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Abstract
We propose concepts to utilize basic mathematical principles for computing the exact mass properties of objects with varying
densities. For objects given as 3D triangle meshes, the method is analytically accurate and at the same time faster than any
established approximation method. Our concept is based on tetrahedra as underlying primitives, which allows for the object’s
actual mesh surface to be incorporated in the computation. The density within a tetrahedron is allowed to vary linearly,
i.e., arbitrary density fields can be approximated by specifying the density at all vertices of a tetrahedral mesh. Involved
integrals are formulated in closed form and can be evaluated by simple, easily parallelized, vector-matrix multiplications.
The ability to compute exact masses and centroids for objects of varying density enables novel or more exact solutions to
several interesting problems: besides the accurate analysis of objects under given density fields, this includes the synthesis
of parameterized density functions for the make-it-stand challenge or manufacturing of objects with controlled rotational
inertia. In addition, based on the tetrahedralization of Voronoi cells we introduce a precise method to solve L2|∞ Lloyd
relaxations by exact integration of the Chebyshev norm. In the context of additive manufacturing research, objects of varying
density are a prominent topic. However, current state-of-the-art algorithms are still based on voxelizations, which produce
rather crude approximations of masses and mass centers of 3D objects. Many existing frameworks will benefit by replacing
approximations with fast and exact calculations.

Keywords Volumetric models · Shape analysis · 3D printing

1 Introduction

When it comes to estimating masses or computing grav-
itational centers for objects of varying density almost
everywhere discretized approximations are used. Often their
accuracy is not even questioned. Surprisingly, it is neither
a very complex problem nor bound to numerical trade-
offs between computation cost and accuracy. As used in
finite element methods (FEM) [23,24], our techniques are
based on tetrahedra as the underlying geometry primitive.
Density fields are accurately represented by specifying the
density at the four vertices. The analytically derived closed-
form integrals for mass properties are expressed with simple
matrix-vector multiplications. In Sect. 2, we derive the con-
cept, demonstrate its versatile applicability in Sect. 3 and
conclude in Sect. 4 with numerical comparisons and a quan-
titative evaluation.
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1.1 Contributions

In our paper, we briefly review the mathematical basis
that allows for accurate solutions of mass and mass-center
integrals of objects with varying density. It is simple as
computations for tetrahedra with constant density are eas-
ily extended towards varying density. It is precise due to
the use of a tet-mesh itself as input and therefore avoiding
aliasing bias from discretization, as it is common in state-
of-the-art applications using axis-aligned voxelizations. It is
fast as computations can be implemented as matrix-vector
multiplications, suitable for vectorized or GPU execution. It
is versatile because the framework is not limited to density
and can be extended to integrate arbitrary linear properties
over a volume.

Our application framework, introduced in Sect. 3, can be
summarized with the following main contributions:

• Arbitrary Objects The solutions, known for tetrahedra,
can be straightforward generalized to arbitrary polyhe-
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dra.We can accurately determine mass properties for any
tetrahedralized input object in specified density fields.

• Optimizing DensityWe can also invert the problem and
optimize a parameterized density field for an object and
given mass properties.

• Approaching nonlinearity Arbitrary nonlinear func-
tions can be approximated in a Taylor-like piecewise
linear fashion, limited in accuracy only by the tetrahe-
dralization’s resolution.

• Additive manufacturing Combining the former two
contributions, we eventually propose to 3D-print objects
of nonlinear density with optimized mass properties for
balance or rotation-aligned inertia momentum.

• Expressing energy functions As the method is not
bound to only physical characteristics, we extend a Lloyd
relaxation procedure based on L2 Voronoi cells, using the
concept to replace the cells energy integral with an accu-
rate closed form solution for an L∞ objective function.

1.2 Related work

Over the last few years, 3D printing not only attracted the do-
it-yourself hobbyist community but also gained popularity
in various industrial applications. Nowadays, additive manu-
facturing processes go way beyond stacked layers of plastic
and support a wide range of multiple or mixed materials,
even including metals. Its widespread use, e.g., in the med-
ical [31] or automotive [11] industry, keep this a relevant
research topic.
Hence the general interest of the computer graphics com-
munity for analyzing and processing 3D geometry, research
in this field also spawned state-of-the-art algorithms aiming
at 3D manufacturing. The procedure introduced by Prévost
et al. [22] allows 3D models to be balanced in a specific
position by shifting the object’s center of gravity over a safe
area onwhich the object eventually stands. Optimizedweight
distribution is achieved by carving out the object’s interior
and deformations of the hull, if necessary. Advancements of
this technique optimize objects to have rotation-symmetric
weight distributions and allow them to spin-like toy-tops
[1]. Multistable balancing states are accomplished by using
movable masses [21]. However, established techniques for
mass property optimization are still based on approximations
of the actual volume and mass distribution using quantized
voxelizations. The approach by Musialski et al. [18] utilizes
offset surfaces for shape and mass property optimization but
also relies on binary material distribution. Even publications
specialized on varying density formanufacturing [10,29] dis-
cretize their density field withmarching cubes [15] or octrees
[16] combined with dithering techniques.
Known methods for computing exact mass properties of
polyhedral bodies [17] are restricted to constant density. Like

