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Abstract
Medical image segmentation is a critical and important step for developing computer-aided system in clinical situations. It
remains a complicated and challenging task due to the large variety of imaging modalities and different cases. Recently, Unet
has become one of the most popular deep learning frameworks because of its accurate performance in biomedical image
segmentation. In this paper, we propose a contour-aware semantic segmentation network, which is an extension of Unet, for
medical image segmentation. The proposed method includes a semantic branch and a detail branch. The semantic branch
focuses on extracting the semantic features from shallow and deep layers; the detail branch is used to enhance the contour
information implied in the shallow layers. In order to improve the representation capability of the network, a MulBlock
module is designed to extract semantic information with different receptive fields. Spatial attention module (CAM) is used to
adaptively suppress the redundant features. In comparisonwith the state-of-the-art methods, ourmethod achieves a remarkable
performance on several public medical image segmentation challenges.

Keywords Medical image segmentation · Semantic segmentation · Neural network

1 Introduction

Image segmentation is one of the main research areas in
medical image analysis, which attempt to assign the labels
to each pixels and address the pixel-wise lesion recognition
[9]. The morphological properties such as shapes, sizes and
areas of segmentation outcomes usually provide significant
cues for early manifestations of many malignant diseases.
The techniques such as computed tomography (CT), mag-
netic resonance imaging (MRI), microscopy imaging and
other imaging modalities, which could provide an intuitive
and effective way to scan variant diseases, have been widely
utilized in daily clinical diagnosis and treatment planning
[36]. Segmentation of different focused objects in these
images, for example, skin lesion segmentation in dermoscopy
images [15], lung segmentation in CT images [27] and col-
orectal cancer segmentation in endoscopy images [31], is a
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fundamental step to extract relevant features accurately for
developing computer-aided diagnosis systems (CAD),which
could assist professional clinicians by reducing the time, cost
and error of manual processing in clinical situation [3].

With the rapid development and wide popularization of
medical imaging technologies, a large number of medical
images are collected and could be used for analysis. It is
emergent to develop automatic algorithms to efficiently and
objectively analyze these medical images, with the aim of
providing doctors with precise interpretation of diagnosis
information contained in the images to have better treatment
of a large amounts of patients [3]. However, automatic and
accurate segmentation of lesion (tissue or organ) in medical
images remains a challenging task. First, the morphological
appearance of the focused objects have large variant among
different individuals even for a same disease, which will
increase the difficulty of segmentation. Figure 1 illustrates
three examples for lung nodule, skin lesion and colorec-
tal polyp. Second, the difference between the focus objects
and background is unclear that it complicates the segmenta-
tion . In particularly, different tissues and organs are always
included in the focused areas, which make the segmentation
of these confusing boundaries more difficult. Third, texture
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Fig. 1 Examples of several representative medical images. The first
row indicates the lung nodule in CT images, the second row represents
the skin lesion in the dermoscopy image, and the last row shows the
colorectal polyp in endoscopy images

features, artifacts and imaging noise will also bring great
challenge to segmentation.

In the past few decades, segmentation of medical images
has received much attention; a large amount of accurate
and automatic methods for this topic have been proposed
[23,34,38]. The earlier methods are mainly based on tradi-
tional hand-crafted features [5,7,12,26,39,41]. According to
the types of features, these methods can be roughly divided
into three groups of: gray level based, texture based and
level set atlas based. Although these methods obtained excit-
ing performance at that time, they are unreliable in the real
complex clinical situations, because they heavily depend
on pre-processing, which is low robustness to image qual-
ity and artifacts. Due to the great success of deep learning
(DL) in the field of computer vision, amount variants of DL
methods are proposed and applied to medical image seg-
mentation [23,33,37]. The representative Unet is the most
popular selections and usually obtain good results [30]. The
architecture of Unet consists of an encoding path to obtain
context features and a decoding path that enables precise
localization. It can be trained end to end for very few images.
Although many variants of Unet have been proposed and
widely used in medical image segmentation, they still suf-
fer from inaccurate object boundaries and unsatisfactory
results [1–3,25,32,35,40]. It is well known that the discrimi-
native features heavily affect the segmentation performance.
In order to accurately segment the focused objects, many
researchers paid close attention to extract and aggregate the

high-level context features and low-level fine details simul-
taneously.

