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ABSTRACT

DEEP 3D SEMANTIC SCENE EXTRAPOLATION

Abbasi, Ali

M.S., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Yusuf Sahillioğlu

Co-Supervisor : Assoc. Prof. Dr. Sinan Kalkan

August 2018, 54 pages

In this thesis, we study the problem of 3D scene extrapolation with deep models.

Scene extrapolation is a challenging variant of the scene completion problem, which

pertains to predicting the missing part(s) of a scene. While the 3D scene completion

algorithms in the literature try to fill the occluded part of a scene such as a chair behind

a table, we focus on extrapolating the available half scene information to a full one, a

problem that, to our knowledge, has not been studied yet. Our approaches are based

on deep generative adversarial (GAN) and convolutional neural networks (CNN). As

input, we take the half of 3D voxelized scenes, then our models complete the other

half of scenes as output. Our baseline CNN model consists of convolutional and

ReLU layers with multiple residual connections and Softmax classifier with voxel-

wise cross-entropy loss function at the end. We use the baseline CNN model as the

generator network in the proposed GAN model. We regularize our GAN model with

a discriminator network, consisting of two internal, local-global networks to have

sharper and more realistic results. Local discriminator takes only the generated part

of scenes, while global discriminator network takes not only the generated part but
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also the first real part to distinguish between real and fake scenes. Using the CNN

model we also propose a hybrid model, which takes the top view projection of input

scene in parallel with the 3D input. We train and evaluate our models on the synthetic

3D SUNCG dataset. We show that our trained networks can predict the other half of

the scenes, and complete the objects correctly with suitable lengths. With a discussion

on the challenges, we propose scene extrapolation as a challenging testbed for future

research in deep learning.

Keywords: 3D scenes, Deep Learning, Scene Extrapolation, Convolutional Neural

Network, Generative Adversarial Network.
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ÖZ

DERİN 3B SEMANTİK SAHNE EKSTRAPOLASYONU

Abbasi, Ali

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Yusuf Sahillioğlu

Ortak Tez Yöneticisi : Doç. Dr. Sinan Kalkan

Ağustos 2018 , 54 sayfa

Bu tezde, derin modellerle 3 boyutlu sahne çıkarımı problemini inceliyoruz. Sahne

çıkarımı, bir sahnenin eksik kısımlarını tahmin etmekle ilgili sahne tamamlama prob-

leminin zorlu bir çeşididir. Literatürdeki 3B sahne tamamlama algoritmaları, bir ma-

sanın arkasındaki bir sandalye gibi bir sahnenin tıkanmış kısmını doldurmaya ça-

lışsa da, mevcut yarım sahne bilgisini tam olarak hesaplamaya odaklanıyoruz. Yak-

laşımlarımız, çekişmeli üretici ağlar (GAN) ve konvolüsyonel nöral ağlara (CNN)

dayanmaktadır. Giridi olarak 3B vokselli sahnelerin yarısını alıyoruz, daha sonra mo-

dellerimiz sahnenin diğer yarısını çıktı olarak tamamlıyor. Temel CNN modelimiz,

çoklu artık bağlantılara sahip olan konvolüsyon ve ReLU katmanlarından ve sonunda

voxel-based cross-entropy kayıp fonksiyonuna sahip ve Softmax sınıflandırıcısından

oluşmaktadır. Önerilen GAN modelinde temel CNN modelini jeneratör ağı olarak

kullanıyoruz. GAN modelimizi, daha net ve daha gerçekçi sonuçlara sahip iki yerel,

yerel-küresel ağdan oluşan bir ayrımcı (Discriminator) ağı ile düzenliyoruz. Yerel ayı-

rımcı sadece sahnelerin oluşturulmuş kısmını alırken, küresel ayrımcı ağı sadece üre-
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tilen kısmı değil, aynı zamanda gerçek ve sahte sahneleri birbirinden ayıran ilk gerçek

parçayı da alır. CNN modelini kullanarak, giriş sahnesinin üstten görünüş projeksi-

yonunu 3D girişe paralel olarak çeken bir karma model önermekteyiz. Modellerimizi

sentetik 3D SUNCG veri kümesinde eğitiyor ve değerlendiriyoruz. Eğitimli ağlarımı-

zın sahnelerin diğer yarısını tahmin edebildiğini ve objeleri uygun uzunluklarla doğru

şekilde tamamlayabildiğini gösteriyoruz. Zorluklarla ilgili bir tartışma ile, derinle-

mesine öğrenmede gelecekteki araştırmalar için zorlu bir test yatağı olarak sahnenin

ekstrapolasyonunu öneriyoruz.

Anahtar Kelimeler: 3D sahneler, Derin Öğrenme, Sahne Ekstrapolasyonu, Konvolüs-

yel Sinir Ağı, Çekişmeli Üretici Ağlar.
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CHAPTER 1

INTRODUCTION

1.1 Problem Definition

Thanks to the availability of consumer-level 3D data acquisition sensors such as Mi-

crosoft Kinect or Asus Xtion Live, it is now quite easy to build digital copies of the

environments or the objects. Regardless of its rapid development, some problems

will always remain in the raw output of such sensing technologies. The notorious ex-

ample is the missing data artifact which emerges due to self-occlusion, occlusion by

other objects, or insufficient coverage of the viewing frustum of the device. While the

occlusion-related problems have been addressed extensively in the literature under

the shape completion or scene completion problems, the coverage-related version is,

to our knowledge, not studied yet. In this study, we address this new problem that we

cast as scene extrapolation. Specifically, given the first half of the scene, we extrapo-

late it to recover the second one. This is a valid scenario as the 3D sensor may not be

able to capture the other half due to, for instance, physical limitations. This is also a

more challenging problem than the completion task which is able to use the available

surroundings of the occluded holes to be filled, an information that is unavailable

to our extrapolation framework. Our problem is also fundamentally different from

the family of shape or scene synthesis problems which aims to reconstruct the target

based on textual or geometric descriptions such as captions or 3D point clouds (see

Figure 1.1).

1



?

Figure 1.1: An illustration of the relevant problems. (Left) Scene completion aims

at estimating the missing hole in the middle of scene. (Center) Scene synthesis con-

structs 3D scenes from point clouds. (Right) Scene extrapolation estimates the unseen

part of the environment from the seen scene (the problem addressed in this study).

1.2 Scope of Thesis

In this thesis we study the problem of 3D scene extrapolation with deep generative

adversarial and Convolutional Neural Networks (CNNs). The dataset we use [53] is

voxelized 3D indoor scenes with object-labeling at voxel level. Our proposed models

take the first half of each 3D scene as input, and complete (estimate) the other side of

it. We design a fully CNN as our baseline model. Then, we solve the same problem

with a Generative Adversarial Network (GAN) model by using the same architecture

as the generator. In the proposed GAN model, the generator uses the first half of

scene to generate second half, and like other GAN models, a discriminator is trained

to distinguish fake (generated) scenes from real ones. We use voxel-wise Softmax

cross-entropy loss function in the generator and GAN loss [18] to train our models.

