The Visual Computer (2021) 37:1593-1610
https://doi.org/10.1007/s00371-020-01922-5

ORIGINAL ARTICLE

®

Check for
updates

Efficient image dataset classification difficulty estimation for

predicting deep-learning accuracy

Florian Scheidegger'2(® - Roxana Istrate?? . Giovanni Mariani? - Luca Benini'# . Costas Bekas? -

Cristiano Malossi?

Published online: 28 July 2020
© The Author(s) 2020

Abstract

In the deep-learning community, new algorithms are published at a very fast pace. Therefore, solving an image classification
problem for new datasets becomes a challenging task, as it requires to re-evaluate published algorithms and their different
configurations in order to find a close to optimal classifier. To facilitate this process, before biasing our decision toward a class
of neural networks or running an expensive search over the network space, we propose to estimate the classification difficulty
of the dataset. Our method computes a single number that characterizes the dataset difficulty 97 x faster than training state-
of-the-art networks. The proposed method can be used in combination with network topology and hyper-parameter search
optimizers to efficiently drive the search toward promising neural network configurations.

Keywords Dataset characterization - Classification difficulty - Deep learning - Image classification

IBM, the IBM logo, and ibm.com are trademarks or registered
trademarks of International Business Machines Corporation in the
United States, other countries, or both. Other product and service
names might be trademarks of IBM or other companies.

B Florian Scheidegger
eid @zurich.ibm.com

Roxana Istrate
roi @zurich.ibm.com

Giovanni Mariani
ova@zurich.ibm.com

Luca Benini
Ibenini @iis.ee.ethz.ch

Costas Bekas
bek @zurich.ibm.com

Cristiano Malossi
acm@zurich.ibm.com
I ETH Ziirich, Ramistrasse 101, 8092 Ziirich, Switzerland

2 IBM Research - Ziirich, Siumerstrasse 4, 8803 Riischlikon,
Switzerland

3 Queen’s University of Belfast, University Road, Belfast, BT7
INN Northern Ireland, UK

4 Universita di Bologna, Via Zamboni 33, 40126 Bologna, Italy

1 Introduction

Convolutional neural networks (CNNs) gained popularity in
recent years thanks to the availability of powerful GPUs
that enable to efficiently train accurate classification mod-
els [19]. Visual deep learning enables applications like 3D
shape classification [32], multi-label image classification [6],
Flyer classification [39], face detection [7], and automatic car
counting [35]. For building practical applications, the deep-
learning community shares a common interest in reducing
the development cycle, while increasing model accuracy and
keeping infrastructure and power consumption expenditure
under control. Many publications address these conflicting
goals [10], [17], [18]. Most machine-learning approaches
require a human in the loop responsible for taking cru-
cial decisions such as defining the network, finding good
combinations of hyper-parameters and performing adequate
preprocessing on the input data. To overcome the problem
of manual selection, various automated approaches such as
grid search, random search [3], Bayesian optimization [46]
or hyperband optimization [30] have been proposed. These
methods operate autonomously and improve model perfor-
mance; however, they still suffer from two limiting factors.
First, they require a definition of the search space. Second,
they consume a large amount of resources for a single opti-
mization task.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-020-01922-5&domain=pdf
http://orcid.org/0000-0003-0430-3634

1594

F.Scheidegger et al.

In this paper, we propose automated methods for quan-
tifying the difficulty of a classification problem in terms of
how hard it is to reach high accuracy for a given dataset. Our
developed neural network architectures, the probe nets, reli-
ably forecast how well any machine learning will perform on
the given dataset. We designed probe nets to be small to allow
fast training, and still, they provide a scoring value that con-
sistently outperforms the three alternative scoring pipelines.
The proposed probe nets can be used in combination with
architecture search optimizers to efficiently drive the search
toward promising configurations, avoiding the exploration
of unsuitable networks. Consciously or not, the characteri-
zation of dataset difficulty is a process, followed by every
deep learning architect. When looking for a well-performing
model for a new dataset, common practice is to try state-
of-the-art networks to evaluate how hard is to classify the
images in the dataset. Since datasets are large and models
complex, the process of training, comparing, and selecting a
few state-of-the-art deep networks becomes a computation-
ally heavy task. Probe nets improve this step by providing
a classification difficulty estimator, which provides insights
into the classification task and can be used to rapidly confine
the exploration to a few promising networks.Our developed
probe nets characterize datasets orders of magnitude faster
than the actual training and have high correlation with state-
of-the-art network accuracies.

In summary, our main contributions are the following:

We conduct a large literature and experimental study
on reference machine learning algorithms, including 484
cited state-of-the-art results.

— Wereproduced results of thirty deep learning models over
sixteen datasets to defend the key observation that no
single algorithm outperforms the alternatives. We estab-
lish the reference dataset classification difficulty on the
ensemble of reference results.

— We propose and evaluate four dataset complexity scoring
pipelines to estimate the classification difficulty.

— We develop probe nets as suitable candidates to effi-
ciently and reliably estimate the classification difficulty.

— We evaluate approximate computing techniques, such as
subsampling and early stopping, to further reduce the
execution time without affecting the final results.

— We showcase the proposed dataset characterization used

in an architecture search setting.

The remainder of the paper is organized as follows: Sec-
tion 2 describes the related work, and Sect. 3 introduces the
notation and presents an overview of reference models and
their performance on datasets. Section 4 details the adopted
methodologies. Section 5 examines the results. Section 6
studies efficient implementations, Sect. 7 demonstrates how

@ Springer

the methodologies are applied to perform an efficient archi-
tecture search, and Sect. 8 concludes all findings.

2 Related work

The topic of difficulty estimation of a dataset is scarcely
explored in the literature. In [51], the authors address the
difficulty of visual search within one image by assessing
the human response time for solving a visual search task.
Their technique employs two VGG-like [45] networks that
work as encoders and extract features that are further passed
through a regressor to produce a per image score. In contrast,
our technique focuses on defining how easily separable are
different classes within a dataset; henceforth, our proposed
score measures how challenging a classification instance is.
We omit a direct comparison since their reference consists
of measured human response times including high variances
causing their approach to produce modest correlations. In
contrast, we motivate and validate our score based on a exten-
sive set of reference results, causing stable results and strong
correlations in our best proposed approach.

In [22], the authors propose measures that characterize the
difficulty of a classification problem, focusing on the geo-
metrical complexity of the class boundary. However, those
measures are defined and evaluated over binary classifica-
tion problems defined over a low-dimensional feature vector
space. In contrast, we focus on image classification problems
building a high-dimensional spatially correlated data space
consisting of multiple classes.

The H -divergence is a rigorous measure computed between
two datasets in the field of domain adaption [2,15,28] where
a source and target distribution of datasets are compared. In
contrast, our approach in this work scores the classification
complexity stemming from a single dataset. Scoring datasets
independent of additional information allows to efficiently
extend a collection of datasets and their scores without com-
puting cross-interactions between multiple datasets.

The latest research on neural network design and network
architecture search is accounted for by considering suggested
architectures in this work. We reproduce all results for a
fair comparison. That approach covers variants from resid-
ual bypass operations (ResNets [20]) to even high fan-out
and convergent structures such as they occur in the inception
module [48] or DenseNets [24]. Structures that favor lighter
operations for better performance on constraint devices, such
as MobileNets [23], and by architecture search generated
structures, such as PNASNets [31], are included in our study.

The main concepts and key ideas of characterizing datasets
are available in a preprint [44]. This work summarizes those
findings and extends them in three ways: First, the estab-
lished reference dataset characterization is enlarged from
one reference architecture to an ensemble of state-of-the-art

Efficient image dataset ...

architectures; second, a novel and efficient Fréchet incep-
tion distance-based pipeline is added, and third, a use case of
architecture search demonstrates time critical design choices
and the usefulness of the dataset characterization in a real
application.