In this manuscript, we propose a contour-aware seman-
tic segmentation network for medical image segmentation,
which is an extension of Unet and have two branches: seman-
tic branch and detail branch. The semantic branch follows
the classical encoding–decoding structure of Unet, which
focuses on extracting semantic features from shallow and
deep layers. The detail branch is designed to enhance the
detailed contour information implied in the shallow layers. In
addition, inspired by the densely connected convolution, we
design a MultiBlock module to replace convolutional block
of classical Unet in order to utilize different receptive fields.
We also add a spatial attention module between the encoding
and decoding path to suppress abundant features to improve
the network’s representation capability. The contributions of
this work are summarized as follows:

– We propose a two-branch Convolutional Neural Network
architecture containing a semantic branch and a detail
branch, which aggregates the high-level semantic fea-
tures and low-level fine details simultaneously.

– We design aMulBlock module which utilizes three paths
with different receptive fields to extract semantic infor-
mation from the input feature maps.

– In comparison with the state-of-the-art methods, the pro-
posedmethod achieves a remarkable performanceon four
public medical image segmentation challenges.

The remainder of this manuscript is organized as follows:
Sect. 2 reviews relevant works of medical image segmen-
tation; Sect. 3 presents our proposed segmentation neural
network; Sect. 4 presents the datasets and experimental
results; Sect. 5 concludes this paper.

2 Related work

Semantic segmentation is one of the most crucial tasks
in the field of medical imaging analysis. Prior literatures
mainly utilize the traditional handcrafted features for seman-
tic segmentation.With the fast development of deep learning,
DL-based methods have achieved outstanding results and
dominated this task.Among thesemethods, the convolutional
neural networks (CNN) and fully convolutional network
(FCN) are popular segmentation frameworks. In this section,
we briefly review CNN-based and FCN-based methods for
medical imaging segmentation.

2.1 CNN-based segmentation frameworks

To our knowledge, Ciresan et al. [13] first utilized a deep
CNN to segment electron microscopy images. They clas-
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sified each pixel of every slice through extracting a patch
around the pixel by a sliding window. Because the sliding
window method has plenty of overlap and redundant com-
putation, this method is time inefficiency. Pereira et al. [29]
utilized intensity normalization as pre-processing step and
small kernels to improve deeper architecture of CNN, to
reduce over-fitting for brain tumors segmentation in mag-
netic resonance images (MRI). In order to extract context
information, Chen et al. [8] proposed a segmentation frame-
work named Deeplab, which use the convolutional layers to
replace all fully connected layers and atrous convolutional
layers for increasing the feature resolution. Choudhury et al.
[10] attempted to utilize the DeepLab network for the task of
brain tumor segmentation in MRI. Based on residual learn-
ing, Li et al. [21] proposed a dense deconvolutional network
for skin lesion segmentation, which combined global con-
textual information by dense deconvolutional layers, chained
residual pooling and auxiliary supervision, to obtain multi-
scale features.

2.2 FCN-based segmentation frameworks

The CNN-based methods use patch around the pixel to make
a patch-wise prediction that they ignore the spatial informa-
tion implied in the image when the convolutional features
are fed into the fully connected (fc) layers [3]. In order to
overcome this problem, Long et al. [24] proposed a fully
convolutional network (FCN) which use convolutional and
deconvolutional layers to replace all fc layers in CNN archi-
tecture. FCN is trained end to end and pixels to pixels for
semantic segmentation. It is the most popular method uti-
lized to segment medical and biomedical images. Christ et
al. [11] proposed a liver segmentation method by cascading
two FCNs, where the first FCN performs segmentation to
predict the region of interest (ROI) of liver; the second FCN
focuses on segmenting the liver lesions within the predicted
ROIs of the first FCN. Zhou et al. [42] proposed a Focal
FCN which applies the focal loss on a fully weighted FCN
in medical image segmentation, with the aim of addressing
the limited training data of small object by adding weights
to the background and foreground loss.