1.3 Contribution

The main contributions of this thesis can be described as follows. First of all, we

introduce a novel problem different than other completion tasks, namely the extrap-

2



olation of a half scene into a full one. Secondly, we propose a deep CNN model

that estimates the unseen half of the scene given the visible part as its input. Thirdly,

taking the CNN model as a baseline, we extend it into a GAN model with two local-

global discriminator network to handle this problem. Also taking the 2D top view of

input scene as parallel we build a hybrid model, which combines 2D and 3D gener-

ated scenes to predict the unseen half of input scene. A part of the thesis has been

disseminated in the following paper: “Ali Abbasi, Sinan Kalkan, Yusuf Sahillioğlu,

Deep 3D Semantic Scene Extrapolation, The Visual Computer Journal, 2018”.

1.4 Outline

This thesis document, which focuses on the 3D scene extrapolation task using deep

models, is divided into 5 main chapters:

• Introduction

• Background

• 3D Scene Extrapolation with Deep Models

• Experiments

• Conclusion

The first chapter is designed to introduce the topic and purpose of the study. Chapter

2 is allocated to the literature survey in detailed way and also to the theoretical expla-

nations and mathematical form of the deep learning. The third chapter explains the

methods and models we use for scene extrapolation task. In chapter 4, experimental

procedures, comparative results of proposed method, and detailed discussions about

the study and results are presented. Conclusion and future work can be monitored in

chapter 5.
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CHAPTER 2

BACKGROUND

Missing data can be completed in various ways depending on the size of the misses.

We broadly categorize these methods as rule based and learning based approaches.

2.1 Rule Based Missing Data Completion Approaches

A set of rule based approaches utilize an “as smooth as possible” filling strategy

for the completion of sufficiently small missing parts, or holes [38, 70, 61]. When

the holes enlarge to a certain extent, context-based copy-paste techniques yield more

accurate results than smooth filling techniques do. In this line of research, convenient

patches from other areas of the same object [19, 42, 51] or from a database of similar

objects [16, 32, 36] are copied to the missing parts. Although these methods generally

arise in the context of 3D shape completion, appropriate modifications enable image

[2, 21, 33] and video [25, 58] completion as well. A common limitation to this set of

works is the assumption on the existence of the missing part in the context. Besides,

these algorithms may generate patches inconsistent with the original geometry as

they may not be able to take full advantage of the global information. Although semi-

automatic methods that operate under the guidance of a user [20, 65] may improve

the completion results, a more principled solution is based on supervised machine

learning techniques, as we discuss in the sequel.

A different rule-based pipeline is based on the family of iterative closest point algo-

rithms [5, 6, 43, 64]. These algorithms are applicable when there are multiple sets

of partial data available at arbitrary orientations, a case that typically emerges as a

5



result of 3D scanning from different views [40]. By alternating between closest point

correspondence and rigid transformation optimization, these methods unify all partial

scans into one full scan, hence completing the geometry. Requiring access to other

complementary partial data is a fundamental drawback on these works.

2.2 Learning Based Missing Data Completion Approaches

Scene completion, posed either on 2D image domain or 3D Euclidean domain, is

more challenging than the shape completion case discussed thus far. The difficulty

mainly stems from the fact that it is an inherently ill-posed problem as there are

infinitely many geometric pieces that look accurate, e.g., a chair as well as a garbage

bin is equally likely to be occluded by a table. A rule based approach such as [71]

should, therefore, be replaced with a machine learning based scheme as the latter

imitates the thinking mechanism of a human for whom the completion task is trivial,

e.g., we immediately decide the highly occluded component based on our years of

natural training. To this end, [53] recently proposed a 3D convolutional network that

takes a single depth image as input and outputs volumetric occupancy and semantic

labels for all voxels in the camera view frustum. Although this is the closest work to

our paper, we also deal with the voxels that are not in the view frustum, hence the even

more challenging task of scene extrapolation instead of completion, or interpolation.

Similar to [53], unobserved geometry is predicted by [13] using structured random

forest learning that is able to handle the large dimensionality of the output space.

Recent deep generative models have shown promising success on completion of im-

ages at the expense of significant training times, e.g., in the order of months [26, 29,

37, 66]. There are also promising 3D shape completion results based on deep neural

nets [8, 63], which again suffer from the tedious training stage.

In the shape synthesis problem, given a description of a shape or a scene to be syn-

thesized, it is aimed to reconstruct the query in the form of an image [68, 69], video

[55], or surface embedded in 3D [14, 24, 28, 50]. There are many sources for the

descriptive information ranging from a verbal description of the scene to 3D point

cloud of a shape. Synthesis can be performed by either generating the objects [59] or

6



retrieving them from a database [15, 30].

In deep learning, there are many generative models that can scale well at large spaces

such as natural images. The prominent models include Generative Adversarial Net-

works (GANs) [18], variational autoencoders [45], and pixel-level convolutional or

recurrent networks [47]. In addition to modeling the extrapolation problem as a voxel-

wise classification problem, we chose GANs among the generative models since (i)

they are easier to construct and train, (ii) they are computationally cheaper during

training and inference, and (iii) they yield better and sharper results.

As a summary, completion and synthesis of shape, scene, images or videos have been

extensively studied in the literature. However, scene extrapolation is a new problem

that we propose to solve in this thesis using deep networks.

2.3 Deep Learning

Artificial neural network and its structure has inspired researchers for developing the

concept of ‘Deep Learning’. Deep learning has appeared in the last decade as a re-

search field in machine learning area [4, 23]. The name ‘deep’ came from its deep and

hierarchical structure. Shallow architectures include support vector machines (SVM)

recently used in machine learning, signal processing, and other learning-based areas.

The data amount has been grown and become more complicated and demanding in re-

cent yeras, therefore some real-world applications and problems can not be solved by

shallow structures. Studies in deep learning has influenced areas in the literature such

as data science, robotics, computer vision and graphics, speech recognition, natural

language processing, audio processing and medical areas.

‘Deep learning’ is a branch of machine learning which has complex layers for analyz-

ing and processing the raw data. It includes the classification, feature extraction (or

selection), data generation and transformation in both supervised and unsupervised

approaches. These deep structures even can fuse any sorts of detailed and compli-

cated features.

The popularity of deep learning in recent years has rised due to some reasons which
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are explained as below. Firstly, graphical processing units (GPU) comes in this field

and make the processing of large amount of data in a parallel way. The mathematical

matrix operations are more convenient to do with GPUs, so the processing of large

size of training data is no longer difficult. The other reason for the popularity of deep

learning is the advantage of having the feature extraction without need of defining

them manually [9, 52]. In the machine learning algorithms, there are some needs

of defining kernels and cost functions by a good knowledge and powerful analysis

whereas working with deep learning helps us to build a model which can select the

useful features to learn from low to high level [3].

The power of the model is affected by the number of hidden layers and their neurons.