3 Datasets and reference models
3.1 Notation

In this work, we refer to a dataset with the quadruple D :=
Xsrains Yirain, Xest yrest), where Xiqin € R erain xd and
Xies: € RMest*d gre the training and testing inputs, and
Yirain € [1, C]™Mrain and y;es; € [1, C]"est are the train-
ing and testing labels. We assume that the datasets come
already split into train and test sets, as this is commonly
the case for published data. We denote the dimension of the
input samples as d, the number of input samples as n;4in
for training and n,.g, for testing, and the number of classes
as C. M refers to a model, including the network topology
and related hyper-parameters, and it includes the training and
data augmentation-related hyper-parameters. Therefore, the
tuple (D, M) specifies a deep learning training run of model
M on dataset D. We denote with Top-1(D, M) the Top-1
accuracy classification performance of the training run. In all
experiments, training is performed with (X;4in, Yrrain) and
performance is measured on (Xyess, Yrest)-

3.2 Datasets and literature referenced results

In this work, we focus on sixteen public available and
established image classification datasets as presented in
Table 1. Figures 1, 2 depicts the number of samples used
for training and testing. The datasets span two order of
magnitudes in the number of classes and in the number of
available training samples and one order of magnitude in
the balance ratio. The datasets stem from various domains
and cover typical and relevant use cases such as optical digit
recognition stemming from handwritten samples (MNIST)
or in the context of images stemming from house numbers
(svhn). GTSRB covers traffic sign recognition, a use case
that occurs in autonomous driving systems. Scene recog-
nition aims to classify the location of where the picture
was taken as whole (indoor67 and places), whereas tradi-
tional classification tasks are posed around identifying a class
based on a particular object present within the image. Fig-
ure 1 shows external generated and collected state-of-the-art
results. Various known machine learning solutions spread
over a large performance range, except for simple datasets,
such as MNIST [13], where most methods perform well.
Highlighted is the best experimental value we reproduced
in a controlled environment as follows in Sect. 3.3. These

1595
Table 1 Dataset overview
Dataset #classes Balance¥ Test splitf (%)
Sflowers102 [37] 102 1.00 75.1
flowers! 5 1.50 13.6
textures 8] 47 1.00 33.3
stl10 [9] 10 1.00 61.5
indoor67 [40] 67 1.08 20.0
caltech256 [16] 257 11.91 33.0
GTSRB [47] 43 10.71 24.4
CIFARI0 [27] 10 1.00 16.7
CIFARI100 [27] 100 1.00 16.7
MNIST [13] 10 1.24 14.3
fashion MNIST [54] 10 1.00 14.3
foodl01 [4] 101 1.00 25.0
quickdraw? 345 1.00 9.1
places [56] 84 1.45 2.0
svhn [36] 10 1.67 4.1

The number of classes per dataset covers two orders of magnitude, from
as few as 5 classes up to 345 classes. The balance ratio spans from 1.0
(for equally balanced datasets) up to a factor of 11.9x

tratio of class samples of majority over minority class f{fraction of test
samples out of all samples

g
>
o
o
3
Q
Q
<
o
(e}
[
50
.
...
.
.
40
.
—e— Best reproduced reference
30
X X
.S Q Q& O .S S N
& & & @ S & &
<< & S

Fig. 1 State-of-the-art results achieved on datasets with more than
twenty reference results. Each point corresponds to a single published
algorithm, capturing vanilla CNNs with or without transfer learning,
non-deep learning approaches such as SVMs or random forests applied
on handcrafted features, and other problem specific pipelines. High-
lighted in black is the best reference solution we reproduced in a
controlled environment

@ Springer

1596

F.Scheidegger et al.

B train
8 B test
= .5
Q 10
£
[
w
-
s}
510
Ko}
€
>
] l.
@ NI AR SRS S & & &
Qk\\f"’q,(od\\«@o‘ & & S
\"0-\5‘\""’006‘\ S F@ L2 6‘06‘.6\9 3
@ ¥ @ & & > W@ L& R
& b < & © ©

Fig.2 The number of samples within a given dataset used for training
and testing sorted by training samples. Train and test sets are always
disjoint, and the splitting is given as suggested by the reference. The
number of training samples spans more than two orders of magnitude

accuracy results are competitive with top performing pub-
lished results and outperform published solutions in the case
of fashion MNIST since the referenced results stem from an
extensive study of traditional machine learning approaches
without including deep learning algorithms [54].

3.3 Reference models

In order to evaluate the reference difficulty of an image clas-
sification problem, we report the accuracy obtained by an
ensemble of established deep learning network topology.
Since there exists no single network model that performs
best on all available datasets nor are reference accuracies for
all models published on all considered datasets, we repro-
duced reference accuracies for reference models within this
work with an extensive set of experiments. We use a pre-
defined list of well-established network architectures and
report achieved accuracies on the dataset considered. Table 2
summarizes the network models we consider as established

reference models. Most of them are provided with family-
specific and topology-related hyper-parameters, such as, for
example, VGG or ResNets where the parameter refers to the
total amount of layers and controls the overall complexity
of the model. All models are well established, and the only
modification we performed was to adapt the weight matrix
of the last output layer such that the number of output neu-
rons matches the number of classes for the given dataset.
Figure 3 shows averaged normalized execution times for one
batch of size 128 for training and testing. All experiments
in this paper are obtained with PyTorch version 0.4.1 and
run on an IBM Power8 equipped with a P100 GPU. Timings
are measured in a realistic setting, e.g., including occurring
overheads of loading and transferring data between CPU
and GPU and kernel lunch overheads. Training times of one
batch include operations caused by back propagation and
the weight update, while testing times refer to the elapsed
time the model required to perform a batched forward infer-
ence. The fastest model considered is LeNet that trains within
30 ms per batch which is 16 x faster than ResNeXt29_4x64d
that takes about 480 ms per training batch.

The next section empirically demonstrates two insights
obtained from the ensemble of reference models: First, there
does not exist a single model that outperforms all other mod-
els on every dataset. Second, for a given datasets, there are
trends of how the ensemble of models behaves. The first
observation builds a key argument to perform architecture
search on new problem instances to find suited models on
new datasets. The latter demonstrates the inherent difficulty
of the problem instance due to the given classification diffi-
culty present in the data independent of the specific model
fitted on it.

Table 2 Established reference

network architectures Family Variant Max batch size Instances
ResNet 18, 34, 50, 101, 152 1024128 5
PreActResNet 18, 34, 50, 101, 152 1024-128 5
ResNeXt29 2x64d, 4x64d, 32x4d 256-64 3
DenseNet 121, 161, 169, 201 256-128 4
LeNet - 1024 1
GooglLeNet - 256 1
MobileNet - 1024 1
MobileNetv2 - 512 1
PNASNet Type A, Type B 1024, 512 2
DPN 26,92 512, 128 2
SENet18 - 1024 1
VGG 11, 13, 16, 19 1024 4
Total 30

@ Springer

Efficient image dataset ...

1597

DenseNet121 F
DenseNet169 F
DenseNet201 L i ——
DenseNet161 | —
DPN26 [——
oPNo2 [—-
GoogleNet F
LeNet "
MobileNet ™
MobileNetv2 [Jm—
PNASNetA [Jm—
PNASNet [—
PreActResNet18 r
PreActResNet34 F
PreActResNet50 [—
PreActResNet101 [N o —
PreActResNet152 [——
ResNet1g [
ResNet34 [JE—
ResNet50 F’
ResNet101 [—
ResNet152 [—
ResNext29_2x64d [—
ResNext29_4x64d [—
ResNext29_32x4d [E —
SENet1s [E—
vee11
vee1s [E®
vGaie JE*
veGelo =

0 100 200 300 400 500
Time per batch of size 128 [ms]

Il train
I test

Fig.3 Average timings per batch of size 128 for training and testing of
reference models. Timings span from 30 ms up to 480 ms per training
batch

3.4 Reference results as proxy for classification
difficulty

Figure 4 shows all reference accuracies obtained when
training established models on the considered datasets as
described in Sect. 3. Results of the models cluster at a
dataset-specific accuracy saturation. That saturation limit
demonstrates the existence of a data inherent classification
difficulty for machine learning algorithms independent of
the model choice. We empirically demonstrate that a single
best model does not exist by highlighting some of the results
presented in Fig. 4. Table 3 reports which reference model
has achieved the best accuracy and henceforth represents the
accuracy saturation limit of current state of the art. Out of
the 16 problem instances imposed by the 16 datasets, twelve
different reference models belong to the best performer and
some of them were multiple times selected as best candi-
date. However, none of the reference architecture is able to
clearly outperform the others. In some cases, such as for

MNIST, all reference accuracies obtained by various mod-
els are close which makes it challenging or impossible to
distinguish two different models or to select the best model.
To address this fact, Table 4 demonstrates the importance of
each of the reference models, by comparing their minimal,
maximal and average percent point loss against the best per-
forming model out of the ensemble considered per dataset.
Some models perform pretty well across all datasets, such as
the DenseNet161 that only performs 1.12% points worse on
average than the best performer of the ensemble. However,
there exists a dataset where the drop against the best model
in that case is still large with 5.73% points.

Despite the fact that there are the above discussed varia-
tions of results present among various models, there exist an
underling dataset characteristic that saturates the achieved
performance of any machine learning-based model. Based
on this observation, we can define the theoretical dataset
classification difficulty as the saturating accuracy obtained
with any best model. However, since at the time of writing
we only conducted experiments on a finite list of reference
models, we define a stable formulation as mean accuracy
obtained over the best kK = 5 models in the reference experi-
ments of the architectures listed in Table 2. The last column
of Table 3 lists the reference dataset classification difficulty
number (DCN) that acts as a proxy of the real difficulty that
is not measurable.

4 Classification difficulty estimation of
datasets

In this work, we propose four pipelines to quantify the dif-
ficulty of image classification datasets. In more detail, we
propose dataset scoring functions (D) to map a dataset D
to a scalar real number, with the goal of scoring different
datasets in terms of classification accuracy estimates. For
each pipeline, we highlight pros and cons.