Unet [30] has become one of most popular FCNs, which
has been widely used in biomedical image segmentation
since 2015. Unet utilizes an encoder-decoder architecture.
The encoding path consists of several convolutions and pool-
ing operation, and the decoding path utilizes up-sampling
operation to restore the shape of original image and produce
segmentation results. The shortcut connections between lay-
ers of equal resolution make Unet able to utilize the global
location and context information at same time. In addition,
it works well on limited training images [4]. Okatay et al.
[28] proposed an attention Unet which employs a novel
attention gate, to automatically focus on target structures of

varying shapes and sizes. In order to utilize the strengths of
different network. Altom et al. [1] proposed Recurrent Con-
volutional Neural Network (RUnet) and Recurrent Residual
Convolutional Neural Network (R2U-Net) based on Unet for
medical image segmentation. Azad et al. [3] proposed an
extension of Unet , Bi-Directional ConvLSTM Unet with
densely connected convolutions (BDCU), which combines
the bi-directional ConvLSTM and dense convolution mech-
anism with Unet for medical image segmentation.

Recently, several researches focused on using the detail
information implied in shallow feature maps to enhance the
boundary information [18]. For example, Wang et al. [36]
proposed a boundary-aware context neural network (BA-
Net), which employs pyramid edge extraction module, mini
multi-task learning module and interactive attention mod-
ule, to capture context information for 2D medical image
segmentation. Zhou et al. [43] first presented a nested Unet
architecture named UNet++, which utilizes a series of nested
and dense skip pathways to connect the encoder and decoder
subnetworks. Then, they redesigned the skip connections in
Unet++ by aggregating features of varying semantic scales
in decoders and devised a pruning scheme to accelerate the
inference speed of Unet++ [44].

3 Method

The flow chart of the proposed network is illustrated in Fig. 2.
Our proposedmodel is an end-to-end trainablemedical image
segmentation network, which has two branches: semantic
branch to obtain high-level semantic context information and
detail branch to enhance low-level detail information. We
introduce the details of our method below.

3.1 Semantic branch

The semantic branch is shown in the top part of Fig. 2. This
branch has narrow channels and deep layers, with aim of
capturing high-level semantic information of the image. The
architecture of the semantic branch is an extension of Unet,
which also uses the encoding–decoding structure. The dif-
ference is that we employ MultiBlock module and spatial
attention module to replace the original convolutional filters
in classical Unet. The encoding path consists of five steps.
The first step contains a convolutional 1 × 1 layer and a
MultiBlock module. Each of the next four steps is composed
of a MultiBlock module. After MultiBlock module in each
step, there is a 2 × 2 down-sampling layer for max pool-
ing. The resolutions of the outputs of each layer in encoding
path are 256× 256, 128× 128, 64× 64, 32× 32, 16× 16,
respectively. Then, the encoding path is followed by a spatial
attention module to suppress the useless redundant features.
The number of channels in each layer of the semantic branch
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Fig. 2 Flowchart of the proposed method. The structure includes: (1)
a detail branch with wide channels and shallow layers, used to capture
the details of the underlying layer and generate high-resolution feature

representations; (2) a semantic branch with narrow channels and deep
layers used to get high-level semantic context information

Table 1 Number of channels in
each layer of the semantic
branch

Layer Channels

Conv 1× 1 32

MultiBlock1 64

MaxPooling1 64

MultiBlock2 128

MaxPooling2 128

MultiBlock3 256

MaxPooling3 256

MultiBlock4 512

MaxPooling4 512

MultiBlock5 1024

Spatial_attention 1024

is listed in Table 1. The decoding path has four steps. Each
step concatenates the layer obtained by performing an up-
sampling function over the output of the previous layer and
the layer copied who has the same resolution from encoding
path.