By increasing the capacity (deeper and wider networks) of the model, the time and

resource complexity will be rise. Having more capacity in models leads to have better

learning process; however, by adding more hidden layers and neurons it will not

always work efficiently.

2.3.1 Deep Feedforward Networks

Deep feedforward neural networks are the typical deep learning models. The goal

of a feedforward network is to approximate some functions. A feedforward network

defines a mapping and learns the value of the parameters that result in the best func-

tion approximation. These models are called feedforward because information flows

through the function being evaluated from x, through the intermediate computations

used for defining f , and finally to the output y. These networks consist of some layers

like chains, which are the most commonly used structures of neural networks. The

length of this chain defines the depth of the model. The final layer of a feedforward

network is called the output layer. During the training of neural networks, we drive

the actual function f(x) to match the approximation function. Each example x has a

label of y ≈ f ?(x). The training samples specify what the output layer must produce

for each x, which should be a value that is close to y. The reaction of other layers

except the output layer are not directly determined by the training samples. The learn-

ing algorithm must decide how to use those layers to produce the desired output, but

the training data do not say that what each individual layer does. Instead, the learning
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algorithm must decide how to use these layers to implement an approximation of f ?

in a best way, since the training samples do not show the desired output for each layer,

these layers are called “hidden layers”.

2.3.1.1 Gradient-Based Learning

Building and training a neural network is like to train other machine learning al-

gorithms with gradient descent. The training in neural networks usually iterative

gradient-based optimization. On the other hand, in training linear models, we use a

convex optimization algorithm, which guarantees convergence. In optimization of a

convex function, any initial parameters lead us to convergence. However, in a stochas-

tic gradient descent algorithm for non-convex loss functions there is no guarantee

convergence and it has strong dependency on the initialization of the parameters. It

is necessary to initialize the parameters to small random value for feedforward net-

works. We must choose a cost function for optimizing the output of the model to train

the neural network with gradient-based learning.

Cost Function The cost function is usually defined as a term that relates the network

output and expected target values and it estimates a penalty for the network outputs.

The cost function is an important point in designing and training a deep neural net-

work.

Activation Function The activation function is usually a “non-linear transformation”

which transforms the output of each neuron and makes it as an input to the next layer

neurons. Without activation function, we will have the simple linear transformation

in networks. There are some popular activation functions in neural networks such as

Sigmoid, Tanh, ReLU, Leaky ReLU, and Softmax.

Backpropagation The most common training method for the neural network is the

backpropagation algorithm. One of the essential problems in training neural network

is setting the weight and biase parameters. Backpropagation method tries to find opti-

mal weights based on training samples and desired target values. Difference between

the desired and actual output values is used in the least mean square (LMS) error

calculation which is the main input of the backpropagation algorithm. LMS training
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error on a training set is the summation of squared difference between the actual and

the desired output unit [12].

LMS training error is formulated as:

J(w) =
1

2

k=1∑
c

(tk − zk)2, (2.1)

where t is the desired output and z is actual output vectors of length c, while w is

the weights of the network. These weights are randomly initialized values which are

updated consecutively by the gradient descent algorithm to reduce the error. Learn-

ing rate defines the amount of the change in weights. The most common and useful

neural network training optimization methods are batch and stochastic training. In

stochastic training, the training patterns are selected from training samples randomly

and with the help of gradient descent algorithm, weights are updated gradually. How-

ever, in batch training, all of the training samples are used in the learning process.

Lastly, a stopping criterion should be defined in order to stop the training process

automatically.

2.3.2 Overfitting and Regularization in Deep Learning

The main issue in the machine learning algorithm design is how to make it perform

well not only on the training data but also on the unseen test data. Many methods

are used in machine learning to reduce the test error. These methods are known as

regularization. There are many forms of regularization available for deep learning.

Furthermore, developing the effective regularization strategies has been one of the

research areas in this field.

2.3.2.1 L2 and L1 Regularizations

One of the most commonly used regularization terms is L2. This regularization forces

the weights to get closer to zero by adding a regularization term δ(θ) = 1
2
‖w‖2 to

the objective function. The idea behind L2 regularization is to use distributed weights

vector rather than peaky vectors. This regularization encourages the network to use

all of its inputs equally rather than using some of them more than other weights.
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L1 regularization forces the weights to become sparse in optimization, which causes

them go very close to zero. In fact, with this regularization, the network uses a subset

of their most critical inputs and their weights since most of the parameters are becom-

ing very close to zero and having very small influence input. Practically, using the L2

regularization gives better performance compare to L1, except in the case of explicit

feature selection.

2.3.2.2 Dataset Augmentation

The domain specific transformation for expanding the training dataset synthetically is

called dataset augmentation [10]. In other words, it means increasing the number of

data points. Theoretically, in machine learning algorithms, the more data for training

phase will result in the better model. In some cases, the process of collecting the

real data such as image, text, video and, etc., is very costly in terms of the time

and other resources. So, we need to execute some methods to augment the existing

data to increase the dataset size. There are some ways to do dataset augmentation

for instance in image data, we can rotate, shift, make blur, add some noise, change

lighting condition and having different subsamples of an image.

2.3.2.3 Early Stopping

Training a deep model needs to play with some hyperparameters and finds the most

suited one for the network. One of these hyperparameters is the number of training

epochs. One epoch means one pass of the full training set. In some cases, using more

epochs for training causes in over-fitting and few epochs maybe results in under-

fitting (the network does not learn very well). The early stopping is an approach to

determine in which epoch we should stop the training process. In this approach, we

start training the network on training data and after each epoch evaluate the network

on validation data. We will stop where the network performance on the validation set

gets worse.
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2.3.2.4 Dropout

Deep neural networks are powerful models, however, over-fitting is a big problem in

the training of a deep model. Mostly, networks with higher capacity have a large num-

ber of neurons, and this causes the difficulty of dealing with the over-fitting problem.

Dropout comes to end this issue by randomly dropping the units with their connection

during training from the network. This technique stops the units in the network from

a mutual adaption. Dropout improves the performance of the network in comparison

with other regularization methods [54].

2.3.3 Optimization for Training Deep Models

Deep learning and optimization are wraps in each other in many grounds. The most

difficult optimization in deep learning is training the neural network. It may take

months to find an optimized solution for a neural network. In the optimization prob-

lems, the aim is to find the parameters θ in the network which decreases the loss

function, J(θ). The optimization process in deep model trainings is different than

classical optimization methods. In the machine learning problems, we usually act

incidentally. In the most cases with the machine and deep learning problems, we con-

cern about performance measure P , which is defined with respect to the validation set

and in the next step we try to optimize P . With decreasing the loss function J(θ) we

expect to see an improvement in P . This is what has paradox with pure optimization,

which minimizes the J in an indirect way.

Batch and Minibatch Trainings The algorithms for optimization which use all the

training set are batch methods because they fit the whole training data in a batch.

This definition may also be confusing because of the term “batch”, which also used

for explaining the minibatch training process. It is common to use the term of “batch

size” to show the size of minibatch.
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2.3.3.1 Challenges in Deep Neural Networks Optimization

Typically, optimization is a very complicated problem. Deep learning tries to reduce

this complexity by designing a cost or objective function with some limitations which

force it to be a convex function.