ours, they are based on integrals over the volume and surface
of an object. A later revision [6] made the concept feasible
for implementation. The varying density of polyhedral bod-
ies, however, was first studied in the field of geophysics and
concluded with the focus on gravitational fields [5,7] but not
general mass properties. Our approach to computing accu-
rate masses and mass centers under varying density relies on
a tetrahedral decomposition of the input object. TetGen [26]
is a tetrahedralization tool for polyhedral manifolds based on
a Voronoi/Delaunay tessellation. Most recently, TetWild [9]
introduced another fast and robust way to tetrahedralize any
given 3D triangle soup, providing many adjustable param-
eters to the user. Our results for examples and applications
are based on the outputs of both tools but often specifically
on TetGen since it is able to preserve the original input sur-
face. However, any other tet-meshing pipeline will generate
equally suitable input as well.
As mentioned with TetGen, tetrahedralization is closely
related to Voronoi and Delaunay graphs. In our Sect. 3.5,
we introduce a novel approach on Lloyd relaxations (based
on Voronoi tessellations) using the L∞ norm. Ray et al. pro-
posed to computemeshlessVoronoi [25] and restricted power
diagrams [2] on the GPU, however, both only in the common
L2 space. It definitely is a promising task to explore combi-
nations of their diagrams and our take on L∞ relaxations.

2 Concept

Our goal is to approach mass properties for polyhedral man-
ifolds of varying densities with analytical tools. In order
to compute the mass, the center of mass, or other related
quantities in a field of varying density that is bounded by
a triangle mesh we use closed-form solutions for a tetrahe-
dralization, induced by the given mesh surface. These kinds
of approaches are admittedly standard in FEM but so far
rarely have been used in computer graphics. Therefore, this
section briefly summarizes all important formulas and intro-
duces the geometric concept that allows for computing these
quantities exactly for linearly varying density fields inside a
tetrahedron. Detailed derivations of the resulting equations
are featured in “Appendix A”.

2.1 Problem statement

Mesh data structures are the straightforward and, there-
fore, most commonway to store and represent 3Dmanifolds.
Under constant density, mass properties like the center of
mass or an inertiamomentumcan be easily computed directly
on a mesh using the divergence theorem. With varying
density, however, a volume bounded by arbitrarily shaped
polyhedra cannot be directly integrated. A common fallback
solution is to approximate the object shape by decomposi-
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Fig. 1 2D example: Voxelizations are common approximations to
determine mass properties under varying density. Tetrahedra allow for
accurate representations using precise analytic results

Fig. 2 A general tetrahedron T with varying density, defined by its four
vertices vi . In addition to their geometrical dimensions (x, y, z), each
vertex is attributed with a fourth density dimension d

tion into feasible volume entities, usually voxels. However,
as illustrated with the 2D example in Fig. 1, the success and
precision of the approximation will always be limited by
the chosen resolution (for space and values), even hierar-
chical concepts can only reduce sampling artifacts but not
fully avoid them. In contrast, our solution for the computa-
tion under varying density is based on the simple idea of an
alternative volume representation, namely the tetrahedron.
As illustrated on the right in Fig. 1 with a trivially triangu-
lated 2D shape, every 3D shape with a polygonal surface can
be decomposed using tetrahedra.With tetrahedra, the mesh’s
true shape can be used in all computations and, therefore,
corresponding results are free of discretization and aliasing
bias.

2.2 Geometry integration

Computing mass properties for the general tetrahedron T ,
specified in Fig. 2, is trivial for constant density: For exam-
ple with di = 1, the mass is equal to the tet-volume and the
center of mass is equal to its centroid. However, as the den-
sity attributes at each vertex can be individually specified,
expressing a linear density field inside the tetrahedron, the
computation of mass and mass center changes. Instead, as in
FEM [23,24], we utilize a simple basis case in a linear density
field, for which the integration is solved analytically. A linear
combination of four base cases (one per vertex) already gives
the desired properties for a general tetrahedron.

Fig. 3 The basis case for an integrable tetrahedron with dD = 1 and
dA,B,C = 0. The density gradient over the extent of h is visualized with
fading blue. −→w indicates the center of mass vector

2.3 Mass properties for arbitrary tetrahedra

Mass Due to linearity, the mass for a tetrahedron with four
different density values at its vertices can be simply expressed
as the mean of these values times the volume, formulated in
Eq. 1.

MT = VT
dA + dB + dC + dD

4
(1)

Center of Mass As expressed in Eq. 2, the mass center
computes as a weighted sum of vertex positions and their
normalized density values. An extended derivation for the
combination of the four base cases to this general form is
included in Eq. 12.

CT = 1

5

(
A + B + C + D + A · dA+B · dB + C · dC + D · dD

dA + dB + dC + dD

)
(2)

3 Application

With the presented approach, one can now calculate the mass
and further mass properties of tet-meshes with arbitrary den-
sity fields efficiently and exactly. The power of the approach
will be demonstrated in three different application scenar-
ios: For example, as a fast and accurate replacement for
widespread voxel-based approximations of arbitrary objects’
mass properties. Further, it can be used to optimize the den-
sity distribution inside an object to obtain a given center of
mass or a stable rotation axis, potentially even with nonlin-
ear density fields. By introducing a closed-form solution, our
concept even allows us to formulate an objective function in
a volumetric Lloyd relaxation process, which was so far not
analytically feasible.

