computation time (ms)

10000

Fig. 8 Wave surface finishing simulation result <00

1.Blade 2. Mask 3. Wave 4.Blade 5.Wave 6. Mask 7. Aero
roughing roughing roughing finishing finishing finishing finishing

Fig. 12 Computation time on test cases for K40 GPU and
TitanZ GPU with a 1024x1024 Z-buffer

Fig. 9 Ski mask mold 3-axis finishing simulation result

the worst roughing simulation with SIMSURF1 (Xeon
CPU) and the best simulation with SIMSURF2 (K40

Table 1 Test cases description

Case Tool Triangles Postures CAM .
geom. T p () GPU) is around 100.
 Blad T p— P o For 5-axis finishing simulation including translations
. aae rougn. orus
9. Mask rough. Torus 25904 345848 380 an(.i r9tat10ns of the to.ol, i.e. Blade finishing and Wave
3. Wave rough. Torus 25904 8.¢6 3670 finishing, SIMSURF1 is faster than SIMSURF2 what-
4. Blade finish. Sphere 12482 53667 245 ever the hardware. The performance difference is greater
2- waﬁ {fiin%sﬁ~ Spﬁere gigg ;)66165072 igg with the Xeon CPU and Q4000 GPU than with other
. Mask finish. phere . s .
7 Aero finish. Sphere 12482 97495026 2520 hardware. It seems that the generation within OptiX

of the scene including rotations of the instances of the
tool takes a lot of computing resources. The increase
in the number of positions to be processed leads to a
proportional increase in computing time, except for the
TitanZ GPU for which the SIMSURF2 method is more
penalized.

Regarding 3-axis finishing simulations, i.e. Mask fin-
ishing and Aero finishing.1, the results between SIM-

NC simulations have been carried out with the fol-
lowing hardware configurations:

— XEON CPU : Intel Xeon Processor E5-1620V3, 3.5Ghz,
31 Gflops DP, 4 cores, 8 threads, 10Mo SmartCache

— Quadro 4000 GPU : 950 MHz, 486 SP, SP89.6 GB/sec
Memory bandwidth, 2GB (GDDRS5), 256 CUDA Cores

— Tesla K40 GPU (one GK110 GPU): 745 MHz, 4.29
Tflops SP, 288 GB/sec Memory bandwidth, 12GB
(GDDRS5), 2880 CUDA cores

— GeForce GTX Titan Z (two GK110 GPU) : 705
MHz, 4.06 Tflops SP, 288 GB/sec Memory band-
width, 2x 6GB (GDDRS5), 2x 2880 CUDA cores

One can notice that the implementation of SIMSURF1
does not take advantage of the two GPUs of the GeForce
GTX Titan Z, only one GPU is used in this case. It ex-
plains the closeness of the following results with both
GPU. The operating System is XUbuntu 14.04 64 bits
which is based on the Linux kernel 3.5, and the pro-
gramming language is C++ compiled with gec (4.8.4).
Regarding software configurations, SIMSURF1 relies on
CUDA version 7.0 and SIMSURF2 on CUDA 7.5 and
OptiX Prime 3.9.

The three roughing cases are those for which SIM-

SURF1 and SIMSURF2 are similar for all devices. In
the case of Mask finishing, the speed-up, i.e. the ra-
tio between SIMSURF2 and SIMSURF1 computation
times is ranging from 2.89 (Q4000) to 1.49 (Titan Z). In
this case, the ratio between the machined surface area
and the tool dimension is low. This implies that a lot
of intersections will be computed between triangles and
lines. In the case of Aero finishing, SIMSURF1 is still
faster but the speed-up is lower whatever the device.
In this case, the number of intersections between lines
and triangles per tool posture is low, around 7, and
SIMSURF1 takes advantage of a simple bounding box
for each tool posture, whereas OptiX generates an ac-
celeration structure for the 27 million tool postures be-
fore launching the intersections computation. However,
as mentioned above, the threads’ computation times
are heterogeneous and then the parallelisation is lost in
SIMSURF1 [1], leading to comparable performances.

At last, for Aero finishing.2 the size of the Z-buffer
is increased to 10000x10000 (table 3), leading to numer-
ous intersections per triangle and a large acceleration
structure for SIMSURF2, which again loses the advan-
tage over SIMSURF1.

SURF?2 is the most efficient, regardless of the hardware
used, which is a very satisfactory result. In addition, the
higher number of tool positions, the greater the gains
in computation time compared to SIMSURF'1. The rea-
son is that Optix uses an acceleration structure that
minimizes the number of intersections to be calculated.
Roughing paths contain a large number of tool posi-
tions that are not involved in the generation of the final
shape. Thus, only a reduced number of positions in each
Z-level of the path is evaluated in the intersection calcu-
lation. Since the construction of the acceleration struc-
ture is time-consuming, the more ”air” tool positions
in the roughing path, the greater the gains, as shown
by the experimental results. The gain obtained between