Local Minima The biggest advantage of a convex optimization problem is that it can

be converted to the problem of finding a local minimum. In a way, any local minimum

also can be a global minimum.

2.3.3.2 Stochastic Gradient Descent

The most common algorithm in optimization is stochastic gradient descent (SGD).

Algorithm 1 shows the SGD and how it calculates the downhill gradient.

Algorithm 1 Stochastic Gradient Descent (SGD) [17]
Require: Learning rate εk.

Require: Initialized Parameter θ.

while not reach stopping point do

Take a minibatch of m from the training samples with their labels y(i).

Calculate the gradient: ĝ ← + 1
m
5θ

∑
i L(f(x

(i); θ), y(i))

Update: θ ← θ − εĝ
end while

The critical parameter in SGD algorithm is the learning rate. Normally the SGD has

a fixed learning rate ε, but in practice, it is important to have decreasing learning rate

over training time. The εk shows learning rate at iteration k.

2.3.3.3 Parameter Initialization

Since the training deep neural networks is a complicated task, the most models and

networks are influenced by their way of initialization parameters. The initial values

for parameters can determine the convergence or failure of the model. Even with the

converged learning process, the initialization determines whether it converges with
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low or high cost. The usual way to initialize all the weights in the model to values

drawn randomly from a Gaussian distribution. The measure of distribution for initial-

ization has the reasonable influence on the progress of optimization and the capability

of the model to generalize.

2.3.3.4 Adaptive Learning Rates Algorithms

The researchers in deep learning and neural network area found that the learning rate

is the most important hyperparameter to set because it has the significant influence

on the training for convergence and network performance. Recently, some methods

has been created which have adaptive learning rate parameter and they are called

incremental methods. There are three methods that are explained as below:

AdaGrad This method is an adaptive learning rate approach, proposed by [11].

Consider dx as gradient and ssg as sum of squared gradient per parameter,

ssg =
w∑
i

dx2. (2.2)

The ssg will be used as normalized parameter in each update step. The AdaGrad

approach increases the learning rate for parameters with less effects and decreases for

parameters which receive high gradients. Assume w as vector parameters so we have

element-wise update rule as below:

w = w − lr × dx
√
ssg + e

, (2.3)

where lr stands for learning rate and e shows the smoothing term performing division

by zero avoids. One of the disadvantages in this method for deep models is stopping

the learning too early because of monotonic learning rate.

RMSProp This adaptive learning rate algorithm solves the problem of AdaGrad

method and monotonically decreases the learning rate [56]. In fact adding a decay

rate dr to the ssg in AdaGrad, to make it moving, instead of keeping it uniform. So

we have ssg as follow:

ssg = dr × ssg + (1− dr)× dx2, (2.4)
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and update the parameters like formula (2.3). In this method the ssg is leaky and dr is

a hyperparameter with usual values of 0.9, 0.99 and 0.999. Unlike the AdaGrad, up-

dated value with this algorithm does not get uniformly smaller. So RMSProp adjusts

the learning rate for each parameter based on the value of its gradient.

Adam Proposed by [31], Adam acts like RMSProp optimizer with momentum.

This optimizer acts as momentum and preserves an exponentially decaying average

of past gradients mt. while momentum is like a ball going down on a surface with

slope, the Adam optimizer acts like a rough weighty ball. While mt and vt show the

past and past squared gradients respectively, decaying average is calculated as:

mt = β1mt−1 + (1− β1)gt, (2.5)

vt = β2vt−1 + (1− β2)g2t . (2.6)

Now themt and vt are the approximation of the first and second moments of gradients

(mean and the variance respectively). Since the mt and vt are initialized to 0, usually

in initial steps they are going towards zero. And this happens mainly when decay

rates are small (β1 and β2). The Adam optimizer prevents this problem by calculating

mt and vt as:

m̂ =
mt

1− βt1
, (2.7)

v̂ =
vt

1− βt2
. (2.8)

Finally they use the following equation to update parameters and suggest default val-

ues of 0.9, 0.999 and 10−8 for β1, β2 and ε respectively.

θt+1 = θt −
η√
v̂t + ε

m̂t. (2.9)

2.3.4 Convolutional Neural Networks

Convolutional neural network (CNN) is an instance of deep learning which has the

considerable enhancement in image, video, speech and audio processing. This kind
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of models are made up some sequential layers like convolution, pooling and non-

linearity [7]. This idea of CNN was presented in the 1960s, however, its preparing

times were too high to make this an appealing and helpful method. In recent times,

with the presentation of GPU in video cards, training these models are now much

easier and bring its worth in fields of computer vision. CNN models learn features

from input data layer by layer, as going deeper in the layers, the features are captured

from low-level to high level.

2.3.4.1 Convolution Operation

The CNN models are different from the normal ANNs where the input image to the

CNN model is divided into small equally sized tiles and features extracted from these

tiles. These features are extracted by the filters which are learnable parameters. These

filters are learned by doing the convolution operation between image and filter val-

ues. The convolution operation is sum of element-wise multiplication between two

matrices (images and filter) in the form of an integer which is a single element of

result matrix. This filter called convolution filter and has the parameter numbers as

filter size. These filters are trying to learn distinct feature in images. In the first lay-

ers of the model, the convolution filters detect low-level features such as edges and

corners, while going deeper the filters can fetch high-level characteristic with seman-

tic meaning. Convolution filters are matrices of pixel values with defined size and

depth. These values in the filters are initialized randomly, however, their values can

be learned and updated automatically in some dimension. The value updating process

is done by backpropagation algorithm [57].

2.3.4.2 Pooling Layer

The pooling layer is used for decreasing the size of the output matrix from the convo-

lution layer. So we use an operation called max-pooling. The max-pooling finds the

max value inside each grid tile of the input matrix. The pooling layer has two main ef-

fects in CNN models. 1) Dimension Reduction. Since the pooling layer reduces the

size of the input image, it takes the data into low dimension space and preserve more
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global features. Also the pooling layer with reducing dimension avoids the curse of

dimensionality. 2) Position Invariance. The pooling layer extracts the maximum

value from a given region, irrespective of the feature value position. This maximum

value would be from any positions inside the region and does not capture the position

of the max value. Therefore it provides positional invariant feature extraction [34].

2.3.5 Generative Adversarial Networks

The main idea of GAN is first introduced in 2014 by Ian Goodfellow [18]. It has two

models that one of them generates samples by taking noise as input which is called

generator and the other one receives two samples from the generator and the training

data. The second part is called discriminator which tries distinguish the fake data

from the real one. Generator and discriminator models are trained together to learn

to generate real samples and distinguish generated data from real data. The general

structure of GAN is represented in 2.1.

The differences between generative and discriminative models are as below: The

discriminative model is related to conditional distribution so that the model learns the

function and map the real data to some desirable output class. On the other hand, the

generative model is related to the joint probability which uses input data and labels.