4.1 Silhouette score

The silhouette score is a well-established metric that com-
pares tightness of same-class samples to separation of
different-class samples [43]. Let i be one input sample, a (i)
the average Euclidean distance between the sample and all
the points j belonging to the same class as i, and b(i) the
average distance between i and all points j of the closest
different class. The silhouette of the i-th sample is computed
as follows [43]:

1 —a(i)/b),
si) = 0,
b(i)/a(i) — 1,

if a(i) < b(i)
if a(i) = b(i) (1
if a(i) > b(i).

@ Springer

1598 F.Scheidegger et al.
100 wee
o —m— ResNet18
. J
? ‘¢ r o3 A --@-- MobileNetV2
L]
L 1)
80
%
£ 60
>
(5]
o
3
Q
Q
<
3 40
°
20

Fig. 4 Reproduced reference results over an ensemble of established
deep learning architectures. Clearly, results cluster at dataset-specific
levels, demonstrating the impact of the inherently present classification

S
N QS
B 3

difficulty imposed by the data of the problem instance. We highlight
results obtained with two different architectures, demonstrating that
neither one of them is outperforming the others in all cases

Table 3 Best reference

architectures per dataset, and no Dataset Best model Accuracy (%) Ref DCN (%)

single architecture is able to mnist MobileNetV2 99.410 99.388

outperform the remaining

architectures svhn ResNet152 98.371 98.291
gtsrberop VGG13 97.316 97.265
gtsrb DenseNet121 97.150 96.903
fashion PreActResNet101 95.390 95.324
cifarl0 DenseNet161 94.740 94.396
flowers DPN26 84.000 83.880
cifar100 DenseNet161 77.550 76.638
stl10 GoogLeNet 72.725 72.113
food101 ResNeXt29_4x64d 69.584 68.082
places ResNet152 68.762 68.507
quickdraw MobileNet 61.484 59.920
flowers102 VGGI11 59.197 58.289
caltech256 DenseNet161 52.480 51.157
indoor67 ResNeXt29_32x4d 39.208 38.282
textures GoogLeNet 36.330 34.181

The silhouette of one class is defined as the average over
all samples belonging to that class, and the overall silhouette
score of the full dataset is defined as average over all sam-
ples. The definition of the quantities a(i) and b(i) is based
on pairwise distances between two samples i and j. The sil-
houette score complexity is O (dn?), where n is the number
of samples and d is the cost of computing the distance of
one pair of samples as mean squared error (MSE) distance

@ Springer

in the R?. Since the MSE distance in the original domain is
a poor measurement for image similarities, we apply first a
transformation R? — R that maps images into a space that
better reflects distances between image pairs.

Table 5 provides details on the applied pipelines. We
decided to include a resizing of the images to a small resolu-
tion of 8 x 8 pixels, applying principal component analysis
(PCA) toreduce the dimension to 10, and using a fixed encod-

Efficient image dataset ...

1599

Table 4 Comparison of reference models

Reference Model Accuracy loss vs. best model

Worst Mean+/-Std Best
DenseNet161 5.73% 1.12% +/- 1.761% 0.00%
DenseNet169 4.01% 1.34% +/- 1.386% 0.06%
DenseNet121 7.49% 1.68% +/- 1.951% 0.00%
DenseNet201 5.59% 1.70% +/- 1.832% 0.00%
GoogLeNet 12.38% 1.72% +/- 3.208% 0.00%
DPN26 3.95% 1.74% +/- 1.343% 0.00%
PreActResNet34 6.89% 2.35% +/- 1.907% 0.09%
PreActResNet18 7.35% 2.37% +/- 2.125% 0.08%
ResNeXt29_32x4d 10.19% 2.39% +/- 2.682% 0.00%
ResNet34 8.14% 2.45% +/- 2.578% 0.01%
DPN92 8.47% 2.48% +/- 2.284% 0.09%
ResNet18 6.87% 2.64% +/- 2.399% 0.14%
ResNeXt29_4x64d 18.02% 2.66% +/- 4.701% 0.00%
PreActResNet50 9.61% 2.78% +/- 2.614% 0.07%
ResNet101 7.39% 2.83% +/- 2.416% 0.07%
ResNet50 11.68% 2.85% +/- 3.054% 0.10%
VGG13 12.60% 2.91% +/- 3.513% 0.00%
SENet18 9.50% 3.19% +/- 2.934% 0.10%
MobileNetV2 7.09% 3.34% +/- 2.428% 0.00%
PreActResNet152 7.47% 3.35% +/- 2.866% 0.08%
PreActResNet101 8.70% 3.42% +/- 3.218% 0.00%
VGG16 11.30% 3.49% +/- 3.456% 0.07%
ResNet152 15.04% 4.03% +/- 3.987% 0.00%
ResNeXt29_2x64d 33.74% 4.11% +/- 8.474% 0.06%
VGGI11 18.49% 4.23% +/- 5.081% 0.00%
VGG19 14.19% 4.85% +/- 4.782% 0.08%
MobileNet 15.16% 6.45% +/- 5.729% 0.00%
PNASNetB 24.64% 8.59% +/- 7.801% 0.13%
PNASNetA 26.10% 9.49% +/- 8.073% 0.30%
LeNet 44.69% 17.63% +/- 12.738% 0.56%

The individual model performance is compared against the best per-
forming model out of the ensemble per dataset and aggregated as worst,
mean, and best case over the 16 datasets

Table5 Configurations used to compute the silhouette score on datasets

Score Transformation d Distance Speedup
Sy None 322 MSE 31.3x
) None 322 DSSIM 1.0 (Ref)
S3 Resize image 82 MSE 48.4x
Sa Resize image 82 DSSIM 1.3x

Ss PCA 10 MSE 72.8%

Se Autoencoder 1000 MSE 6.4x

ing based on a pre-trained CNN inference. We considered
as encoder a ResNet-50 [20] network pre-trained on Ima-
geNet [12] to produce generalized per image feature vectors
of dimensionality 1000 by taking the output of the last fully
connected layer before applying the nonlinearity. Additional
to the MSE distance, we used the structural dissimilarity
index DSSIM [53] to compare images with a metric that
captures spatial information. Due to the squared complexity,
we applied heavy subsampling and run all computations with
a maximum of 1000 randomly selected samples, resulting in
a distance matrix with at most 1M entries. Table 5 reports
timing among the different pipelines. For fast execution, it
is crucial to operate in a low-dimensional space and to use a
simple distance metric.

4.2 K-means clustering

The complexity of the silhouette scores detailed in Sect. 4.1
scales with n2, and computing it is a slow process even after
subsampling. In general, the complexity of a deep-learning
job is O(C pnsrainE), where E is the number of epochs.
During one epoch the full training set consisting of 7ny,4in
samples is fed once with a computational cost of C o, which
is a model M dependent constant. Even though complex
models might have large computational cost of C a4, the
asymptotic behavior of a training job is linear in n. For this
reason, the asymptotic behavior of the silhouette score com-
putation of n? is outperformed by the actual training job.
Competitive scoring metrics should execute faster than a train
job itself; thus, we are looking for scores with at most linear
complexity in .

We propose to run a (fast) clustering algorithm to produce
class labels y and evaluate the full dataset based on metrics
that compare y against the ground truth labels y. We assess the
following known scores: adjusted mutual information [52],
adjusted rand index [25], completeness, homogeneity, and
the v-measure [42]. Additionally, we propose a tailored score
based on the estimation of the confusion matrix built between
the cluster indices and the true labels. This score is computed
over the permutation of possible labeling configurations of
the unsupervised cluster indices that maximizes the trace of
the confusion matrix.

@ Springer

1600

F.Scheidegger et al.

4.3 Fréchet inception distance based score

The Fréchet inception distance (FID) is widely used as
measure to compare the quality of generative adversarial net-
works (GANSs) [21,33] where a comparison of synthetic and
real distributions are required to measure the performance of
GAN:S. To that end, the input image samples are feed through
an inception network [49] such that each sample is embedded
in a learned feature vector space. The resulting embedded
vectors of one class are assumed to follow a multivariate
Gaussian distribution. The Fréchet distance [14] of the two
Gaussian distributions A and B is defined as follows:

lia — gl +Tr(Za + Tp — 2(SaXp)?))

where (s, X4) and (up, Xp) are the mean vector and
covariance matrix of two distributions A and B, respectively.
Since the FID is defined between two distributions only, a full
image classification problem with C classes is characterized
by the pairwise FID between classesi and j for1 < i, j < C.
To summarize and normalize that dataset difficulty as scalar
value in an uniform way, we propose the following FID-based
score in (2), similar to the definition of the Silhouette score:

1 — FID;;/FID; jx, if FID;; < FID; js
r=1o. if FID;; = FID; j. (3)
FID; j/FID;; — 1, if FID;; > FID; j,

whereas FID; ;. denotes the critical distance to the clos-
est neighboring class defined as FID; j, := minjef,cyj
FID; ;j and F I D; ; operates as normalization coefficient.
Since the Fréchet distance between two equally distributed
Gaussians, F 1D, ; = 0, evaluates to zero, we use FiD,-,,- =
FID ;» where the FID is evaluated over two statistical mea-
surements of (u;/, X;7) and (u;», X;») by computing first-
and second-order moments over two disjoint sets of samples
belonging to the same class i. It turns out to be very beneficial
to use the obtained nonzero numerical estimate as normal-
ization coefficient as defined above in order to reduce the
obtained Fréchet distances into a normalized score.