3.2 MultiBlockmodule

The details of MultiBlock module are illustrated in Fig. 3.
Densely connected convolution [19] was proposed to miti-
gate the problem that the sequence of convolutional layers in
originalUnetmight learn redundant features in the successive
convolutions. It utilizes the idea of ”collective knowledge”
by allowing information flow

Fig. 3 MultiBlock module

through the network and reuse the feature maps. We employ
the idea of densely connected convolution and propose a
variant named MultiBlock in our network. Different from
densely connected convolution, MultiBlock module reduces
the channel of the original main branch to half for cutdown
the size of the model. In addition, a new path with two 3× 3
convolutional filters is added for expanding the receptive field
of the module. Let us assume the number of input channels
is 4k, as shown in Fig. 3, the channels of left path is k and the
channels of right path also is k. Then, they are concatenated
with input maps, and we can get the output of MultiBlock
with 6k channels.
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Fig. 4 Spatial attentive module. The size of each feature map is shown in H × W × C , where H ,W ,C indicate height, width and number of
channels, respectively

3.3 Spatial attentionmodule

Spatial attention module (SAM) was proposed to infer the
attention map along the spatial dimension between features
[17]. It is commonly used to perform adaptive feature refine-
ment by multiplying the attention map with the input feature
map for image segmentation [17]. As shown in Fig. 4, SAM
firstly concatenates the feature maps which are obtained by
performing average pooling andmax pooling along the chan-
nel axis, to generate an efficient feature descriptor. Then, the
concatenated feature descriptor is fed into a 7 × 7 convolu-
tional layer and a sigmoid activation function to produce an
attention map. Finally, the attention map is utilized to mul-
tiply the input image in order to generate the output feature
map.

3.4 Detail branch

In medical images, the differences between the target objects
and the background commonly are not obvious, especially
that there exist amount jagged contours and tiny objects, the
high-level semantic context information can improve the per-
formance of larger structures segmentation, but it is easy to
make mistakes when dealing with these boundary structures.
It is well known that the shallow feature maps of a deep con-
volutional network contain abundant boundary information.
In order to remarkably enhance the detail information, which
implied in the shallow feature map, we design a small span
shallow structure for detail branch. As shown in the bottom
part of Fig. 2, we firstly pass the input image into a 1×1 con-
volutional layer followed by MultiBlock module to get the
first layer feature map. After 2 × 2 max pooling and Multi-
Block module, we get the second layer feature map. Finally,
we send the first layer feature map and the feature map which
is upsampled from the second layer feature map to concate-
nate with the semantic branch. The number of channels in
each layer of the detail branch is listed in Table 2. It shows
that the detail branch utilizes wide channels and shallow lay-
ers to enhance the detail information.

Table 2 Number of channels in
each layer of the detail branch

Layer Channels

Conv 1× 1 64

MultiBlock1 128

MaxPooling 128

MultiBlock2 256

4 Experiments and results

4.1 Datasets

Weemploy four public datasets: TheCOVID-19CTSegmen-
tation dataset, CVC-ClinicDB dataset, ISIC2018 dataset and
Lung segmentation dataset to verify the effectiveness of the
proposed method. The four datasets are described in detail
as follows:

4.1.1 The COVID-19 CT Segmentation dataset

The COVID-19 CT Segmentation dataset is the only one
open-access CT segmentation dataset for the novel Coron-
avirus Disease 2019 (COVID-19) [16]. The dataset includes
100 axial CT images which are collected by the Italian Soci-
ety of Medical and Interventional Radiology from different
COVID-19 patients. The CT images are segmented by a radi-
ologist with different labels to identify lung infections. We
randomly split the dataset into a training set with 45 images, a
validation set with 5 images and a testing set with the remain-
ing 50 images. Since the dataset suffers from a small sample
size,we utilize the same strategy described in [16] to augment
the training dataset.