The generative models can be used for classification using Bayes rule and can be used

for creating new samples.

2.3.5.1 Formal Representation

Assume G is the network which is used in generator part G(z, θ1). The role of the

generator is mapping noisy inputs z to the desired data space x. The other network,

D(x, θ2) shows the discriminator model and the outputs are the probability which be-

long to the real data; θi in both networks represents the weights of the neural networks.

These weights in discriminator try to update themselves to maximize the probability

of real data while minimizing the probability for fake data. The loss function maxi-

mizes D(x) function and minimizes D(G(z)). Whereas the generator tries to update

the weights to maximize the probability of the fake data which is classified as real
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Figure 2.1: General structure of GAN models.

data and the loss function maximizes D(G(z)).

At the end of the training process, the generator and discriminator stops to improve

themselves at a point. Then, the generator starts to generate realistic data and the

discriminator can not distinguish between two types of input. The logarithm is used

instead of probability in the loss functions because log loss penalizes classifiers in the

case of incorrect classification. Cost function of the played game between generator

and discriminator is as follow:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]. (2.10)
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CHAPTER 3

3D SCENE EXTRAPOLATION WITH DEEP MODELS

3.1 A Convolutional Neural Network for Scene Extrapolation (CNN-SE)

CNNs [35] are specialized neural networks with local connectivity and shared weights.

With such constraints and inclusion of other operations such as pooling and non-

linearity, CNNs essentially learn a hierarchical set of filters that extract the crucial

information from the input for the problem at hand.

In our approach, we use a deep fully CNN model for the 3D semantic scene extrap-

olation task (Figure 3.2). Fully CNN models consist of only convolution and do not

use pooling or fully-connected layers. Given the first half of 3D voxelized scene

(f3D ∈ Vw×h×d, where V = {1, ..14} is the set of object categories each voxel can

take; w, h, d are respectively the width, the height and the depth of the scene), our task

is to generate the other half of scene (s3D ∈ Vw×h×d), which is semantically consis-

tent with first half of scene (f3D) and conceptually realistic (e.g., objects have correct

shapes, boundaries and sizes). Since our approaches work on voxelized data, we treat

each 3D voxelized scene as ‘2D images’ with multiple channels, where channels cor-

respond to planes of the scene. We find that each voxel in a 3D scene is strongly

dependent to adjacency voxels, or in the other words, each plane of voxels in a way

similar to near planes. Therefore, as shown in Figure 3.1, we convert 3D voxelized

scenes to 2D planes, like RGB images, instead we have 42 channels (42 layers of

voxels - i.e., w is 42) for the input scene. Our models complete the missing channels

from an input 3D scene.

We have experimented with many architectures and structures, including pooling lay-
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Table 3.1: The architecture details of our CNN model. The layer type is shown in the
‘Layer’ column; ‘Conv.’ stands for convolution, and ‘Res’ for residual block, which
is detailed in (b). ‘R’ shows the ReLU activation function in the second column. The
last layer is a Softmax classifier.

(a) CNN model architecture.

L
ay

er

A
ct

iv
at

io
n

B
at

ch
N

or
m

.

K
er

ne
l

St
ri

de

D
ila

tio
n

O
ut

pu
ts

Conv. - x 7× 7 1 1 64
Res1. ×4 - - - - - 64
Res2. ×2 - - - - - 64

Conv. - x 1× 1 1 1 14× 42

(b) Residual blocks internal architecture. Res2. uses dilation 2 and 4
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Figure 3.1: We convert 3D voxelized scenes to 2D planes, like RGB images, instead

we have 42 channels for the input scene. Our models complete the missing channels

from an input 3D scene.

ers, strided and deconvolution in bottleneck architectures, and dilated convolutions

[67]. However, we found that a network with only convolution operations with stride

1 yielded better results. Therefore, we design our architecture as convolutional layers

with stride 1 and same padding size, see Figure 3.2.

Table 3.1 lists the details of the CNN-SE model. The fully CNN model takes input

scene and first applies a 7 × 7 convolutions, then the architecture continues with 6

residual blocks [22]. Each residual block contains 3 layers of ReLU non-linearity

(defined as relu(x) = max(0, x); see [46]) followed by convolution after each. It

finishes with a 1 × 1 convolutional layers, and Softmax classifier with voxel-wise

cross-entropy loss, LCE , between the generated and the ground truth voxels as fol-

lows:

LCE =
1

m

∑
i

H(t3Di , s3Di ), (3.1)

where m is the batch size; s3Di is the extrapolated scene for the ith input, and t3Di is

the corresponding ground truth. Cross-entropy (H) between two vectors (or serialized

matrices) is defined as follows:

H(p,q) = −
∑
i

pi log(qi). (3.2)

We also use a smoothness penalty term, LS , to make the network produce smoother

results by enforcing consistency between each generated plane spij (i.e., the generated

jth voxel plane for the ith input instance) and its next plane in the ground truth, tpi(j+1):

LS =
1

m

∑
i,j

H
(

tpi(j+1), s
p
ij

)
, (3.3)
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Figure 3.2: The scene extrapolation problem addressed in the study, and how we

use deep learning to solve it. Our deep CNN model takes in a half of the 3D vox-

elized scene as input and after applying some convolution operations, generates the

full scene as output. The numbers inside the layers indicate the kernel sizes. The

architecture consists of several residual connections, as shown by the arrows.

where m is again the batch size.

Moreover, against overfitting, we add L2 regularization on the weights:

L2 =
λ

2

∑
i

w2
i , (3.4)

Lf = −
∑
i

(1− pi)γpi log(qi) (3.5)

where λ is a constant, controlling the strength of regularization (λ is tuned to 0.001),

and wi is a weight.

In addition the focal loss Lf [39] is added to have faster convergence. Therefore, the

total loss that we try to minimize with our CNN model is as follows:

Ltotal = LCE + LS + L2 + Lf . (3.6)
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3.2 A Generative Adversarial Network for Scene Extrapolation (GAN-SE)

GANs [18] rely on interplay between two kinds of networks, a generator network

and a discriminator network, which have compete against each other in a minimax

game. In a GAN, the generator tries to generate novel data given its input, whereas

the discriminator aims to distinguish the generated data from the real one. Generally

speaking, the generator (G) maps a vector (z) of random variables to the space of

data to be generated. The discriminator, on the other hand, is trained to discriminate

x ∼ pdata(x) with label ‘real’ from G(z) with label ‘fake’.

We design our GAN model as a deep convolutional generative adversarial network

(DCGAN) [48] enhanced with reconstruction loss for the generator to improve results

– as inspired from [37, 26] – see Figure 3.3. The generator, a fully-convolutional

neural network, is similar to the CNN-SE model presented in the previous section,

whereas the discriminator is composed of two sub-networks, one for local and one

for global processing.