3.1 Mass properties of arbitrary objects

With the techniques, introduced in Sect. 2, to compute mass
and center of mass for general tetrahedra, we can generalize
this concept further and approach arbitrary polyhedral mani-
folds: Objects are partitioned into tetrahedra, mass properties
are determined individually, and results eventually recom-
bined. Any tetrahedral mesh is suitable as input for our
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method; if the model is not already available as tetrahedral
mesh, it can easily be generated using freely available tools
like TetGen [26] or TetWild [9]. “Appendix C” proves the
concept to be invariant of the actual tetrahedralization.

MO =
∑
Ti∈O

MTi

CO = 1

MO

∑
Ti∈O

MTiCTi

(3)

For an object O and a given density-field, one can now
compute the accurate mass MTi and center of mass CTi
for all tetrahedra Ti ∈ O using Eqs. 1 and 2, respectively.
These calculations can be executed very efficiently, using
fast matrix-vector multiplications. As formulated in Eq. 3,
the object’s overall mass is obtained by simple summation
and the center of mass as mass-weighted dot-product. Fur-
ther, one may extend the derivation, as described by Tonon
[28], for the inertia tensor �Ti of a general tetrahedron with
specified density values of the individual vertices. Following
the rules for rigid bodies and the parallel axis theorem, one
can derive further mass properties, e.g., the moment of iner-
tia as formulated with the inertia tensor �O in Eq. 4, where
I3 is the 3×3 identity matrix and ⊗ the outer product.

ĈTi = CTi − CO

�O =
∑
Ti∈O

�Ti + MTi

(
|ĈTi |2I3 − ĈTi ⊗ ĈTi

)
(4)

3.2 Optimizing density fields

Now, that an object’s center of mass can be determined for a
given density field, one can invert the problem and fit a den-
sity field to an object where the mass properties are given.
As an exemplary use case, we approached the make-it-stand
challenge described by Prévost et al. [22] to balance objects
in a given pose. The center of mass has to be within cer-
tain boundaries of a projected surface polygon on which the
object is supposed to be balanced. However, a solution to this
problem is limited by the following constraints: (i) Negative
mass is reasonable only in theoretical fields of physics, so
we limit our model to the realm of positive density for now.
(ii) Zero density is a special case that can be modeled with
our concept, e.g., with di = 0. (iii) The shape of an object
together with constraints (i) and (ii) will put some limits on
the achievable location of an object’s center of mass, e.g., it
simply cannot pass a certain point.

Rather than optimizing the per-vertex density directly,
let’s first consider a simplified density field as illustrated
in Fig. 4. We utilize two planes that separate volumes of
constant minimum dmin and maximum density dmax respec-
tively, sandwiching a slice of volume of width r with linearly

Fig. 4 Left: The parameterization of a simplified density field d(x)
with parameters r , s and t . Right: Embedding of the object, with angles
α, β and offset ox

growing density ∈ [dmin, dmax]. To simplify many computa-
tion steps we fix the density field to be axis aligned, i.e.,
the planes are parallel to the yz-plane. As accommodation
for this fixed orientation of the field, the optimization needs
to rotate and to translate the object accordingly instead. To
realize the arbitrary location of the bisection-planes in the
density function, we have to prepare our input mesh by inter-
secting some of the tetrahedra, see “Appendix B” for details.
The energy to be minimized is formulated as the Euclidean
distance E = |C − CO | between a target point C and the
object’s current center of mass CO when embedded in the
density field, obviously with respect to the object’s rotated
and translated state.

The optimization energy is smooth and in some sense
probably differentiable but deriving gradients is left for future
work. In our experiments, we used Powell’s method [20] to
minimize the objective function.

Results Figure 5 compares our balanced objects to cross-
sections of Prévost et al. Their proposed method found a
solution to make the three spheres stand, by carving out the
voxelized interior and deforming the object. To move the
mass center of the Spheres into the balance region, the top
sphere is shrunk and the bottom sphere is enlarged. For the
MrHumpty figure to stand upside down, the belly is enlarged
and half the interior carved out to compensate for the off-
axis legs. In our results, the objects remain untouched as
they are only embedded in an optimized density field. As our
output geometry incorporates the input, error measures like
the Hausdorff distance are simply 0.

Our first experiment meets the same conditions as Prévost
et al. where the center of gravity only has to be on the central
vertical axis of the bottom sphere so that the object is in
balance. For our next experiment we chose the center of mass
to also be located centered in the bottom sphere, but 10% of
the sphere’s radius below its horizontal equator-line. Due to
this low center of gravity, the standing spheres would roll
into this position on their own (Table 1).

Our optimization managed to define density fields for
which the object’s center of mass is exactly on the specified
axis or target point respectively. The results have regions of
constant minimum and maximum density with a tilted and
shifted gradient between them. Due to the symmetry of the
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Unstable Input Prévost et al. Ours (balanced) Ours (standing) Prévost et al. Ours

Fig. 5 Anunstable input of three spheres and a figurewhich is supposed
to stand upside down. Prévost et al. [22] managed to balance the objects
by deforming them, caving out the interior and shifting the center of
mass over a defined safe-region. Our balanced version of the spheres
can also be balanced on a small flattened face, the standing version will

roll into this position on its own, due to its low center of gravity. Varying
density is sufficient to balance the objects, deformation is not required.
As reference for Table 2, the spheres are scaled to have a diameter of 1
and MrHumpty has a hand-to-hand width of 2

Table 1 Parameters of the density field, shown in Fig. 4, to be deter-
mined by the optimization

α, β Angles for tilt and rotation of the object

ox Object center offset on the x-axis

r Width of the density range

s Steepness of the density gradient

t Constant density offset

Table 2 The parameters for the density function, specified in Fig. 4
and Table 1, optimized for balancing the objects, shown in Fig. 5 with
β = 0 and t = 1