4.1.2 CVC-ClinicDB dataset

CVC-ClinicDB dataset [6] is a public fully annotated
colonoscopy image dataset, which has been generated from
framesof 29different standard colonoscopyvideo sequences.
The images in this dataset all have a polyp, and the total num-
ber of images is 612. Each image has manually annotated
ground truth of polyp. The original resolution of images in
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the dataset is 288×384. We randomly divide the dataset into
three subsets: a training set with 414 images, a validation set
with 85 images and a testing set with the rest 113 images.

4.1.3 ISIC 2018 dataset

The ISIC 2018 skin cancer segmentation dataset is published
by the International Skin Imaging Collaboration (ISIC) and
has become amajor benchmark dataset to evaluate the perfor-
mance ofmedical image algorithms [14]. Thedataset consists
of 2594 images with corresponding annotations of localiz-
ing lesions on skin images that containing melenoma. The
original resolution of images in this dataset is 700 × 900.
We use the same preprocessing strategy as [1] to process the
input images. We also resize the input images to 256× 256.
We follow the same strategy described in [3] to split whole
dataset into three subsets: a training set with 1815 images,
a validation set with 259 images and a testing set with 520
images.

4.1.4 Lung segmentation dataset

Lung segmentation dataset is released at the Kaggle Data
Science Bowl, with aim of developing algorithms that accu-
rately determine when lesions in the lungs are cancerous for
the Lung Nodule Analysis competition in 2017 [22]. The
dataset contains 2D and 3D CT images with labels annotated
by radiologists for lung segmentation. The resolution of each
image in this dataset is 512× 512. Since the CT image con-
sists of not only the lung but also other tissues, it is worth to
extract the mask of lung and ignore all other tissues. We use
same preprocessing strategy described in [3] to extract the
surrounding regions, and obtain the lung region which inside
the surrounding regions. We train and test the model with
extracted lung regions. We randomly split the images into
three subsets: a training set with 571 images, a validation set
with 143 images and a test set with 307 images.

4.2 Implementation details

We implement our method in python with Keras. We train
and evaluate our method on a high performance computer
with 35.4816 Tflops CPU and 18.8 Tflops GPU. The stan-
dard binary cross-entropy loss is used as training loss. Adam
algorithmwith initial learning rate of le-4 is used to optimize
the model weights. We set the batch size of training with 50,
50, 100 and 50 for four datasets, respectively. We stop the
training process when the validation loss does not decrease
in 10 consecutive epochs.

4.3 Evaluationmetrics

We utilize several common metrics to measure the exper-
iment performance comparisons, such as F1 score (F-
measure), accuracy, the area under ROC curve (AUC),
sensitivity and specificity. We also use Frame Per Second
(FPS), which is the number of images that can be processed
per second, to measure the inference speed.

4.4 Ablation study

To verify the impacts of the detail branch, we compare the
quantitative results of the proposed method with and with-
out this mechanism. The detailed results are exhibited in
Table 3. In Table 3, Ours_noDetail and Ours indicate the
methods without and with the detail branch, respectively.
From the results, we could see that the detail branch mech-
anism provides significant improvement for the COVID-19
and CVC-ClinicDB datasets, and slight improvement for the
ISIC and Lung datasets.

In order to verify the proposed detail branch can be
extended to other available networks except only limited
with the semantic branch for contour-aware segmentation,
we extend the detail branch to the Unet [30]. The detailed
results are listed in Table 4. In Table 4, Unet_Detail means
the method that combines the detail branch into the standard
Unet architecture. From the results, we could see that the
detail branch mechanism also has a significant improvement
for the COVID-19 and CVC-ClinicDB datasets.

From the Ablation studies, we could see that the proposed
detail branch could improve the segmentation results especial
for the COVID-19 and CVC-ClinicDB datasets. Observing
the images in the COVID-19 and CVC-CLinicDB datasets,
we find the segmented objects have a high similar with
the background. Several literatures consider these two seg-
mentation tasks belong to camouflaged object detection. We
attempt to explain this result, but it is difficult. We will ver-
ify whether this mechanism has good performance for such
problems in our future work.