Formally speaking, let G(f) be the output of the generator network (note that our

generator network does not use noise as input – we will discuss this in Section 3.2.3),

where f is first part of scene, and D(f,u) denote the discriminator network where u is

either a generated (G(f)) or a real scene (x). In our case, we try to solve the following

problem:

min
G

max
D

Ex∼pdata(x),f∼pdata(f),[logD(f, x)] + Ef∼pdata(f)[log(1−D(f, G(f)))], (3.7)

where x is the ground truth. We have also trained the discriminator with D(f′, x)

(with label ‘fake’) and with D(f′, G(f)) (with label ‘fake’), where f′ is the first part of

another scene in the dataset. However, this has not improved the results.

3.2.1 The Generator (G)

The generator (G) is a fully CNN, the architecture is similar to CNN model, with the

difference that G has Leaky ReLU [41] as the activation function. The input to the

generator, f, is the first half of the 3D voxelized scene, and the output is the other half,
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Figure 3.3: The GAN model used in our study. We feed the half of 3D voxelized scene

as input to the generator network (same as the CNN model that we used in Section

3.1). The bottom network is the discriminator consisting of two local and global sub-

networks, inspired from [26, 37]. The local network takes in only the generated part

while the global network feeds in the generated part along with the input scene. The

discriminator network concatenates the activations of these two sub-networks with a

fully-connected layer to estimate a realness probability.

G(f). In contrast to original GANs [18], we do not use noise (z) during generation,

similar to [37, 26] – see Section 3.2.3 for a discussion on this.

For training the generator, in addition to the GAN loss, we use the loss that we used

for the CNN model in Equation (3.7). This strategy has already been employed in

face completion [37] and image completion [26], both using GANs, where squared-

error loss was used. They have shown that combination of the GAN loss and the

reconstruction loss (CNN-SE loss in our case) leads to much better results. In our

case, since we have a voxel-wise classification problem, instead of squared-error loss,

we used voxel-wise cross-entropy loss.

As a precaution against mode collapse in GAN training, we use dropout in all layers,

except for the first and the last, as suggested in the literature [27].
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3.2.2 The Discriminator (D)

Similar to the generator, we use a CNN model to build our discriminator network,

with which we squeeze the input to a more compact feature space first. The aim of

discriminator network is to recognize if a complete scene is real or generated. As

shown in Figure 3.3, D takes two different inputs; the right-hand side of the scene

(G(f) or x ∼ pdata(x)) for a local sub-network, and the left-part (f) concatenated with

the right-hand side (G(f) or x ∼ pdata(x)) for a global sub-network, inspired from

[26] and [37]. The outputs of these local-global networks are concatenated together

and mapped to a binary label (real or fake).

Table 3.2 describes the details of the discriminator architecture. The local discrimina-

tor sub-network takes second part as input as 42× 44 grid size with 42 channels. The

global discriminator follows the same architecture as local, but takes the whole scene

(f concatenated with G(f) or x ∼ pdata(x)). The motivation behind this global net-

work is not only to distinguish real and fake scenes but also to force the discriminator

network to learn (i) the features from the whole scene and (ii) the relation between

the first and second halves of the scenes. We will show that this combination yields

better results than either of them.

3.2.3 Stable Training and Loss Functions

As proposed in [18], because of the gradient vanishing problem in minimizing log(1−
D) for the generator, we use as Equation (3.7) to maximize log(D) instead, which also

allows to have stronger gradient. The GAN loss for the discriminator tries to max-

imize log(D(f, x)) for input and its real other half, and to minimize log(D(f, G(f)))

for input and its generated other half. In fact, the GAN loss of the generator tries

to maximize the probability of the generated data, while the discriminator wants to

maximize the real data and minimize the generated data probability.

We have also tried adding noise (z) to the input of the generator, which however did

not lead to any stable training. As also noted by others [60], creating 3D data from

noise is rather complicated, since there is too much variability in the 3D space, requir-

ing more data, and different architectures or strategies. Therefore, in our results, we
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Table 3.2: The discriminator architecture of our GAN model. The last layer has
sigmoid activation to squash the output between between 0 and 1. ‘LR’ shows Leaky
ReLU activation function. Batcn normalization used in all layers except concat and
FC layers.

(a) Details of the local sub-network.
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(b) Details of the global sub-network.
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only use the visible part of scene to generate the other part, which made the training

process more stable.

Furthermore, training the GAN models and keeping the generator and discriminator

in a balance is tricky. Because the discriminator learns to detect fake scenes from real

scenes long before the generator can start to generate meaningful data. Then, it is im-

possible for the generator to learn training data distribution form ahead discriminator.

To overcome this problem we train the generator for 50,000 iterations, before starting

to train the discriminator in parallel, which makes the training process more stable in

our case. However, training more than 700,000 iterations result in somehow partial

mode collapse, which causes the network to generate the same shape of ‘walls’ and

‘floors’ in most scenes. Therefore, we stop training somewhere between 700K and

1000K iterations.

3.3 3D Scene Extrapolation with Hybrid Model (Hybrid-SE)

This model, in addition to taking the first half in 3D (f3D) as input, processes the 2D

top view projection in parallel. Figure 3.4 shows the overall view of our hybrid model.

f3D is fed to the CNN-SE model as explained in section 3.1, in parallel, ftop, the 2D top

view projection of f goes into an autoregressive generative model, namely PixelCNN

[47], to generate the top view of the second part (stop). This top view should provide

whereabouts and identities of the objects in the space to be extrapolated. Then a

2D to 3D network takes this generated 2D top view as input and predicts the third

dimension to make it 3D. The output from CNN-SE (s3D) and 2D to 3D network (stop)

are aggregated together and fed into a smoothing network consisting of 4 ResNeXt

blocks [62]. In this model, we use the loss in Eq. 3.6 for CNN-SE network; for

PixelCNN network, Eq. 3.1, 3.4; and for the focal loss for 2D to 3D network, Eq.

3.1, 3.2 and 3.4; and for the smoother network, Eq. 3.1 and 3.2. All the weights in

our hybrid model are trained from scratch, and the training process is end-to-end.

Our hybrid model predicts the top-view of the unseen part. However, this 2D extrap-

olation is itself as challenging as 3D extrapolation. In order to demonstrate the full

potential of having a good top-view estimation of the unseen part, we also solved the
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3D extrapolation by feeding the known 2D top-view of the unseen part.
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Figure 3.4: The hybrid model used in this study. We feed the half of 3D voxelized

scene as input to the CNN-SE network - see Section 3.1. In parallel, the top view

projection of the first-half (i.e., ftop) is fed into PixelCNN [47] to generate the other

side top view (stop). The 2D to 3D network consists of multiple residual block map

its 2D input to 3D. Then this output is aggregated with CNN-SE network output and

goes into a smoother network consisting of 4 ResNeXt [62] blocks.
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CHAPTER 4

EXPERIMENTS

In this section, we explain our experiments and results on 3D scene extrapolation

problem. In order to have a comparison, we also implemented U-net [49] and SSC-

Net [53] architectures for 3D scene extrapolation task. We list the quantitative and

qualitative results in the section 4.3.