The time complexity of the FID based scoreis O (nsCg b+
C2Cp;p) where the first term is linearly dependent on the
number of input samples where one inference of the inception
network and the computation of the first- and second-order
moments occurs. The second terms has a square dependency
on the number of classes since (2) is required to be eval-
uated pairwise for each class i and j. Evaluating (2) costs
Crp which itself is determined by the invoked shapes of the
matrix, d-dimensional mean vector and d X d sized covari-
ance matrix and mainly determined by the numerical routine
computing the blocked Schur algorithm [11] for comput-
ing the matrix square root of the product of ¥4 and Xp.

@ Springer

Table 6 Operation count and number of parameters of proposed probe
nets

Probe net Cc=10 C =100
OPs Weights OPs Weights
Regular 0.81M 11K 0.86M 57.5K
Narrow 0.00M 2K 0.10M 13K
Wide 10.34M 114K 10.52M 299K
Shallow 0.24M 21K 0.42M 205K
Shallow norm. 0.06M 5K 0.10M SIK
Deep 1.40M 100K 1.41M 112K
Deep norm. 19.76M 1576K 19.81M 1622K
MLPs 2.90M 2908K 3.10M 3107K
Kernel depth 0.53M 6K 4.56M 384K
Length 1.41M 118K 4.39M 338K
ResNet-20 40.55M 271K 40.56M 277K

Even though the matrix square root is optimized with a multi-
threaded implementation and runs within tens of seconds for
typical invoked problem sizes, the square root dependency
to compute all pairwise distances to compute the final score
turns that approach quite slow, for example for C = 100
classes and Cryp = 10 sec the total computing time exceeds
24 h.

4.4 Probe nets

We propose probe nets that are small and efficient neural net-
works. We demonstrate that training a probe net and using its
accuracy as a dataset difficulty score outperforms the alter-
native approaches in compute time and difficulty estimation
performance. We designed the complexity Cay,,,, of the
architecture of probe nets to be general enough to be applied
to any image classification task but considerably faster than
training a regular deep learning model M: Cp4,,,,,,, < Ct-
Table 6 reports the operation count and the number of train-
able parameters of the proposed probe nets. Additionally, to
further speedup the execution time, we demonstrate and dis-
cuss in Sect. 6 how stopping the training of probe nets after
a few epochs reduces execution time while still achieving
good results.

We propose to construct variations of two types of probe
nets: static probe nets that have a fixed topology and dynamic
probe nets that scale the topology according to the number of
classes. The regular probe net consists of three convolutional
layers, each followed by batch normalization, max pooling of
size 2 x 2, and ReLU activations, which are defined element-
wise as x +— max(0, x). We used eight kernels in the first
layer and doubled the number of kernels per layer. We pro-
vide wide and narrow variations that scale the number of
kernels per layer up and down by 4 x, respectively. Shallow
and deep variations are obtained by subtracting and adding

Efficient image dataset ... 1601
(@) (b) () (d) (e) ®

32x32x3 32x32x3 ¢ 32x32x3 ¢ 32x32x3 32x32x3 32x32x3

| CONV, 8 (2) [32] ‘ ‘ 3x3 CONV, 8 (2) | ‘ CONV, 8 (32) ‘

16x16x8

CONV, 16 (4) [64]

16x16x8

CONV, 32 (8) [128]

CONV, 128 (512)

1x1x128] (1x1x512

Fig. 5 Probe nets: simple deep learning architectures used to charac-
terize datasets. Static networks are shown in a—c, they only differ in the
dense layer connections in the softmax output that ends with a dataset
specific number of classes C. a shows a regular, narrow and wide probe
net that differ in kernel depth, b shows a shallow version and ¢ a deep
version of the net for non and normalized kernel depths. Dynamic net-

two layers, respectively. Since doubling the kernel sizes per
layer leads to different tensor shapes between the last convo-
lution and the C-way softmax, the non-normalized shallow
and deep probe nets have a considerable different number of
trainable parameters. We define normalized probe networks
to match the number of trainable parameters of the output
layer of the regular probe net. We construct dynamic nets
with a more complex topology to account for more classes.
This is achieved either by scaling dependent on C the number
of hidden units in an multilayer perceptron mlp, the num-
ber of filters (filter depth scaled probe nets), or the number
of stacked filters (length scaled probe net). Figure 5 shows
the ten proposed prob net architectures. We evaluate all ten
probe nets as reference but for resource and time efficiency
our proposed approach suggest to use the best. The next sec-
tion presents consistent and superior performance of probe
nets over the reference scoring approaches.

5 Results

In order to perform a fair evaluation, we fix hyper-parameters
throughout the experiments and work with a fixed image res-
olution of 32 x 32 pixels. We evaluate the four proposed
dataset difficulty scoring approaches against the reference
dataset characterization as given in Table 3. An ideal dataset
difficulty score should obey a linear dependency and match

r repetitions

CONV, f

1x1x128

works, d—f scale the topology with respect to the number of classes C. d
Consists of dense layers that scale the number of hidden units according
to linear weighted sum between input and output dimension, e scales
kernel depths according to C and f scales the number or repetitions of
stacked static layers according C

the reference DCN. The next subsection states the three alter-
native scoring pipelines, and Sect. 5.2 shows results achieved
with our probe nets. All results are presented as correlations
between the proposed score and the reference DCN as listed
in Table 3. For each pipeline, we discuss in the following
how correlations are affected by tuning configurations of the
respective pipeline.

5.1 Silhouette, clustering and Fréchet-based scores

Figure 6 shows the obtained results for the silhouette
(Sect. 4.1), k-means (Sect. 4.2), and Fréchet-based score
(Sect. 4.3) correlated against the reference DCN. The three
approaches shown are using the versions that produce best
results. The results for the silhouette score produce results
that range between a correlation from R? = 0.04 to R?> =
0.21 for the considered configurations defined in Tablel 5.
Best results are obtained by using the structural dissimilarity
index DSSIM [53] directly applied in the original domain.
Alternatively, using an embedding based on a neural network
followed by a mean squared error (MSE) distance metric
works equally well, while using PCA to reduce the dimen-
sion or directly apply an MSE in the original domain produces
weaker correlations.

For the evaluation of the proposed k-means-based scor-
ing pipeline (see Sect. 4.2), we cluster the images in C
clusters, where C is the known number of categories in

@ Springer

1602

F.Scheidegger et al.

100 100
pd
3 80 80
a
3
§ 60 60 +
S
@ 40 = 40 4
gl iy
4+ R?=0.207
20 20
-0.1 0.0 0.1 0 20

Silhouette based score

k-means based score

100
80
60
40
4+ R?=0.258 R?=0.755
20
40 60 0.0 0.5 1.0

Fréchet based score

Fig.6 Prediction performance of silhouette, clustering and Fréchet-based scores. The x-axis reports the obtained score and the y-axis reports the

reference classification difficulty as in Table 3

the dataset. For a faster convergence, we initialize the cen-
troids with the average image of each class. k-means runs
based on the Euclidean L, distance with a stopping tol-
erance of 107 and a maximum of 300 iterations without
random restarts. We tested for preprocessing options: none,
resize to smaller image, apply PCA, or use an auto encoder
prior to clustering, in junction with the following aggre-
gation metrics accuracy on the estimated confusion matrix
(AECM), the adjusted mutual information score, the adjusted
random score, the v-measure, the homogeneity score, and
the completeness score. Correlation results range between
R?> = 0.01 to R* = 0.26 where best results are obtained
when applying PCA and using AECM. The weak perfor-
mance of the k-means clustering is due to known limitations,
such as no global minimum guarantee and a simplistic dis-
tance metric that ignores the spatial information. k-means
clustering-based pipelines are 5.2x (no preprocessing) up
to 50.5x (PCA to low dimension) faster than silhouette
score-based pipelines (comparison includes the faster MSE
timings) when comparing execution times in terms of average
compute time per input sample.

The rightmost plot in Fig. 6 shows the Fréchet-based
scoring performance. Compared with the two previous
approaches, that are weakly correlated with the true dataset
difficulty, the FID-based score is strongly correlated with the
true difficulty. The evaluated four variants, using an embed-
ding dimensionality of d = 64, 192, 768 or 2048, produce
correlations that range from R? = 0.71 to R> = 0.75. The
best Fréchet-based score is achieved with the d = 192.