5 Conclusion

A comparison of two ray-tracing GPU and CPU im-
plementations for NC simulations has been proposed in
this paper. The first approach is based on the direct use
of CUDA which requires rather steep learning curve and
expertise to achieve high performances. The second one
is based on the OptiX ray tracing engine which provides
simpler application programming interfaces to compute
the rendering of machining scenes. Experimental inves-
tigations have been conducted on 4 different hardware.
They have shown that the approach based on OptiX

Table 2 32 bits computation times (ms) on test cases for a 1024x1024 Z-buffer

Case Xeon CPU Quadro 4000 GPU Tesla K40 GPU Titan Z GPU
Sim1 Sim2 SU Sim1 Sim2 SU Sim1 Sim2 SU Sim1 Sim?2 SU
1. Blade roughing 8353 8440 1.01 2606 2215 0.85 1166 812 0.69 1102 938 0.85
2. Mask roughing 39304 20538 0.52 7607 5564 0.73 2986 1272 0.42 2398 1198 0.5
3. Wave roughing 690700 201900 0.29 161392 72754 0.45 21880 7190 0.33 28651 12225 0.43
4. Blade finish. 10606 101311 9.55 3516 30204 8.59 1703 4925 2.89 1441 3233 2.24
5. Wave finish. 59523 167491 2.81 15037 57767 3.84 2960 6150 2.08 3727 10998 2.95
6. Mask finish. 168520 461582 2.74 43212 125002 2.89 11314 24671 2.18 8984 13374 1.49
7. Aero finishing 45022 107261 2.38 7847 15156 1.93 3698 6815 1.84 3273 4510 1.38
Table 3 32 bits computation times (ms) on test cases for a 10000x10000 Z-buffer
Case Xeon CPU Quadro 4000 GPU Tesla K40 GPU Titan Z GPU
Sim1 Sim?2 SU Sim1 Sim?2 SU Sim1 Sim2 SU Siml Sim?2 SU
8. Aero finishing 206284 3349908 16.3 57674 522275 9.06 30961 163565 5.3 28190 130312 4.6

is the most straightforward to implement and the most
competitive in 3-axis roughing simulations for all hard-
ware. However, 5-axis configurations remain a problem
for OptiX due to the transformation matrix applied for
every posture of the tool (position and rotation). In 3-
axis cases, computation times between SIMSURF'1 and
SIMSUR?2 are much closer, especially on GPU hard-
ware, which can be considered as a positive outcome
regarding the software development simplicity of SIM-
SURF2.

Acknowledgements We gratefully acknowledge the sup-
port of NVIDIA Corporation with the donation of the Tesla
K40 GPU used for this research as well as the support of the
Farman Institute (CNRS FR3311).

References

1. Abecassis, F.; Lavernhe, S.; Tournier, C.; Boucard, P-A.:
Performance evaluation of CUDA programming for 5-axis
machining multi-scale simulation. Computers in Industry
71, 1-9 (2015).

2. CUDA C Programming Guide,
http://developer.nvidia.com/cuda/

3. He, W.; Bin, H.: Simulation model for CNC machining of
sculptured surface allowing different levels of detail. The
International Journal of Advanced Manufacturing Technol-
ogy 33(11-12), 1173-1179 (2007)

4. Inui, M.; Umezu, N.; Shinozuka, Y.: A comparison of two
methods for geometric milling simulation accelerated by
GPU. Transactions of the institute of systems, Control and
Information Engineers 6(3), 95-102 (2013)

5. Jang, D.; Kim, K.; Jung, J.: Voxel-based virtual multi-axis
machining. International Journal of Advanced Manufactur-
ing Technology 16(10), 709-713 (2000)

6. Jerard, R.B., Hussaini, S.Z., Drysdale, R.L.: Approximate
methods for simulation and verification of numerically con-
trolled machining programs. The Visual Computer, 5(6),
329-348 (1989).

7. Lavernhe, S.; Quinsat, Y.; Lartigue, C.; Brown, C.: Re-
alistic simulation of surface defects in 5-axis milling using

NVIDIA, 2012

the measured geometry of the tool. International Journal
of Advanced Manufacturing Technology, 74(1-4), 393-401
(2014)

8. Moller, T.; Trumbore, B.: Fast, minimum storage ray-
triangle intersection. J. Graph. Tools, 2(1), 2128 (1997)

9. Morell-Gimenez, V.; Jimeno-Morenilla, A.; Garcia-
Rodrguez, J.: Efficient toolpath computation using multi-
core GPUs. Computers in Industry 64(1), 50-56 (2013)

10. Parker, S.; Bigler, J.; Dietrich, A.; et al: OptiX: a general
purpose ray tracing engine. ACM Transactions on Graphics,
Proceedings of ACM SIGGRAPH, 2010, 29(4), Article 66,
13 pages, (2010)

11. Quinsat, Y.; Sabourin, L.; Lartigue, C.: Surface topogra-
phy in ball end milling process: description of a 3D surface
roughness parameter. Journal of Materials Processing Tech-
nology, 195(1-3), 135-143 (2008)

12. Zhang, W.; Majdandzic, I.: Fast triangle rasterization us-
ing irregular Z-buffer on CUDA, (2010)