4.1 Dataset

We used SUNCG [53] synthetic 3D scene dataset, for training and inference. This

dataset contains 45,622 different scenes, about 400k rooms and 2644 unique objects.

We constructed scenes by their available information with provided as JSON file for

each scene. We parsed each scene JSON file and build a separate scene for each

room. In the room extraction process we ignored scene types such as outdoor scenes,

swimming pool and etc. We used the binvox [44] voxelizer, which use space carv-

ing approach for both surface and interior voxels. To make the voxelizing process

faster, we first voxelized each object individually then put them in their place in each

room. During the object voxelization, we set the voxel size to 6cm, then voxelized

the objects with respect to their dimensions. To find the resolution for each object, the

longest dimension in the object was divided by 6 to give the grid size of voxelization

for that object.

In our experiments, we removed categories that did not have sufficient number of

instances, (or smaller than frequently occurring objects in scene like beds, sofas, cab-

inets, windows and etc), which reduced the number of object categories from 84 to
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Figure 4.1: Sample scenes from the synthetic SUNCG dataset [53], a challenging
dataset containing diverse kinds of chairs, beds, sofas, shelves, tables, cabinets and
coffee tables in different shapes and sizes.

13 (plus one category, for emptiness). The removed objects include TVs, plants, toys,

kitchen appliance, floor lamps, people, cats and etc. We set a fixed resolution in our

models to 84 × 44 × 84. We observed that this resolution was sufficient to represent

the objects and the content of the scenes. We also removed scenes which has less than

12000 voxels in size, and leave about 211K scene, we used 200K as the training data

and the rest as the test data. The data processing and building the 3D scenes roughly

took a week. Figure 4.1 shows some sample scenes from this challenging dataset.

4.2 Training Details

We used Tensorflow [1] to implement our models. In our models we train the weights

from scratch. The training process in all our models is end-to-end. Table 4.1 summa-

rizes the training details for each model individually. For all training processes, we

used a single NVIDIA GeForce Titan X GPU.
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Table 4.1: The training details for our models. The weights are initialize randomly
with mean=0 and std=0.01. The training process for each model took about 8 days.
‘w gt’ indicates known 2D top view. In our models we train the weights from scratch.
The training process in all our models is end-to-end.

model lr bs iter. optimizer
CNN-SE 5× 10−5 32 500,000 Adam
U-net [49] 5× 10−5 32 500,000 Adam
GAN-SE 5× 10−5 32 500,000 Adam
H-SE 1× 10−5 16 500,000 Adam
H-SE w gt 1× 10−5 16 500,000 Adam

4.3 Results

Figure 4.2 shows results on the SUNCG dataset [53] from our models. We use two

metrics in order to evaluate the results. First, the accuracy metric, defined as the

number of correctly generated voxels in the output divided by the total number of

ground truth voxels. In the first metric, we also consider empty voxels if they are

estimated at the right place. The second metric is completeness, which is the number

of correctly generated non-empty voxels in the output divided by the total number of

non-empty voxels. Table 4.2 shows the quantitative results of our models, as long as

per-category F1 scores and Figure 4.4 shows the cost and accuracy plots for trained

models. Also, SSCNet [53] and U-net [49] in Figure 4.2 and Table 4.2 are the baseline

models we implement them for scene extrapolation task to have a comparison.
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Table 4.2: The accuracy, completeness, precision and recall measures of our models. The score under each object category shows F1 score.

SSCNet [53] and U-net [49] are the baseline models we implement them for scene extrapolation task to have comparison. CNN-SE shows

our implemented model consists of CNN layers explained in section 3.1. GAN-SE shows our generative model which explained in section

3.2. GAN-SE-G uses alone global discriminator sub-network. GAN-SE-L uses the alone local discriminator sub-network. H-SE stands for

Hybrid-SE model and ‘w gt’ means with ground truth of 2D projection top view explained in section 3.3.
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Our GAN-SE-G 94.4 48.3 63.1 67.5 97.3 94.8 88.4 75.2 32.5 50.1 84.8 77.2 35.9 72.6 41.2 73.8 14.3 64.5
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Figure 4.3: The deep convolution neural network architecture consist of multiple 3D
convolution and one pooling layer. Abbreviation of ’C’ stands for conv and ’R’ stands
for ReLU. The numbers after @ sign in each layer indicates the output filter number.
Upper arrows show the merge function between start point and end point of arrow.
They are shortcut connections to improve propagation gradient in network.

4.4 Failed Cases/Tested Models

In this section, we mention all the architectures and approaches we tested and got no

desirable results on scene extrapolation task.

For obtaining the desirable method and results, we tested different models and ap-

proaches. Firstly, inspired by [53], we design our network architecture consist of 3D

convolution, max pooling and fully connected layer. Figure 4.3 shows the deep 3D

convolution neural network architecture of our model. The network takes input and

applies multiple 3D conv layers with one pooling layer. Then the concatenation op-

eration put together the output of the last 3 merge layers, and pass it to the conv and

fully connected layers. The error of network is calculated by Softmax Cross-Entropy

loss function between network score and target values.

Table 4.3 shows the summary of what we tried. The ‘Classifier’ column indicates

loss function and classifier type. ‘CE’ means Cross-Entropy. With ‘Weighted CE’ in

order to solve the problem of unbalance data between empties and non-empties, we

assign a constant weight to non-empty voxels loss. ‘3D’ type for input data means

the training data was in 3D format, and ‘2D’ means training data was 2D images with

channels.

Before solving the problem of completing half of the scene, we simplified the problem
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Figure 4.4: The accuracy plot of SSCNet [53] for scene extrapolation problem. The
blue and green colored curves are related to train and validation measures respec-
tively. The thin curves show accuracy and thick curves indicate completeness mea-
sure.
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Figure 4.4 (Continued): The accuracy plot of our CNN-SE model. The blue colored
curve shows the accuracy while the red one shows completeness measure.
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Figure 4.4 (Continued): The accuracy plot of U-net [49] architecture for scene ex-
trapolation problem.
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Figure 4.4 (Continued): The accuracy plot of our GAN-SE model.
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Figure 4.4 (Continued): The accuracy plot of our Hybrid-SE model.
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Figure 4.4 (Continued): The accuracy plot of our Hybrid-SE model with ground truth
of 2D projection top view.
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Figure 4.4 (Continued): The cost plot of SSCNet [53] model for scene extrapolation
problem.
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Figure 4.4 (Continued): The cost plot of our CNN-SE model.
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Figure 4.4 (Continued): The cost plot of U-net [49] architecture for scene extrapola-
tion problem.
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Figure 4.4 (Continued): The cost plot of our GAN-SE model. Blue curve shows
the generator network cost while the red one shows discriminator network loss. The
training of the discriminator network start at step 100k.
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Figure 4.4 (Continued): The cost plot of our Hybrid-SE model.

0 10000 20000 30000 40000 50000
Steps

0

250

500

750

1000

1250

1500

Co
st

Figure 4.4 (Continued): The cost plot of our Hybrid-SE model with ground truth of
2D projection top view.