4.5 Results

In recent years, a large number of state-of-the-art algorithms
focused on medical image segmentation are reported, such
as Unet [30], Attention Unet [28], R2U-Net [1], BCDU [3],
DeepLabv3+ [8] and Unet++ [44]. The experiment perfor-
mance comparisons of above algorithms with our proposed
method are presented in this section. For fairness, the codes
of the comparison methods are all download from original
websites. It should be noted out that for all four datasets, we
use exactly the same network architecture of our method.

Firstly, we test the proposed method on the COVID-19
CT Segmentation dataset. The quantitative results are shown

123



Contour-aware semantic segmentation network with spatial attention… 755

Table 3 Effects of the detail
branch with the semantic branch
on four different datasets

Dataset Method F1-score Sensitivity Specificity Accuracy AUC

COVID-19 Ours_noDetail 70.54 62.84 96.86 91.08 79.85

Ours 75.16 71.48 96.16 91.97 83.82

CVC-ClinicDB Ours_noDetail 75.23 76.33 97.40 95.52 86.86

Ours 79.98 77.70 98.38 96.53 88.04

ISIC Ours_noDetail 85.72 85.47 94.46 91.90 89.96

Ours 86.27 86.28 94.54 92.19 90.41

Lung Ours_noDetail 98.50 98.66 99.66 99.48 99.16

Ours 98.68 98.89 99.68 99.54 99.29

Table 4 Effects of the detail
branch extended to Unet on four
different datasets

Dataset Method F1-Score Sensitivity Specificity Accuracy AUC

COVID-19 Unet 55.85 44.54 96.94 88.03 70.74

Unet_Detail 62.85 54.37 96.18 89.08 75.27

CVC-ClinicDB Unet 71.24 63.03 98.63 95.46 80.83

Unet_Detail 75.23 66.89 98.92 96.07 82.91

ISIC Unet 85.07 80.65 96.44 91.95 88.54

Unet_Detail 86.00 79.08 98.08 92.67 88.58

Lung Unet 98.45 98.59 99.64 99.46 99.12

Unet_Detail 98.59 99.11 99.59 99.51 99.35

in detail in Table 5. From the results, we could see that
the proposed method achieves an exciting performance with
75.16 F1-Score, 91.97 Accuracy and 83.82 AUC, which
are significant higher than other methods. To demonstrate
the segmentation, we also display the detailed results for 7
random selected images in Fig. 5, which indicates the seg-
mentation results are close to the ground truth with more
clear boundaries.

Secondly, we test the proposedmethod onCVC-ClinicDB
dataset. The quantitative results obtained by different meth-
ods and the proposed network are listed in Table 6. Table
6 shows that the proposed method achieves the best results
except the metrics specificity. It obtains the highest F1-score,
sensitivity, accuracy, AUC of 79.98, 77.70, 96.53 and 88.04,
respectively, and specificity comparable. We also display the
detailed results for 6 random selected images in Fig. 6. From
Fig. 6, we can see that Unet has the problem of less segmen-
tation and its produced contours are not smooth, Attention
Unet is easy to produce over segmentation, and BCDU fails
to segment targets with unclear contours. Our method also
shows more precise and fine segmentation output than other
methods.

Thirdly,we test the proposedmethod on ISIC2018 dataset.
Table 7 shows the quantitative results achieved by different
methods and the proposednetworkon ISICdataset.As shown
in Table 7, Unet++ achieves the best performance except
the evaluation metric specificity. Our method obtains the

F1-score, sensitivity, accuracy, AUC of 86.27, 86.28, 92.19,
90.41, respectively, which are slighter lower than Unet++.
For clearly displaying the detailed results, we random select
6 images from the testing set and display the segmentation
results in Fig. 7. From Fig. 7, we could see that images
from ISIC2018 dataset exist unclear contours and heavy
noisy information from background. Unet, Attention Unet
and BCDU fail to well segment the contours of target, and
R2U-Net produces serious over segmentation. Although the
metrics of our method is lower than Unet++, the segmen-
tation boundaries are more close to the ground truth than
Unet++.