5.2 Probe nets

Figure 7 shows all obtained correlations of the ten pro-
posed probe nets against the reference DCN. The probe
nets, as presented in Fig. 5, are trained with the same con-
stant configuration and data augmentation parameters as
used to produce the reference results. We follow the data

@ Springer

augmentation described in [29], and we use the RMSProp
[50] optimizer to minimize the average cross-entropy with
a learning rate of 10~*. All evaluations employ the He ini-
tialization [19] with a gain factor 1.0 and a constant batch
size of 32. Training is run for 100 epochs. The probe nets
share a high correlation with the reference DCN that ranges
between R = 0.63 and R? = 0.95 and consistently outper-
form results achieved with the silhouette-based approach or
k-means-based approach, see Sects. 4.2 and 4.2. Seven out of
the ten networks exceed a high correlation of R> > 0.79 and
henceforth outperform the Fréchet-based approach as well,
see Sect. 4.3.

Figure 7a shows an increasing correlation of R> = 0.75
to R = 0.93 between narrow, regular, and wide probe nets
and the reference DCN. This can be explained by the better
generalization ability of the network with more degrees of
freedom, at the cost of an increased execution time. Proper-
ties of the Probe nets are provided in Table 6. Deep probe nets
topologies outperform their shallow counterparts. This effect
is even more prominent in the normalized case, Fig. 7b ver-
sus d. We observe that a better generalization performance
is mainly driven by a larger amount of tunable parameters
that comes at the cost of increased execution timings. Fig-
ure 7c and e show the results for probe nets that dynamically
adapt the architecture topology to the number of classes.
The dependency of the architecture on the number of classes
implies different execution times on datasets with different
number of classes.

5.3 Metric alternatives

Figures 6 and 7 present correlations of the best perform-
ing configurations per pipeline against the reference DCN
as presented in Table 2. Figure 8 justifies that choice and
demonstrates the robustness against alternative choices. They
include the average accuracy of the ensemble of all reference
models as listed in Table 2, the accuracy of specific mod-

Efficient image dataset ...

100

(@)

80
z
& 60
a
Q
(8]
c
[}
kS
& 40
20
Narrow, R%2 = 0.752
® Wide, R2=0.931
+ Regular, R? =0.852
0

0 20 40 60 80 100

Probe net accuracy

Fig. 7 Prediction performance of probe nets: the x-axis reports the
accuracy reached of a converged probe net and the y-axis reports the
reference DCN. All seven static probe nets, a regular/narrow/wide, b

1.0 DCN Measure
I Ref. DCN
[Avg. Acc.
. 0.8
£ [ResNet18 iﬁ
~ % I MobileNetV2
% € 0.6 EEE Allref. nets §
]
QO
5y
[OIR%]
£ ®
(SR]
£
- H
0.0
Silhouette Clustering Fréchet Probe nets

Complexity scoring pipeline

Fig.8 The used proxy metric, the reference DCN, is as good as alter-
native choices that provide consistent results, such as using the average
accuracy over all reference models, specific models, or the aggregation
of all models. Probe nets outperform the three scoring pipelines

els, and the aggregated distribution of correlations computed
against all reference models. As Fig. 8 shows all options
yield consistent correlations validating our proposed refer-
ence DCN as a suitable proxy for the reference complexity
of the classification task. Probe nets are consistently pro-
viding higher correlations than the tree alternative scores.
Those findings are robust against different configurations in
the pipelines and the proxy metric of the dataset complexity.

1603
100
80
60
40
E Shallo (norm.),
y s B R2-0.692
20 m Shallow, R?=0.797 20 Deep (norm.),
® Deep, R2=0.884 B R2-0.952
0 0
0 25 50 75 100 0 25 50 75 100
100 100
80 80
60 60
40 40
MLP, |
B R2=-0.830
20 Kernel depth, 20 Length,
B R2-0.889 B R2-0.634
0 0
0 25 50 75 100 0 25 50 75 100

shallow/deep, ¢ shallow/deep normalized, and the three dynamic probe
nets, d mlp, kernel depth scaled, and e length scaled are strongly cor-
related with the reference DCN

1.0
30
0.8
o 25
o
]
g ~@- Regression quality 06 =
£ E]
g 20 ™= g
3 Average accuracy
5 difference -é
g 5
° Q
5 04 g
Q15
<
A
10 A o
5 0.0
o 2 0 60 80 100
Epoch

Fig. 9 Evolution of the prediction quality over training epochs of the
deep normalized probe net. The regression quality reaches high values
within a few epochs, while the average accuracy difference between the
probe net and the reference DCN is further decreased for longer training

6 Efficient evaluation of probe nets

As presented in Sect. 5.2, probe nets have a good pre-
dictive behavior of what a reference network achieves on a

@ Springer

1604

F.Scheidegger et al.

type
C B train
B test

0 5 10 15 20 25 30 35
Normalized time per 128 samples [ms]

Fig. 10 Normalized execution time of a deep normalized probe net.
Scenario A uses standard settings, while in scenario B the average exe-
cution time is significantly reduced if the probe net is trained with a
large batch size of 1024 samples and 8 threads are used to perform
the on-the-fly standard preprocessing, including padding and random
cropping, random horizontal flips and normalization. In scenario C)
processing times are further reduced if the preprocessing is minimized
to the required cast and transformation from the CPU to the GPU

given dataset. However, that information is more valuable
if it can be computed faster than training large models. The
way probe nets are constructed give them an inherent com-
putational benefit over the full model. In addition, we exploit
early stopping of the learning to further reduce the computa-
tional time of the probe net. Note that we can stop the probe
net before convergence, since we are interested in the learn-
ing trend that characterizes the problem’s difficulty, not in
the final accuracy. Figure 9 shows how the prediction quality
improves for a deep normalized probe net with an increasing
amount of epochs for which it is trained on all datasets. Even
within the first epoch, the regression quality outperforms the
FID-based approach. The mean accuracy difference between
the probe nets and the reference DCN (trained till conver-
gence) is further decreased, meaning that the probe nets are
not yet converged and are still increasing their own classifi-
cation performance.

We evaluate all probe nets with the same settings, using
a batch size of 128 samples and 2 threads during on-the-fly
preprocessing, as the reference network timings shown in
Fig. 9. In the case of the reference, the average batch time
was 194 ms and was compute bound by the operations per-
formed on the GPU for most of the models. However, we
observed that for small models, and this is especially relevant
for the designed probe nets, the GPU might not be fully nor
optimally utilized since relative overheads of batch prepa-
ration and loading have a relative higher impact against the
lowered GPU workload of very small networks. In such set-
tings, the overall timing performance is strongly dependent
on implementation details and the underling hardware. Since
that is not the case for medium and large sized networks, we
used a standardized setting of a multi-threaded data paral-
lel loader that performs batch preparation on the CPU side.
All measurements include batch preparation times consist-

@ Springer

TAPAS

predicted accuracy

4 TRAIN
reqular deep learnin

genetic evolution

DCN |

Fig. 11 System overview of an efficient architecture search. First, the
dataset is characterized, second TAPAS uses a genetic algorithm that
predicts performance of candidate architectures to find a suited archi-
tecture, and third, the selected architecture is finally trained on the given
dataset

ing of padding, random cropping, random horizontal flipping
and normalization. Since CPU and GPU operation are per-
formed in parallel, most of the batch preparation times are
hidden behind the GPU computation or are small compared
to the GPU workload such that they do not matter. However,
for small networks, such as the probe nets, we found it ben-
eficial to fine tune the settings. Running with larger batch
sizes helps to reduce kernel overheads and leads to better
utilization and execution performance. We tested batch sizes
of powers of two 2/ from 20 = 1 up to 23 = 8192 and
observed best performance for a batch size of 1024. In the
performance measurement we assumed a dataset size of §192
samples, e.g., the number of batches measured is given as
213=1 " which is relevant for filling/ flushing effects of the
pipeline. For example, the corner case of the batch size 8192
causes only one batch triggered to be executed, which cause
the GPU to stall and wait till the first batch preparation has
fully finished. Figure 10 shows the normalized execution time
for 128 samples with A) standard settings, B) optimized set-
tings using a larger batch size of 1024 samples and using 8
instead of 2 threads and C) the optimized settings but with a
minimal batch preparation pipeline that only casts CPU float
arrays into GPU allocated tensors. The optimized settings B)
allow to run the deep normalized probe net within 10.2 ms
per 128 samples, that is 19.4 x faster than the average exe-
cution speed of the reference models. The training speed of
the CIFARI0 dataset results of about four seconds per epoch
and completes the 100 epochs within seven minutes.