α ox r s

Spheres (b) −1.666670 −0.278929 0.404357 13.418110

Spheres (s) −0.513042 −0.453811 0.565776 26.173806

MrHumpty 1.104747 0.244073 0.562282 2.614978

objects, the angle β is zero. To approach somewhat reason-
able manufacturing limits, we set t = 1 (=̂ dmin). The other
found parameters are given in Table 2. Results of this com-
parison should be seen as a theoretical proof of concept, as
this rather unconstrained optimization leads to quite high
values for the gradient steepness s. Density differences of
this multitude are ill-suited for current single-material man-
ufacturing techniques. Additive multi-material techniques,
on the other hand, could approximate smooth gradients like
this, e.g., using dithering.

3.3 Optimizing nonlinear fields

Section 2.3 introduces our concept for density fields with a
generalization to define geometry-independent density val-
ues per vertex. This allows for the approximation of arbitrary
nonlinear fields, as illustrated with the examples in Fig. 6:
The Bunny is embedded in a spherical sinusoidal density
function, the density in the Femur decreases from surface to

Hull Interior Hull Interior

Fig. 6 Examples of nonlinear density fields, sampled at vertex posi-
tions. Tetrahedralizations created with TetWild on default settings for
the Bunny and with a smaller edge-length for the Femur

side on-axis

top bottom

Fig. 7 The rockerarm is a prominent example for an asymmetric object
with rotary mount. Due to imbalance, the native center of mass (red)
is not located on the rotation axis. With optimized density, our center
of mass (green) is located on the rotation axis and the principle inertia
momentum axis is parallel to the rotation axis

core with a Gaussian slope. Tet-mesh vertices become 3D
sampling positions for the 3D density field, however, gradi-
ents within each tetrahedron are still linear. Nevertheless, this
piecewise linear Taylor approximation of a nonlinear field is
C0 continuous everywhere (C∞ within a tetrahedron). The
accuracy of this representation is only limited by the res-
olution of the tetrahedral mesh, which can be specified in
common tetrahedralization tools.

123



2452 D. R. Bukenberger et al.

Advanced applications, specifyingmore than a single cen-
ter of mass, may require density fields, more sophisticated
than linear gradients. An approach related to the make-
it-stand concept proposed the challenge to make objects
spinnable [1] by moving mass centers to a specified rota-
tion axis. This is not only a desirable criterion for toy tops
or yo-yos but is also of great value in any mechanical pro-
cess involving rotating movements to reduce the wear and
tear of involved components. Engineering such mechanical
components often comes with tight constraints on available
space and does not allow for arbitrary placement of counter-
weights. Figure 7 illustrates an example with the rockerarm
object, which is to be mounted on rotary bearings. With con-
stant density, the native center of gravity and inertia tensor
are off-axis due to the obvious asymmetry of the object.

d(v) = sin(|p − v| · k) + 1 (5)

For this object, the optimized density field results in a cen-
ter of mass located on the rotation axis along with a parallel
principle inertia momentum axis. The density field is param-
eterized with the nonlinear density function d(v) (Eq. 5),
where v is a tet-mesh vertex, p a 3D coordinate and k a
scalar factor.

Results Optimizing for a specific center of mass, as in
Sect. 3.2, is not trivial but possible, dependent on given con-
straints. Additionally fitting a principle inertia momentum
axis, however, can be challenging as the density distribution
for a certain center of mass may be in conflict with the opti-
mal density for the momentum axis. A field parameterization
with more degrees of freedom than ours (Eq. 5) might be
more suitable for optimization but unreasonable for practical
results. Our results are shown in Fig. 7 with an optimized
center of mass (green). The density parameters are:

p =
⎛
⎝ 0.509475

−0.699066
1.328176

⎞
⎠ and k = 7.853375

The principle inertia momentum axis was met with accuracy
of < 1◦, the center of mass is actually precisely located on
the specified target rotation axis.

3.4 3D printing of varying density

For some objects, we demonstrate both synthetic results as
well as 3D printouts. One has to mention that 3D printing
hardware for varying density is still in an early development
state [8,13,19] and the range of available densities is limited.
On recentPrusa FDMprinters, however, it is possible to alter
the extrusion rate while printing. The first step is to obtain
the G-code for an object with a regular infill pattern. In order
to approximate the optimized density field, we modify the

Fig. 8 Modifying the extrusion rate allows for printing density gra-
dients. The bar on top is a cross-section of an object 10×10×100
mm in size, scanned with a photocopier. Pictures of the rockerarms
(62.9×33×17.6 mm) were taken in front of a lightsource to highlight
the different density distributions. See video for live demo

line thickness to vary along printed segments by accordingly
adjusting the relative extrusion rate in the G-code slice by
slice.

Figure 8 shows a 3D printed example of a simple bar with
increasing density. The varying amount of printed material
alters the translucency of the object. The 3D printed rock-
eram of Fig. 7 with optimized density for an on-axis center of
mass and a parallel principle inertia momentum axis leads to
significantly smoother spinning as can be seen in the accom-
panying video.