Finally, we test our method on the Lung segmentation
dataset. The qualitative results of lung segmentation on test-
ing set are reported in Table 8. From the results presented in
Table 8, we can see that the proposed method achieves the
best performance for most of evaluation metrics. It obtains
the highest F1-score, specificity, Accuracy of 98.68, 99.68,
99.54, respectively, sensitivity and accuracy comparable.
To demonstrate segmentation clearly, we also display the
detailed results for 6 random selected images in Fig. 8. The
results illustrate thatUnet is not good at recognizing small tar-
get objects and controlling the overall shape of target objects.
Attention Unet is prone to produce over segmentation. R2U-
Net paysmore attention to segmentationof large scale targets.
BCDU lacks capability of recognizing contour details of tar-
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Table 5 Performance
comparison of the proposed
network and the state-of-the-art
methods on COVID-19 dataset

Method F1-score Sensitivity Specificity Accuracy AUC

Unet 55.85 44.54 96.94 88.03 70.74

Attention Unet 57.80 46.80 96.90 88.39 71.85

BCDU 70.34 62.10 97.03 91.10 70.34

Unet++ 64.36 52.44 97.84 90.13 75.14

DeeplabV3+ 63.47 58.08 69.96 88.64 76.49

Ours 75.16 74.18 96.16 91.97 83.82

Bold values indicate the best result of each metric

Fig. 5 Visual comparisons to
different methods on COVID-19
dataset. Red = TP, blue = TN,
yellow = FN, and green = FP

Table 6 Performance
comparison of the proposed
network and the state-of-the-art
methods on CVC-ClinicDB
dataset

Method F1-score Sensitivity Specificity Accuracy AUC

Unet 71.24 63.03 98.63 95.46 80.83

Attention Unet 74.24 73.97 97.52 95.43 85.74

BCDU 71.12 64.17 98.41 95.36 81.28

Unet++ 77.11 77.69 97.67 95.89 87.68

DeeplabV3+ 73.75 68.26 98.35 95.67 83.30

Ours 79.98 77.70 98.38 96.53 88.04

Bold values indicate the best result of each metric
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Fig. 6 Visual comparisons to
different methods on
CVC-ClinicDB dataset. Red =
TP, blue = TN, yellow = FN, and
green = FP

Table 7 Performance
comparison of the proposed
network and the state-of-the-art
methods on ISIC 2018 dataset

Method F1-score Sensitivity Specificity Accuracy AUC

Unet 85.07 80.65 96.44 91.95 88.54

R2U-Net 84.90 78.47 97.46 92.06 87.97

Attention Unet 84.97 79.57 96.93 91.99 88.25

BCDU 85.44 83.56 95.21 91.89 89.39

Unet++ 87.86 83.35 97.46 93.45 90.41

DeeplabV3+ 85.85 80.28 97.32 92.47 88.80

Ours 86.27 86.28 94.54 92.19 90.41

Bold values indicate the best result of each metric

get objects. Compared to these methods, our model exhibits
remarkable performance in lung segmentation challenge.

4.6 Limitations and future work

We compare the total number of parameters contained in the
proposed method with the above state-of-the-art methods.
Table 9 lists the number of parameters of the above methods.
From Table 9, we can see that parameters of the proposed
method are 107.57M and it is less than other methods. We
also compare the training speed (second per epoch) and the
inference speed (FPS) of these methods. The results are also
listed in Tables 10 and 11. We could see that Unet++ is con-

verge faster, and Unet is faster than its extension methods
in most situations. The results also show that the proposed
method has less parameters, but its training speed and infer-
ence speed are slower than most methods. We attempt to
explain this reason, but it is very difficult. We think it would
be caused by the MultiBlock modules used in each step of
encoding path. These MultiBlock modules add large convo-
lutional filters to expand the receptive field; thus, they need
more computations and increase the execution time. How to
improve the speed and maintain the segmentation accuracy
of this mechanism would be a significant problem.