7 Application scenario: dataset
characterization for fast architecture
search

In this section, we demonstrate how the dataset character-
ization enables efficient architecture search. An in-depth
discussion of the broad field of automated architecture search
is widely covered in literature [1,5,34,38,41,55,57,58]. Auto-
mated architecture search enables to discover new network
models that might outperform reference models on a given
dataset and henceforth address the discovered problem that
arises when just applying given reference networks as done in
Sect. 3. However, in a traditional approach a large amount of

Efficient image dataset ...

1605

Table7 Run time complexity of

the main stages of the Stage Complexity Typical time (CIFARI0)
TAPAS-based pipeline as DCN O GrainCpen Ency) < 10min
depicted in Fig. 11 .
TAPAS O(ncandidatesCTAP) < 5min
TRAIN O (nirainCTRAINETRAIN) ~2h
) AP without DCN and LDE filtering 10 TAP without LDE filtering 10 TAP
. g . . .
) ; - N
0.8 gr‘ . ot ..a ¢4 } ‘ 0.8 ps <=2 "'o‘ 0.8 * - g’
oy & LY 'P'.' s ® .'%:E N ed o o
@ el 0= ‘ ‘o . . of g 0’. y £ o‘. .. 2
306 > LS A8 0.6 e o8 061 . . SRR
& L ;m, g o o :, .9 . Lo he A
T ¢ eatiad e ¥ o CTOR : -
Soaf o gh o ~Ter el 04 T o 0.4 = . 2
I 0 AU S - | e :
s oV . o § d o >
= oo cdredsy © .. 2 CTERAT & Y. .
0.2 -.’a.—.“.,.—:' £° . IMSE = 0.0483 0.2 Y SN MSE = 0.0068 0.21 2amges @¢ MSE = 0.0040|| g
. Tau = 0.386 Tau = 0.811 oo Tau = 0.846 a
° R*>=10.280 ° R*>=10.898 ° R’>=10.941
0. 0.0 2= 04,
%.0 0.2 0.4 0.6 0.8 1.0 %.0 0.2 0.4 0.6 0.8 1.0 .0 0.2 0.4 0.6 0.8 1.0

Accuracy after training

Fig. 12 Reprinted with permission [26]. Predicted vs real performance
(i.e., after training) of random architectures. Left plot: TAP trained with-
out DCN or LDE pre-filtering. Middle plot: TAP trained with DCN, but

candidate networks has to be fully trained on a given dataset,
either requiring a vast amount of computing resource or tak-
ing a long time to complete. To that end, approaches that
accelerate learning during architecture search have been pro-
posed. Early stopping based on learning curve predictors,
or transferred learning from model weights to the next can-
didate model was applied with success. Probe nets enable
fast execution and good classification difficulty estimation
that provide insights into datasets. Classification difficulty
estimation enables to select a problem tailored model prior
to invest resources and time to fully train all alternatives.
Using the knowledge of dataset difficulty estimation is a
key contribution to bias and optimize architecture searches
toward models of fitted complexity. We recently proposed
a method called train-less accuracy predictor for architec-
ture search (TAPAS) that demonstrates how the probe nets
contribute to bias and perform an architecture search. In this
section, we present TAPAS that is able to perform the com-
plete architecture search without training or retraining during
the architecture search [26] at all by tuning its search based
on the DCN.

7.1 TAPAS system setup

Figure 11 shows the high level system that is invoked for
the train-less architecture search of TAPAS. In this sec-
tion, we provide a high-level system description focusing
on the use of the dataset characterization, whereas a detail

Accuracy after training

Accuracy after training

LDE is not pre-filtered. Right plot: TAP trained only on LDE experi-
ments with similar dataset difficulty

technical discussion of the internal operation of TAPAS is
found in the literature [26]. The core of TAPAS performs a
genetic evolution algorithm, similar as proposed [41], how-
ever with the key differentiation that none of the candidate
models are trained. In contrast, an accuracy predictor (AP)
has been trained beforehand to predict the accuracy given
a network topology description and the dataset characteri-
zation. A prediction-based driven genetic algorithm can be
executed several orders of magnitude faster than the same
algorithm that would require to train each candidate network.
In order to work properly, the accuracy predictor requires to
gain and reuse knowledge about the dataset in order to accu-
rately predict model performance for different datasets. To
that end, the dataset characterization is used twice, offline to
train the AP, and online as input to the AP to bias all pre-
dictions to that data at hand. Given a new dataset instance,
as shown in Fig. 11, the dataset characterization is computed
as first step, since it is required as input for TAPAS to work.
After TAPAS search yields a valid network, it is trained on the
given data and returned to the user. Table 7 summarizes the
time complexity for each of the three steps. TAPAS execution
time does not depend on the size of the input dataset nor of the
run time complexity of the models it predicts performance
for. It solely depends on the number of evaluations, typically
a constant that is given due to the population size and the
number of iterations in the evolution algorithm, and the com-
plexity of the encoded candidate model description. In all our
experiments, TAPAS was able to execute in less than a few

@ Springer

1606

F.Scheidegger et al.

Table 8 Obtained accuracy with TAPAS-based pipeline as depicted in
Fig. 11

Dataset Variation (%) Best (%) Best+ (%)
mnist 99.19 £ 0.08 99.31 99.31
svhn 97.62 £0.19 98.12 98.12
gtsrberop 96.19 £ 0.39 96.57 96.57
gtsrb 95.71 £0.56 96.37 96.37
fashion 93.94 £+ 0.60 94.58 94.58
cifarl0 90.57 £ 1.06 91.80 91.80
flowers 74.68 £2.82 79.80 81.60
cifar100 59.46 £5.18 65.30 65.30
stl10 61.96 £ 2.60 65.44 69.72
food101 46.60 + 8.91 57.90 57.90
places 57.76 £ 4.85 65.08 65.08
quickdraw 55.06 £ 4.42 65.41 65.41
flowers102 26.74 £ 10.14 39.49 58.72
caltech256 32.57 £3.91 38.40 42.26
indoor67 21.02 £2.45 24.50 32.41
textures 13.05 £ 4.24 20.69 30.48

Bold values indicate zero-cost improvements by using the probe net
rather than the generated architecture

minutes. Both the DCN computation and the training time
of the candidate model are proportional to the dataset size,
the invoked model complexity, and the number of epochs the
models are trained for. Since both contributions are of the
same order and contribute to most of the time spent in the
overall pipeline, the DCN computation becomes time crit-
ical. For the DCN stage, the probe net defines the model
complexity and is designed to be lightweight and constant.
In contrast, the complexity of the candidate model is itself a
function of the resulting architecture found by TAPAS caus-
ing model-based execution time variations among different
runs. As discussed in Sect. 6, the DCN can be computed
with a low number of epochs resulting in superior execution
time advantages over typical training settings used to train
the candidate model.

7.2 Results

Figure 12 depicts the dependency of the dataset characteriza-
tion on the TAP performance [26] when applied to completely
unseen datasets. To that end, TAPs performance was mea-
sured on one unseen datasets while the TAP has been trained
on the remaining datasets. The full experiment is cross-
validated among all datasets. Without the DCN, the TAP is
not able to well predict the accuracy of candidate models on
the given dataset, resulting in a very loose cross-correlation
of r2 = 0.28, see left plot of Fig. 12. However, if the DCN
is feed and used by the TAP, its performance is increased to
a high cross-correlation. We observed that it turns out to be

@ Springer

beneficial to use the DCN once more in order to pre-filter
the available experiments in order to restrict the ground truth
used to train TAP to experiments that are relevant, by select-
ing entries that are performed on datasets with similar dataset
characterization values. The later option, relying twice on the
DCN, results in high correlation between the predicted and
the actual accuracy reached over the networks tested of about
R? =0.94.

For completeness, Table 8 shows the accuracy obtained
with the TAPAS framework. For each dataset, we repeated
the pipeline n = 10 times generating n different architec-
tures per dataset. Average and standard deviation over the n
repetitions are given in the first column. The second column
reports the best accuracy reached, and the last column reports
the best results reached when reusing the probe net rather
than the generated architecture in cases where the probe net
outperforms the solution found by the architecture search.
Reusing the probe net is a zero-cost improvement as this
does not add additional computing time since the probe net is
already trained within the regular high level execution flow as
described in Fig. 11. This optimization turns out to be helpful
on very small datasets where TAPAS might find too complex
network architectures that then over-fit to the dataset. The
last column of Table 8 reports the result of this optimization.

An extended study of architecture search and improve-
ments thereon is out of scope for that work. The results
presented in Table 8 are all based on TAPAS assumptions
and implementation details [26]. TAPAS internally uses a
block-based encoding to map network models to inputs
processed by the AP. The setup of this encoding enforces
block-sequential structure of all considered networks. Even
though TAPAS considers already a large search space, some
of the reference models considered in Sect. 3 are outside
the reachable search space of TAPAS. That present limita-
tion renders a direct comparison of models from Sect. 3 with
current results unfair and is henceforth omitted.