3.5 Lloyd relaxation with the L∞ norm

The last proposed application scenario makes use of the
closed-form integral solution of measures on volumes of
varying density to approach Lloyd relaxations under non-
standard norms. All calculations are done on the actual shape
of theVoronoi cells avoiding any voxelization,which reduces
artifacts and speeds up the computation.
Lloyd’s algorithm [14] is an iterative optimization pro-
cedure that is proven to converge to Centroidal-Voronoi-
Tessellations (CVT) under the L2 norm [4]. The iteration
alternates two steps: I. Compute a Voronoi diagram for a
given set of points. II.Reposition each point to the centroid of
its Voronoi cell. This can also be formulated as an optimiza-
tion task, minimizing the diagram’s global energy function.

Since the native L2 cells are all convex, the computation
of new centroids is quite simple. However, in many mesh-
ing applications, L p or even L∞ are more desirable [12],
due to their more rectangular or cubical cell shapes. For L p

norms (p > 2), the Voronoi cells are no longer always con-
vex and the diagram becomes very impractical to handle or
even generate since there is (to the best of our knowledge) no
software library that is able to compute L p or L∞ Voronoi
tessellations.

In meshing applications [12,27] the diagram itself is actu-
ally not relevant, but only the site positions are of interest
[25]. We propose a way to compute Lloyd relaxed site posi-
tionswith the L∞ metric, also called theChebyshev distance:
First, cell geometry and topology are borrowed from an L2
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Fig. 9 2D visualization of the equivalent energy terms of Eq. 7 with an integral over the Chebyshev distances of all points in a cell or the sum over
its tetrahedral fragments with density gradients

Fig. 10 Results after 50 Lloyd relaxations: A unit-cube on the left
and two Clipped-Voronoi-Diagrams [30] in the middle and on the right
(Cutouts in blue). Examples a, c and e used the L2 norm to reposition

their sites in each step, the examples b, d and f show results using the
L∞ norm, generating close to cube-like cells. Despite different relax-
ation norms, all results are visualized as L2 tessellations

Fig. 11 Voronoi cells under the L∞ norm before and after the relaxation. Saturation visualizes the L∞ energy, increasing in each dimension. A
centroid in a cubical cell minimizes this energy

Fig. 12 L∞ relaxation plots of the cube fromFig. 10bover 50 iterations.
Left: Average movement of all cell centers in one iteration, given in
percent of the optimal cell’s diagonal. Right: Average L∞ energy of all
cells, given in percent of an optimal cell’s L∞ energy, which is why the
result converges to 100%

tessellated diagram, which comes with the convenience of
convex-only cell shapes. Then we use our method and com-
pute a cell’s mass, reinterpreted as the energy which is to be
minimized by a new cell center.

The Energy Term For the goal to minimize the L∞ energy
within a cell, let us briefly recapitulate how the Chebyshev
distance d∞ is defined. As formulated in Eq. 6, the distance
between two points p and q is the maximum of their absolute
differences over all dimensions, in the 3D case x, y and z:

d∞(p, q) = max
k∈[x,y,z] |qk − pk | (6)

EC =
∫
P∈C

d∞(CC, P)

=
∑

i∈[±x,±y,±z]

∑
T∈Fi

Mi
T (7)

Equation 7 formulates the energy EC of a cellC as the total
Chebyshev distance of all points P ∈ C to the cell’s centroid
CC. However, there are infinitely many points P ∈ C, so
the energy function can only be evaluated with a nontrivial
integral over the cell volume.

As illustrated in Fig. 9 (in 2D), this integral becomes fea-
sible as a finite sum of analytical solutions. To achieve this,
a cell is split into six fragments Fk (k ∈ [±x,±y,±z]), as
illustrated in Fig. 11. This effectively separates all points P
within the cell with respect to their maximum difference-
dimension (Chebyshev). Due to the separation into the six
fragments, the d∞(CC, P) distance dimension conveniently
coincideswith the correspondinggeometric dimension k, i.e.,
the distance linearly increases along one of the coordinate
axes. As the hull of a Voronoi cell might be complex, the
six fragments are tetrahedralized using a trivial triangulation
of their hull faces and the cell center itself. The inner sum
in Eq. 7 accumulates masses Mk

T of all tetrahedra T in a
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fragment Fk as defined in Eq. 1. The Chebyshev distance is
simply encoded as the density dimension along the coordi-
nate axes for our computation. The outer sum accumulates
the density- (or Chebyshev distance-) weighted volumes of
the six fragments, resulting in the cell’s L∞ energy. The cell
center is finally repositioned to minimize the computed L∞
energy using the L-BFGS-B algorithm [3,32] for bound con-
strained minimization.

ResultsAlthough cell energies are only optimized on an indi-
vidual basis, the relaxation iteration also leads to a global
decrease of the diagram’s energy, analogously to the L2

case. With our reformulation of the objective function, the
second part of the Lloyd relaxation (repositioning of cell cen-
ters) becomes feasible for the L∞ norm. The initialization
of each iteration is still based on a computable L2 Voronoi
tessellation, which turned out to be sufficient as the relax-
ation still converges. Considering the shape of an L2 Voronoi
cell while optimizing the centers for the L∞ energy, this
optimization is not a full L∞ relaxation but a convenient
alternative. If an L∞ tessellation was available, the relax-
ation would probably converge even faster and would also
allow for individually oriented cells. Nevertheless, consider-
ing the alternatives, e.g., labeling underlying high-resolution
voxel grids, it is an improvement in terms of both accuracy
and performance.