It is well known that the segmentation performance of a
deep neural network heavily relies on the characteristics of
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Fig. 7 Visual comparisons to
different methods on ISIC 2018
dataset. Red = TP, blue = TN,
yellow = FN, and green = FP

Table 8 Performance
comparison of the proposed
network and the state-of-the-art
methods on Lung segmentation
dataset

Method F1-score Sensitivity Specificity Accuracy AUC

Unet 98.45 98.59 99.64 99.46 99.12

R2U-Net 98.33 99.38 99.42 99.42 99.40

Attention Unet 98.14 99.08 99.41 99.35 99.24

BCDU 98.43 99.02 99.55 99.45 99.28

Unet++ 97.36 99.36 99.01 99.07 99.18

DeeplabV3+ 94.40 99.55 97.63 97.96 98.59

Ours 98.68 98.89 99.68 99.54 99.29

Bold values indicate the best result of each metric
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Fig. 8 Visual comparisons to
different methods on Lung
segmentation dataset. Red = TP,
blue = TN, yellow = FN, and
green = FP

the training sets. The experiments show that the presented
method could be generalized across these four imaging
modalities. However, although the boundaries between the
segmented objects and background in these images are not
obvious, the segmented objects are solitary without overlap-
ping and adhesion. Segmentation of overlapping and adhe-
sion objects is one of the most challenging problems which
widely exist in medical image segmentation. We attempted
to apply our method to segment nuclei on MoNuSeg dataset
[20], which is a collection of Hematoxylin–Eosin (H&E)
stained tissue images and exist large nuclear overlapping and
adhesion. The results show that the proposed method fails
to solve the problem of overlapping and adhesion as well
as the comparable methods. The reasons would be that the
lack of boundaries in the regions of overlapping and adhe-
sion would affect the extraction of the contour information,
which yields themethod fails to recognize these objects. How

to improve the capability of dealing with overlapping and
adhesion would be one of our future works.

5 Conclusion

Medical image segmentation is a critical and important step
for developing computer aided system in clinical situations.
In this paper, we proposed an accurate algorithm for medical
image segmentation which includes a semantic branch and a
detail branch to extract the semantic and detail information,
respectively. Inspired by the densely connected convolution,
we design a MultiBlock module to replace convolutional
block of classical Unet in order to utilize different recep-
tive fields. We also add a spatial attention module between
the encoding and decoding path to suppress abundant fea-
tures to improve the network’s representation capability. In
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Table 9 Number of parameters of different methods

Method Unet R2U-Net Attention Unet BCDU Unet++ DeeplabV3+ Ours

Parameters 355.39M 1.07G 365.56M 236.65M 122.69M 472.32M 107.57M

Bold values indicate the best result of each metric

Table 10 Training speed
(second per epoch) of different
methods on four datasets

Method Unet R2U-Net Attention Unet BCDU Unet++ DeeplabV3+ Ours

COVID-19 213 – 241 323 134 436 210

CVC-clinicDB 60 – 38 39 38 65 58

Lung 154 182 96 149 80 116 135

ISIC 154 228 172 195 120 184 211

Bold values indicate the best result of each metric

Table 11 Inference speed (FPS)
of different methods on four
datasets

Method Unet R2U-Net Attention Unet BCDU Unet++ DeeplabV3+ Ours

COVID-19 6.52 – 6.69 5.27 6.58 4.81 5.18

CVC-clinicDB 10.86 – 10.66 9.08 10.48 7.77 8.86

Lung 7.85 4.82 7.02 5.24 7.62 6.06 6.15

ISIC 46.26 26.92 42.91 33.23 36.09 46.96 33.94

Bold values indicate the best result of each metric

medical images, the differences between the target objects
and the background commonly are not obvious, especially
that there exist amount jagged contours and tiny objects; the
high-level context information hardly well recognizes these
objects. Therefore, we design a detail branch to enhance the
detailed contour information implied in the shallow layers for
improving the representation capability. In comparison with
the state-of-the-art methods, our method achieves a remark-
able performance on four publicmedical image segmentation
challenges.
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