In this section, we demonstrated how the dataset charac-
terization fine-tunes the core part of an accuracy predictor.
Without any knowledge about the data, it would not be
possible to generate data and architecture specific predic-
tions. The TAPAS pipeline as depicted in Fig. 11 is able
to transfer knowledge about data and architecture to the
use case-specific situation even when applied with com-
pletely unseen datasets. In contrast to traditional architecture
searches that rely on fully or partially training produced can-
didates, TAPAS mechanism is based on prediction-based
construction of suited architectures enabled through the
dataset characterization. The training-free design enables to
run the TAPAS-based pipeline as shown in Fig. 11 multi-
ple order of magnitudes faster than traditional architecture
search approaches.

Efficient image dataset ...

1607

8 Conclusion

We formulated the question to compute a score among
datasets that reflect their inherent classification difficulty. We
suggested four processing pipelines, a silhouette-based score,
a k-means clustering-based, a Fréchet inception distance-
based score and our probe net-based evaluation pipeline. The
main drawback of the silhouette-based approach is the high
complexity, which scales with the squared number of sam-
ples. We proposed efficient score computing pipelines based
on k-means, Fréchet inception distance (FID) and probe nets
that scale linear in the number of samples. k-means delivers
results one complexity class faster and with slightly better
prediction quality as the silhouette approach, reaching a weak
correlation with reference models of R> = 0.26. The FID-
based approach reaches a high correlation of R> = 0.76
but at the drawback that its compute times is determined by
solving a matrix square root problem C? times.

Finally, we developed the probe nets, which are small net-
works, and apply standard deep learning techniques in order
to compute predictions that are strongly correlated with the
reference DCN reaching correlations of R> = 0.95. Even
the worst performing probe net outperforms silhouette and k-
means-based scoring with a wide quality margin. We further
evaluated the fact of early stopping to reduce the data score
evaluation time and observed little to no performance drop.
Leveraging the small architectures of probe nets and early
stopping allows to perform dataset scoring 97 x faster than
the required training time of the average reference model.

Acknowledgements Open access funding provided by Swiss Federal
Institute of Technology Zurich. We would like to thank Dr. Dario Garcia
Gasulla from the Barcelona Supercomputing Center for discussion and
advise.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural net-
work architectures using reinforcement learning. CoRR (2016).
arXiv:1611.02167

2. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F.,
Vaughan, J.W.: A theory of learning from different domains. Mach.
Learn. 79(1-2), 151-175 (2010)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Bergstra, J., Bengio, Y.: Random search for hyper-parameter opti-

mization. J. Mach. Learn. Res. 13, 281-305 (2012)

. Bossard, L., Guillaumin, M., Van Gool, L.: Food-101 - mining dis-

criminative components with random forests. In: Fleet, D., Pajdla,
T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision - ECCV 2014,
pp. 446-461. Springer International Publishing, Cham (2014)

. Cai, H., Chen, T., Zhang, W., Yu, Y., Wang, J.: Efficient architec-

ture search by network transformation. In: Thirty-Second AAAI
Conference on Atrtificial Intelligence (2018)

. Chen, L., Wang, R., Yang, J., Xue, L., Hu, M.: Multi-label image

classification with recurrently learning semantic dependencies. Vis.
Comput. 35(10), 1361-1371 (2019)

. Chen, W., Huang, H., Peng, S., Zhou, C., Zhang, C.: Yolo-face: a

real-time face detector. Vis. Comput. pp. 1-9 (2020)

. Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., Vedaldi, A.:

Describing textures in the wild. In: Proceedings of the 2014 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR
"14, pp. 3606-3613. IEEE Computer Society, Washington, DC,
USA (2014). 10.1109/CVPR.2014.461

. Coates, A.,Ng, A., Lee, H.: An analysis of single-layer networks in

unsupervised feature learning. In: Gordon, G., Dunson, D., Dudik,
M. (eds.) Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics. Proceedings of Machine
Learning Research, vol. 15, pp. 215-223. PMLR, Fort Lauderdale,
FL, USA (2011). http://proceedings.mlr.press/v15/coates1 1a.html
Courbariaux, M., Hubara, 1., Soudry, D., El-Yaniv, R., Bengio, Y.:
Binarized neural networks: Training deep neural networks with
weights and activations constrained to+ 1 or-1. arXiv preprint
arXiv:1602.02830 (2016)

Deadman, E., Higham, N.J., Ralha, R.: Blocked schur algorithms
for computing the matrix square root. In: International Workshop
on Applied Parallel Computing, pp. 171-182. Springer, Berlin
(2012)

Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Ima-
genet: a large-scale hierarchical image database. In: IEEE CVPR,
pp- 248-255 (2009)

Deng, L.: The mnist database of handwritten digit images for
machine learning research [best of the web]. IEEE Signal Process.
Mag. 29(6), 141-142 (2012)

Dowson, D., Landau, B.: The fréchet distance between multivariate
normal distributions. J. Multivar. Anal. 12(3), 450-455 (1982)
Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H.,
Laviolette, F., Marchand, M., Lempitsky, V.: Domain-adversarial
training of neural networks. J. Mach. Learn. Res. 17(1), 2030-2096
(2016)

Griffin, G., Holub, A., Perona, P.: Caltech-256 object category
dataset (2007)

Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.: Deep
learning with limited numerical precision. In: International Con-
ference on Machine Learning, pp. 1737-1746 (2015)

Hanzhang H., Debadeepta Dey, M.H.J.A.B.: Anytime neural net-
work: a versatile trade-off between computation and accuracy
(2017)

He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification.
In: Proceedings of the IEEE international conference on computer
vision, pp. 1026-1034 (2015)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for
image recognition. In: The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2016)

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter,
S.: Gans trained by a two time-scale update rule converge to a local
nash equilibrium. In: Advances in Neural Information Processing
Systems, pp. 66266637 (2017)

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1611.02167
http://proceedings.mlr.press/v15/coates11a.html
http://arxiv.org/abs/1602.02830

1608

F.Scheidegger et al.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Ho, T.K., Basu, M.: Complexity measures of supervised classifica-
tion problems. IEEE Trans. Pattern Anal. Mach. Intell. 3, 289-300
(2002)

Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W.,
Weyand, T., Andreetto, M., Adam, H.: Mobilenets: Efficient con-
volutional neural networks for mobile vision applications. CoRR
(2017). arXiv:1704.04861

Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely
connected convolutional networks. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp.
47004708 (2017)

Hubert, L., Arabie, P.: Comparing partitions. J. Classif 2(1), 193—
218 (1985)

Istrate, R., Scheidegger, F., Mariani, G., Nikolopoulos, D., Bekas,
C., Malossi, A.C.1.: Tapas: Train-less accuracy predictor for archi-
tecture search (2018)

Krizhevsky, A., Hinton, G.: Learning multiple layers of features
from tiny images (2009)

Kumar, A., Sattigeri, P., Wadhawan, K., Karlinsky, L., Feris, R.,
Freeman, B., Wornell, G.: Co-regularized alignment for unsu-
pervised domain adaptation. In: Advances in Neural Information
Processing Systems, pp. 9367-9378 (2018)

Lee, C.Y.,, Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-
supervised nets. In: Artificial Intelligence and Statistics, pp.
562-570 (2015)

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar,
A.: Hyperband: Bandit-based configuration evaluation for hyper-
parameter optimization (2016)

Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.J.,
Fei-Fei, L., Yuille, A., Huang, J., Murphy, K.: Progressive neural
architecture search. In: The European Conference on Computer
Vision (ECCV) (2018)

Luciano, L., Hamza, A.B.: Deep similarity network fusion for 3d
shape classification. Vis. Comput 35(6-8), 1171-1180 (2019)
Lucic, M., Kurach, K., Michalski, M., Gelly, S., Bousquet, O.: Are
gans created equal? A large-scale study. In: Advances in neural
information processing systems, pp. 698-707 (2018)
Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D.,
Francon, O., Raju, B., Shahrzad, H., Navruzyan, A., Duffy, N.,
et al.: Evolving deep neural networks. In: Artificial Intelligence in
the Age of Neural Networks and Brain Computing, pp. 293-312.
Elsevier (2019)

Mundhenk, T.N., Konjevod, G., Sakla, W.A., Boakye, K.: A large
contextual dataset for classification, detection and counting of cars
with deep learning. In: European Conference on Computer Vision,
pp- 785-800. Springer (2016)

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.:
Reading digits in natural images with unsupervised feature learn-
ing. In: NIPS Workshop on Deep Learning and Unsupervised
Feature Learning, vol. 2011, p. 5 (2011)

Nilsback, M.E., Zisserman, A.: Automated flower classification
over a large number of classes. In: 2008 Sixth Indian Conference on
Computer Vision, Graphics Image Processing, pp. 722-729 (2008)
Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient
neural architecture search via parameter sharing. CoRR (2018).
arXiv:1802.03268

Pourashraf, P., Tomuro, N.: Use of a large image repository to
enhance domain dataset for flyer classification. In: International
Symposium on Visual Computing, pp. 609-617. Springer, Berlin
(2015)