The plots in Fig. 12 show convergence results of the cube
(Fig. 10b) throughout 50 Lloyd relaxation steps. The Move-
ment plot shows the average distance traveled by all sites
(cell centroids) in the Voronoi diagram during each relax-
ation step. This distance is given in percent of an optimal
cubical cell’s diagonal. The average cell-energy, shown in
the Energy plot, is computed for each cell as illustrated in
Fig. 11 by separating a cell into six fragments and accumu-
lating the density-weighted volume. It is expressed in percent
of an optimal cubical cell’s L∞ energy. Therefore, the con-
vergence towards 100% indicates that our cells approach the
anticipated optimal cubical cell shape.

Fig. 13 By increasing the depth of an octree (# levels on the x-axis), the
approximations converge against our analytic results. The plot shows
the time in seconds to build and traverse the tree, the number of nodes
in the tree, the mass center error εC , the mass error εM and inertia tensor
error ε�. Dashed lines show timings for our computation based on tets
and the time it took for TetGen [26] to tetrahedralize the input
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Fig. 14 Visualization of the
octrees used in Fig. 13. With
increasing depth (2-8) of the
tree, the approximations for
mass properties converge
against our analytic results
based on the real mesh

4 Discussion

This section presents the results of the proposed application
scenarios for our concept. Benefits over traditional methods
in terms of performance and accuracy are quantitatively dis-
cussed with numerical results. After an outlook on potential
extensions and future work, we conclude with a roundup of
our main contributions.

4.1 Results

As mentioned in Sect. 1.2, voxelizations or octrees are
currently the most common method to approximate mass
properties for objects in fields of varying density. Table 3 doc-
uments comparisons of our exact tetrahedron-based method
to octrees of different depths. Our results provide the ground
truth reference, to which the octree approximations are com-
pared. Timings for the octrees include the build-up phase and
traversal to compute the results. The most demanding parts
in the build-up are in/out-tests, to decide if a cell is to be split
again. To be comparable, we included the time to create the
tet-mesh inputs for our method from basic surface meshes.
Delaunay tetrahedralizations are computedwithTetGen [26],
using the -Y option which preserves the source mesh, so that
our method and the octree have the exact same input. Both,
octree and our method, are implemented in Python using
vectorized NumPy arrays where possible for optimized effi-
ciency.Althoughourmethod iswell suited to be implemented
in parallelizedGPUcode, all timings aremeasuredon a single
CPU core. The measurements show that, not only compared
to the very deep but also for the small octree of only 4 lev-
els, our method is multitudes faster even including the input
tetrahedralization.

Timings and performance aside, the probably most valu-
able takeaway is the analytical accuracy of the results. Our
method establishes actual ground truth results for mass
properties under varying densities. Figure 13 plots the
mass-property-errors of octree approximations (Fig. 14) con-
verging against our results, as we increase their depth and
therefore accuracy. Featured errors of mass εM , center of

mass εC , and the inertia tensor ε� are specified in Eq. 8.

εC = |Coctree − Ctet|
εM = |Moctree − Mtet|

Mtet

ε� =
∑

i∈[x,y,z]

|�i
octree − �i

tet|
|�i

tet|

(8)

In theory, a voxel grid of infinite resolution or an octree of
infinite depth would give correct and unbiased mass property
results. We use this capacity to show that octree results con-
verge against our analytic results by increasing their depth
and accuracy. The error plots do not converge monotonically
due to aliasing artifacts, for some lower levels the approxi-
mations are just more accurate by chance.

4.2 Conclusion

We propose novel application scenarios for object’s mass
properties under varying densities. Easy to use analytical
solutionsmake approximations obsolete, which are still com-
mon in recent state-of-the-art applications [1,10,21,22,29].
Our concept is fast, lightweight, easy to implement, and suit-
able for vectorized or parallelized frameworks. We demon-
strate possible use cases where our method can be utilized
straightforward: Masses, mass centers, and inertia tensors
of arbitrary manifolds in given density fields are computed
accurately. We formulate an optimization to determine a
parameterized density field for an object and specified mass
properties like a center of gravity or inertia tensor. Our pro-
posed modification of the Lloyd relaxation is a novel L2|∞
hybrid that allows us to imitate real L∞ relaxations, which
is a leap forward compared to the existing approximative
alternatives. While our approach may find direct application
in established research topics as meshing, spatial tessella-
tion and simulation [9,25], we also see great potential in the
young scientific field of additive manufacturing and hope to
inspire many further research [10,29,31].

Funding Open Access funding enabled and organized by Projekt
DEAL.

123



2456 D. R. Bukenberger et al.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Human and animal rights No animals were harmed during the devel-
opment of this publication.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A In-depth derivations

This appendix completes the derivations of the closed-form
equations for mass and center of mass calculations used in
Sect. 2.

MT (D) =
∫ hD

0
ABC ·

(
r

hD

)2

·
(
1 − r

hD

)
dr

= ABC
∫ hD

0

r2

h2D
·
(
1 − r

hD

)
dr

= ABC · hD

12
= ABC · hD

3︸ ︷︷ ︸
VT

·1
4

(9)

Figure 3 illustrates an exemplary basis case with density
dD = 1 and 0 at the three other vertices. Since the density is
normalized, it is not surprising that the density integral over
the volume in Eq. 9 results in a quarter of the tetrahedron’s
volume VT . Thus, when combined for a general tetrahedron
embedded in an arbitrary density field, the mass MT com-
putes as the tetrahedron volume times the mean of all four
density values, as formulated in Eq. 10.