40



to complete only one channel from the second side of the scene. ‘Target’ column

shows the measure of our completion tries ‘42 Planes’ means half of the scene. We

use SGD, Decay learning rate for the first try, and Adam optimizer, fixed learning rate

for the rest try.

‘Label Encode’ column shows the type of encoding we use for ground truth labels.

‘Normal’ indicates the one-hot vector encoding. ‘N-3N’ says that we convert the label

values to one-hot format for all non-empties N, then do the same for 3N empty voxels.

Since the ratio of empties to non-empties is 9 to 1. We apply this method to deal

with the unbalancing problem between empty and non-empty voxels. To deal with

unbalance data we use another label encoding format called ‘Threshold N’. Since in

simplified problem we try to complete only one plane, we choose scenes which have

at least N non-empty voxels in ground truth plane.

The ‘Labels’ column shows the number of objects category we consider in our experi-

ments. With 84 categories, we have 36 object labels and the range of 36-84 considered

as ‘others’ category. With 36 labels we have no ‘others’ category, and with 14 labels

we have exactly 13 object category plus one for empties.

‘Margin’ column shows the margin distance in Hinge loss related to SVM classifier.
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Table 4.3: The summary of all we try with convolution neural networks. ‘CE’ means Cross-Entropy loss.

Classifier Input Data Target Optimizer lr Label Encode #Labels Margin
Softmax + CE 3D 42 Planes SGD Decay Normal 84 .
Softmax + CE 3D 42 Planes Adam Fixed Normal 84 .

Softmax + Weighted CE 3D One Plane Adam Fixed Normal 84 .
Softmax + CE 3D One Plane Adam Fixed N - 3N 84 .
Softmax + CE 3D One Plane Adam Fixed Threshold 100 36 .
Softmax + CE 3D One Plane Adam Fixed Threshold 100 36 .
Softmax + CE 3D One Plane Adam Fixed Threshold 100 36 .
Softmax + CE 3D One Plane Adam Fixed Threshold 1 13 .
Softmax + CE 3D One Plane Adam Fixed Threshold 1 13 .

Softmax + Weighted CE 3D One Plane Adam Fixed Threshold 10 13 .
SVM + Hinge 3D One Plane Adam Fixed Normal 84 1
SVM + Hinge 3D One Plane Adam Fixed Normal 84 2
SVM + Hinge 3D One Plane Adam Fixed Normal 84 10
Softmax + CE 2D One Plane Adam Fixed Normal 84 .

Softmax + Weighted CE 2D One Plane Adam Fixed Normal 84 .
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Figure 4.5: The tanh activation function int the last layer of generator network, GAN

model. Left part of each scene is input and other side is generated part, the dark red

color voxels have value 1 which shows ‘ceiling’ voxels, since its value is very close

to 0 ‘empty’, 2 ‘floor’ and 3 ‘wall’ voxels.

Also Figure 4.5 shows the results of GAN-SE model with the tanh activation function

for the last layer of generator network.

4.5 Discussion

GAN vs. CNN: As a general interpretation of the results from the CNN and

GAN models, we see that the GAN model learns to generate more realistic objects,

while the CNN model has a tendency to extend the parted objects without any correct

knowledge of their lengths or shapes. In contrast, our results suggest that especially

GAN has learned a prior on the length of objects and does not extend an object more

than a canonical length (see Figure 4.2).

Local-Global discriminator: We find that the local-global discriminator forces

the generator to build sharper and more realistic results, as shown in Figure 4.6. This

is mainly due to the fact that, discriminator not only need to learn the local features of

generated part, but also global features from whole scene and relation between input

part and generated part to distinguish fake and real scenes. The abbreviation GAN-

SE-L indicates the GAN model with only local discriminator, and GAN-SE-G shows

the GAN model with only global discriminator. Table 4.2 lists the quantitative results
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from GAN-SE-L and GAN-SE-G models.

Input Ground Truth GAN-SE-L GAN-SE-G GAN-SE

Figure 4.6: The effect of the local and global sub-networks. The GAN model with

local-global sub-networks (last column) tries to generate more realistic and logical

objects, while the local and global discriminators alone fail at produce correctly elon-

gated objects.

The architecture: We have experimented with many architectures and structures

for the generator, include pooling layers, bottleneck architectures with strided and de-

convolution layers, yet, at the end, we concluded that a simple architecture of stride-1

convolution layers can generate better results. This suggests that it is better to keep the

widths of the layers unreduced and allow the network to process information along

the width of the scene at each convolution. This also allows the network to get a

better estimation about the sizes of the objects since each convolution has access to

the width of the scene. Moreover, worse performance on increased filter sizes sug-

gests that highly-local processing is better and bigger filter sizes lead to averaging of

information across voxels.

Challenges of the problem: The dataset we use for training has diverse kinds

of objects in different shapes and sizes, which make the problem very challenging.

Another challenge is the issue of partial objects in the scenes; i.e., due to the field

of view of the cameras, some objects have been captured only partially, making the

training process more difficult for the networks to generalize about the shapes and the

sizes of the objects.

Due to these challenges, we observe that our models also make mistakes, as shown

in Figure 4.7, and might extrapolate a geometrically similar object, rather than the

correct one.
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furniturecabinetshelvecoffee tabletablesofachairwindowwallfloor

Input Ground Truth Generated

Figure 4.7: Failure cases. The columns from left to right respectively show input,
ground truth and generated result by our GAN model . First four rows show the
failing of generating ‘Shelve’, since geometrically it look likes furniture, ‘cabinet’,
‘sofa’ and also ‘table’ in first row. This similarity is also among other objects like
‘tables’ and ‘coffee tables’, ‘cabinets’ and ‘furnitures’ are shown in row five and six.
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CHAPTER 5

CONCLUSION

In this thesis, we have proposed using deep generative-adversarial and convolutional

networks for the scene extrapolation problem, which has not been addressed in the

literature before. We showed that the proposed models are able to extrapolate the

scene towards the unseen part and extend successfully the ground, the walls and the

partially-visible objects.

However, we realized that the networks were unable to hallucinate objects in the

extrapolated part of the scene if they did not have any part visible in the input scene.

This is likely to be due to the highly challenging nature of the extrapolation problem,

due to the huge inter-variability and intra-variability between the objects. To able to

extrapolate at a level where new objects can be generated would likely require (i) a

much larger dataset than we used and available in the literature, and (ii) extraction

and usage of higher-level semantic information from the input scene, as a modulator

for the deep extrapolating networks.

Scene extrapolation is a challenging and highly-relevant problem for the computer

graphics and deep learning societies, and our study offers a new research problem

and direction with which new and better learning and estimation methods can be

developed.

Future Work One can formulate the scene extrapolation task as a sequence model-

ing problem, such that the input sequence (the visible scene) is encoded by a sequence

modeling framework, and the rest of the scene is decoded by another. Moreover, a

context network can be trained in parallel together with the generation network such
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that the context network captures a high-level scene information and layout of the

scene and modulates the generation process.
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