Quattoni, A., Torralba, A.: Recognizing indoor scenes. In: 2009
IEEE Conference on Computer Vision and Pattern Recognition,
pp- 413-420 (2009). 10.1109/CVPR.2009.5206537

Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Tan,
J., Le, Q., Kurakin, A.: Large-scale evolution of image classifiers
(2017)

@ Springer

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Rosenberg, A., Hirschberg, J.: V-measure: A conditional entropy-
based external cluster evaluation measure. In: Proceedings of the
2007 Joint Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Language Learning
(EMNLP-CoNLL) (2007)

Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation
and validation of cluster analysis. J. Comput. Appl. Math. 20, 53—
65 (1987)

Scheidegger, E., Istrate, R., Mariani, G., Benini, L., Bekas, C., Mal-
ossi, C.: Efficient image dataset classification difficulty estimation
for predicting deep-learning accuracy (2018)

Simonyan, K., Zisserman, A.: Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556
(2014)

Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian opti-
mization of machine learning algorithms. In: Pereira, F., Burges,
C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural
Information Processing Systems 25, pp. 2951-2959. Curran Asso-
ciates, Inc. (2012). http://papers.nips.cc/paper/4522-practical-
bayesian-optimization-of-machine-learning-algorithms.pdf
Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: The german
traffic sign recognition benchmark: A multi-class classification
competition. In: The 2011 International Joint Conference on Neural
Networks, pp. 1453-1460 (2011). 10.1109/IJCNN.2011.6033395
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,
Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with con-
volutions. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1-9 (2015)

Szegedy, C., Vanhoucke, V., loffe, S., Shlens, J., Wojna, Z.:
Rethinking the inception architecture for computer vision. In: The
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2016)

Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop, coursera: Neural
networks for machine learning. University of Toronto, Technical
Report (2012)

Tudor Ionescu, R., Alexe, B., Leordeanu, M., Popescu, M.,
Papadopoulos, D.P., Ferrari, V.: How hard can it be? estimating
the difficulty of visual search in an image. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp- 2157-2166 (2016)

Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures
for clusterings comparison: variants, properties, normalization and
correction for chance. J. Mach. Learn. Res. 11, 2837-2854 (2010)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image qual-
ity assessment: from error visibility to structural similarity. I[EEE
Trans. Image Process. 13(4), 600—612 (2004). https://doi.org/10.
1109/T1P.2003.819861

Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms (2017)
Xie, L., Yuille, A.: Genetic cnn. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision, pp. 1379-1388 (2017)
Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places:
A 10 million image database for scene recognition. IEEE Trans.
Pattern Anal. Mach. Intell. (2017)

Zoph, B., Le, Q.V.: Neural architecture search with reinforcement
learning. CoRR (2016). arXiv:1611.01578

Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable
architectures for scalable image recognition. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp.
8697-8710 (2018)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1802.03268
http://arxiv.org/abs/1409.1556
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
http://arxiv.org/abs/1611.01578

Efficient image dataset ...

1609

Florian Scheidegger achieved a
Master of Science ETH in Elec-
trical Engineering and Informa-
tion Technology in 2017 with a
main focus on software and hard-
ware development for high-perfor
mance data processing applica-
tions. He worked for five months
at the Integrated Systems Labo-
ratory of ETH developing a spa-
tiotemporal video pipeline in first
part, followed by a work that uses
neuronal nets to classify videos.
In January 2017, he started as
PhD at IBM research Ziirich for

P

the OPRECOMP project.

Roxana Istrate is currently a
research staff member at IBM Re
search in Zurich focused on Al
She graduated from the Polytech-
nic University of Bucharest, Fac-
ulty of Computer Science, in 2015
and joined IBM Research the same
year as a Great Minds intern. She
contributed to winning the 2016
IEEE International Parallel and Dis-
tributed Processing Symposium
(IPDPS) best paper award. After
completing her internship, Rox-
ana started her PhD with IBM
Research in collaboration with the
Queens University of Belfast. Her focus lies on automating the archi-
tectural design of convolutional neural networks for image classifica-
tion.

Giovanni Marianiis a Senior Deep
Learning Engineer at Qualcomm
since the beginning of 2019. Before,
he worked as postdoctoral resea
rcher in the Foundations of Cog-
nitive Solutions group of IBM.
Prior to that, he was a postdoc-
toral research at the ASTRON &
IBM Center for Exascale Tech-
nology located in Dwingeloo, the
Netherlands. He received his Ph.D.
degree on 2011 from Universitd
della Svizzera Italiana for his work
on design-time and run-time opti-
mization of multi-core systems.

Luca Benini is the chair of dig-
ital Circuits and Systems at D-
ITET ETHZ. He received a Ph.D.
degree in electrical engineering
from Stanford University in 1997.
He has served as Chief Archi-
tect for the Platform2012/STH
ORM project in STmicroelectron-
ics, Grenoble, in the period 2009-
2013. He is also a professor at
University of Bologna and has
held visiting and consulting resea
rcher positions at EPFL, IMEC,
Hewlett Packard Laboratories, Stan-
ford University. Dr. Benini’s rese
arch interests are in the design of energy-efficient digital systems with
special emphasis on ultra-low-power system-on-chip and green HPC
systems. He is also active in the area of smart sensors and sensor net-
works for consumer, biomedical, and Internet-of-Things applications.
In these areas, he has coordinated tens of funded projects, including
an ERC Advanced Grant on Multi-scale thermal management of Com-
puting Systems. He has been general chair of the Design Automation
and Test in Europe Conference, of the Network on Chip Symposium
and of the International Symposium on Low Power Electronics and
Design. He is Associate Editor of the IEEE Transactions on Computer-
Aided Design of Circuits and Systems and the ACM Transactions
on Embedded Computing Systems. He has published more than 700
papers in peerreviewed international journals and conferences, four
books, and several book chapters. He is a Fellow of the IEEE and the
ACM and a member of the Academia Europaea. He is the recipient of
the 2016 IEEE CAS Mac Van Valkenburg award.

Costas Bekas is managing the
Foundations of Cognitive Com-
puting group at IBM Research-
Zurich. He received B. Eng., Msc
and PhD diplomas, all from the
Computer Engineering & Infor-
matics Department, University of
Patras, Greece, in 1998, 2001 and
2003, respectively, working under
the supervsion of E. Gallopou-
los. Between 2003 and 2005, he
worked as a postdoctoral asso-
ciate with Prof. Yousef Saad at the
Computer Science & Engineering
Department, University of Min-
nesota, USA. He has been with IBM since September 2005. Costas’s
main research interests span Scalable systems for Al and Knowledge
Ingestion, HPC and new computing paradigms. Costas is a recipient
of the PRACE 2012 award and the ACM Gordon Bell 2013 and 2015
prizes.

@ Springer

1610

F.Scheidegger et al.

@ Springer

Cristiano Malossi received his
B.Sc. in Aerospace Engineering
and his M.Sc. in Aeronautical Engi-
neering from the Politecnico di
Milano (Italy) in 2004 and 2007,
respectively. After a year of focus
on computational geology prob-
lems in collaboration with ENI,
he moved to Switzerland where in
2012 he got his Ph.D. in Applied
Mathematics from the Swiss Fed-
eral Institute of Technology in Lau-
sanne (EPFL), with a thesis focused
on the development of algorithms
and mathematical methods for the

numerical simulation of cardiovascular problems. After winning the
IBM Research Prize for his PhD thesis, in July 2013 Cristiano
joined IBM Research-Zurich in the Foundations of Cognitive Solu-
tions group. Cristiano is a recipient of the 2015 ACM Gordon Bell
Prize and 2016 IPDPS Best Paper Award. Since 2017 he is coordi-
nator of the FET-H2020 Open transPREcision COMPuting (OPRE-
COMP) project. Since 2018 he is Research lead of NeuNetS. His
main research interests include: AI, Al automation, deep learn-
ing & machine learning, high-performance computing, transprecision
& energy-aware computing, numerical analysis, computational fluid
dynamics, aircraft design, cardiovascular simulations, and computa-
tional geology.

	Efficient image dataset classification difficulty estimation for predicting deep-learning accuracy
	Abstract
	1 Introduction
	2 Related work
	3 Datasets and reference models
	3.1 Notation
	3.2 Datasets and literature referenced results
	3.3 Reference models
	3.4 Reference results as proxy for classification difficulty

	4 Classification difficulty estimation of datasets
	4.1 Silhouette score
	4.2 K-means clustering
	4.3 Fréchet inception distance based score
	4.4 Probe nets

	5 Results
	5.1 Silhouette, clustering and Fréchet-based scores
	5.2 Probe nets
	5.3 Metric alternatives

	6 Efficient evaluation of probe nets
	7 Application scenario: dataset characterization for fast architecture search
	7.1 TAPAS system setup
	7.2 Results

	8 Conclusion
	Acknowledgements
	References