MT = dA · MT (A) + dB · MT (B)

+ dC · MT (C) + dD · MT (D)

= dA · VT · 1
4

+ dB · VT · 1
4

+ dC · VT · 1
4

+ dD · VT · 1
4

= VT
dA + dB + dC + dD

4

(10)

Equation 11 formulates the volume integration of the mass
center CT (D) for the shown base case, using a scaled center
vector −→w .

CT (D) = D + 1

MT (D)

∫ hD

0
ABC(r) ·

(
1 − r

hD

)
· −→w (r) dr

= D + 1

MT (D)

∫ hD

0
ABC ·

(
r

hD

)2

·
(
1 − r

hD

)
· −→w · r

hD
dr

= D + 1

ABC · hD
12

ABC · −→w
∫ hD

0

(
r

hD

)3

·
(
1 − r

hD

)
dr

= D + −→w · 12

hD
· hD

20
= D + −→w · 3

5

= D +
(
A + B + C

3
− D

)
· 3
5

= 1

5
(A + B + C + D + D) (11)

The center of mass CT in Equation 12 for the general tetra-
hedron computes as the combination of the individual base
casemass centers,weighted and normalized by the individual
density values at the four vertices, respectively.

CT = dA · BT (A) + dB · BT (B) + dC · BT (C) + dD · BT (D)

dA + dB + dC + dD

=

⎛
⎜⎜⎝
dA
dB
dC
dD

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

1
5 · (A + A + B + C + D)
1
5 · (A + B + B + C + D)
1
5 · (A + B + C + C + D)
1
5 · (A + B + C + D + D)

⎞
⎟⎟⎠ · 1

dA + dB + dC + dD

=

⎛
⎜⎜⎝
dA
dB
dC
dD

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

⎛
⎜⎜⎝
A + B + C + D
A + B + C + D
A + B + C + D
A + B + C + D

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝
A
B
C
D

⎞
⎟⎟⎠

⎞
⎟⎟⎠ · 1

5 · ∑
di

=

⎛
⎜⎜⎝

∑
di · (A + B + C + D) +

⎛
⎜⎜⎝
dA
dB
dC
dD

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝
A
B
C
D

⎞
⎟⎟⎠

⎞
⎟⎟⎠ · 1

5 · ∑
di

= 1

5

(
A + B + C + D + A · dA + B · dB + C · dC + D · dD

dA + dB + dC + dD

)

(12)

B Tet-split

To model the density function described in Sect. 3.2, the
object is bisected using split-planes. As the input is already
tetrahedralized, there might be tetrahedra that are only par-
tially in one or the other region. This potentially violates the
constraints of Sect. 3.2, e.g., if a tetrahedron would cross the
0-density limit. Therefore, such tetrahedra with vertices on
both sides of a split-plane have to be cut. Figure 15 illustrates
the four possible cases, how a plane may intersect a tetra-
hedron. The splits result in geometry that is always further
tetrahedralizable, hence triangular prisms, quad-based pyra-
mids or trivial tetrahedra. Affected tetrahedra in the input are
easily identified by checking if theymatch one of these cases.
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After the cut, corresponding tetrahedra are simply replaced
by the subdivided geometry.

C Proof of concept

This appendix aims to demonstrate the validity of our
approach, especially proving mass properties of polyhedra
to be invariant of the used tetrahedralization. Therefore, we
assemble the simple scenario shown in Fig. 16: An axis-
aligned box is (w.l.o.g.) centered on the x-axis with the
〈AEHD〉quad face parallel to the yz-plane and the 〈BFGC〉
quad at a distance h to the origin at x0. The density gradu-
ally increases over the x dimension dependent on the density
function d(x) = s · x + t . Box-related equations are denoted
with an overset box-symbol�, the tetrahedra equivalents are
marked with a triangle-symbol 	.

C.1 Setup

For the constructed box scenario, it is fairly easy to deter-
mine its mass and mass center via integration as formulated
in Eqs. 13 and 14, respectively. The cross-section-area of
the box is formally expressed as a function �B(x) over the
integration domain, which is constant and, for simplicity,

assumed to be 1.

�
MB =

∫ x0+h

x0
�B(x) · (sx + t) dx

=
∫ x0+h

x0
sx + t dx

= h

2
(hs + 2(sx0 + t)) (13)

�
CB = 1

MB

∫ x0+h

x0
�B(x) · (sx + t) · −→w ·

(
x − x0

h

)
dx

= −→w 1
h
2 (hs + 2(sx0 + t))

∫ x0+h

x0
(sx + t)

(
x − x0

h

)
dx

= −→w 2

h(hs + 2(sx0 + t))

h

6
(2hs + 3(sx0 + t))

= −→w 2hs + 3(sx0 + t)

3hs + 6(sx0 + t)
(14)

C.2 Mass

To demonstrate equality of our approach to the box-solution,
we first gather all the tetrahedra-related components. Equa-
tion 15 lists the independent masses of the tetrahedra, using
the assumption of the box’s cross-section to have an area of 1.
The volume of the individual tetrahedra in this configuration
compute as Vrgcm = 1

6 and Vy = 1
3 . They scale linearly if

Fig. 15 Up to symmetry or ration, there are four cases, how tetrahedra
are split by a plane. Resulting geometry is again tetrahedralizable. The
left-hand numbers account for vertices separated by, or lying within the

plane (in brackets). Right-hand numbers list the number of new vertices,
edges and tets created by the split
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Fig. 16 To prove our concept, we construct an axis-aligned box and
simple but general tetrahedralization. The five tetrahedra are assigned
to the three integrable base-classes introduced in Fig. 17. Colors red,

green, cyan, magenta and yellow correspond to the indices used in
upcoming equations to refer to the individual tetrahedra

the box elongates along the x-axis, thus include the factor h.
Further, we utilize the simplifications that d0 = sx0 + t and
dh = s(x0 + h) + t .

Mr = Vr
dA+dB+dD+dE

4
= h

24
(3d0 + dh)

Mg = Vg
dD+dE+dG+dH

4
= h

24
(3d0 + dh)

Mc = Vc
dB+dE+dF+dG

4
= h

24
(d0 + 3dh)

Mm = Vm
dB+dC+dD+dG

4
= h

24
(d0 + 3dh)

My = Vy
dB+dD+dE+dG

4
= h

24
4(d0 + dh) (15)

	
MB = Mr + Mg + Mc + Mm + My

= h

24
(2(3d0+dh) + 2(d0+3dh) + 4(d0+dh))

= h

24
(12d0 + 12dh)

= h

2
(sx0 + t + s(x0 + h) + t)

= h

2
(hs + 2(sx0 + t)) = �

MB (16)


�
Masses of the individual tetrahedra (Eq. 15) summed up

(Eq. 16) prove equality to the integrated box-mass (Eq. 13).

Center of mass

In Eq. 14 the center of mass integral results as a scaled vector−→w , parallel to the x-axis and scaled dependent on the density
function. However, the center of mass for a general tetrahe-
dron is formulated in Eq. 2 solely based on its vertices. To
eventually express the equality of the box- and tetrahedral-
ized solutions, we first reformulate the center of mass for

tetrahedra in a similar −→w vector-dependent way. Therefore,
we establish the three basic integrable tetrahedra cases shown
in Fig. 17.

CrMr = BMr + 3←−w r · ADE
h

3

hs + 5(sx0 + t)

20

= BMr + 3←−w r · h

120
(hs + 5(sx0 + t))

CgMg = GMg + 3←−w g · DHE
h

3

hs + 5(sx0 + t)

20

= GMg + 3←−w g · h

120
(hs + 5(sx0 + t))

CcMc = EMc + 3−→w c · BFG h

3

4hs + 5(sx0 + t)

20

= EMc + 3−→w c · h

120
(4hs + 5(sx0 + t))

CmMm = DMm + 3−→w m · BCG
h

3

4hs + 5(sx0 + t)

20

= DMm + 3−→w m · h

120
(4hs + 5(sx0 + t))

CyMy = D + E

2
My + w̃y · |u × v|h

6

3hs + 5(sx0 + t)

10

= D + E

2
My + w̃y · 4h

120
(3hs + 5(sx0 + t)) (17)

We approach the center of mass analogously to the mass
itself and first establish the component-wise results for the
individual tetrahedra in Eq. 17, however, using the vector-
based formulations expressed in Fig. 17.

	
CB = 1

	
MB

(
CrMr + CgMg + CcMc + CmMm + CyMy

)

= 1
	
MB

⎛
⎝ Mrg(B + G) + (3←−w r + 3←−w g) · h

120 (hs + 5d0)
+ Mcm(E + D) + (3−→w c + 3−→w m) · h

120 (4hs + 5d0)
+ D+E

2 My + w̃y · 4h
120 (3hs + 5d0)

⎞
⎠
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Fig. 17 The three basis classes of integrable tetrahedra, exemplarywith
the x-axis as the integration domain. The density gradient over the extent
of h is visualized in blue. Faces and edges orthogonal to the integration

dimension, are highlighted in orange. For them the density is constant.
The green arrows indicate the center of mass vectors −→w , ←−w and w̃.
Equations are formulated using τ = x−x0

h

= 1
	
MB

⎛
⎝ Mrg · 2−→w − 6−→w · h

120 (hs + 5d0)
+ Mcm0 + 6−→w · h

120 (4hs + 5d0)
+ 0

2My + −→w · 4h
120 (3hs + 5d0)

⎞
⎠

= 1
	
MB

−→w
⎛
⎝ 2Mrg − 6 h

120 (hs + 5d0)
+ 6 h

120 (4hs + 5d0)
+ 4 h

120 (3hs + 5d0)

⎞
⎠

= 1
	
MB

−→w
⎛
⎝ 5 h

60 (3d0 + dh) − 3 h
60 (hs + 5d0)

+ 3 h
60 (4hs + 5d0)

+ 2 h
60 (3hs + 5d0)

⎞
⎠

= −→w 1
h
24 (12d0 + 12dh)

h

60
(25d0 + 5dh + 15hs)

= −→w 25d0 + 5dh + 15hs

30d0 + 30dh

= −→w 25(sx0 + t) + 5(s(x0 + h) + t) + 15hs

30(sx0 + t) + 30(s(x0 + h) + t)

= −→w 2hs + 3(sx0 + t)

3hs + 6(sx0 + t)
= �

CB (18)


�
In Eq. 18 we sum up individual results from Eq. 17 and

compact the term. Therefore, we use the facts that
←−
Mr = ←−

Mg

and
−→
Mc = −→

Mm , respectively. Furthermore, we can combine
mass centerw-vectors and express themwith the axis-aligned
box-vector−→w . The solution again proves equality to the box’s
mass center derived in Eq. 14.
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