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Abstract
Image processing and computer vision onmobile devices have a wide range of applications such as digital image enhancement
and augmented reality. While images acquired by cameras on mobile devices can be processed with generic image processing
algorithms, there are numerous constraints and external issues that call for customized algorithms for such devices. In
this paper, we survey mobile image processing and computer vision applications while highlighting these constraints and
explaining how the algorithms have been modified/adapted to meet accuracy and performance demands. We hope that this
paper will be a useful resource for researchers who intend to apply image processing and computer vision algorithms to
real-world scenarios and applications that involve mobile devices.

Keywords Mobile devices · Computer vision · Image processing

1 Introduction

In general terms, a mobile device is an electronic device
that can easily be moved from one place to another. Early
mobile devices had limited functionality and performance
when compared to their non-mobile counterparts. An exam-
ple is the portable wireless handset (walkie-talkie). With the
miniaturization of computing hardware and advances in bat-
tery technology, however, this gap has been closing. The

B Chamin Morikawa
c-morikawa@morphoinc.com
http://www.morphoinc.com

Michihiro Kobayashi
m-kobayashi@morphoinc.com

Masaki Satoh
m-satoh@morphoinc.com

Yasuhiro Kuroda
y-kuroda@morphoinc.com

Teppei Inomata
t-inomata@morphoinc.com

Hitoshi Matsuo
h-matsuo@morphoinc.com

Takeshi Miura
tmiura@morphoinc.com

Masaki Hilaga
m-hilaga@morphoinc.com

1 Morpho Inc, Chiyoda-ku, Tokyo 101-0065, Japan

category of mobile devices has now expanded to include
a variety of gadgets such as laptops, mobile phones, game
consoles, smartphones, tablets, and smart watches.

Digital cameras were a later addition to most mobile
devices. The first consumer laptop [103] was made in 1982,
and the first webcam [44] made it to the market only in 1994.
Even then, it was not a built-in-device but a peripheral. The
first mobile device with a built-in camera was the mobile
phone. In 2000, Samsung and Sharp released mobile phones
with built-in rear cameras [20]. Interestingly, it took another
6years before a laptop with a built-in camera was made.
Convenience of carrying and use, and the ability to quickly
share photographs, resulted in quick early adoption of cam-
era phones [24]. By the time smartphones arrived, built-in
cameras on a mobile phone were an expected feature.

The early cameras on mobile devices were much more
limited in functionality and image quality than analog cam-
eras, or even digital cameras. The common form factors of
mobile devices [39] required the lenses and image sensors
to be small, resulting in a relatively small amount of light
available for capturing a photograph. With ordinary digital
cameras, this can be compensated by increasing the expo-
sure time. However, mobile devices are mostly held in hand
during use. The camera is very likely to shake during a long
exposure, resulting in blurry photographs. As a consequence
of these limitations, the early mobile phone cameras were
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mostly used in situations where it is difficult to use a larger
camera.

However, even the earlymobile devices had one advantage
over other digital cameras. Camera phones had more com-
puting power when compared to low-end digital cameras.
The presence of a digital camera and computing power on
the same device provided an opportunity for processing the
photographs before the user got to see them. Digital image
processing techniques had been used in several application
areas as early as in 1960s [65] andwere already an established
field of research by the time the first camera phones arrived.
Therefore, it did not take much time before computer vision
and image processing algorithms started getting deployed in
mobile devices.

Images acquiredusingmobile devices can—in theory—be
processed with generic image processing algorithms. How-
ever, there are numerous constraints and external issues that
make such algorithms less effective when directly applied.
Most mobile devices still have less computing power when
compared to computers that are specifically designed for
image and video processing. They are also battery-powered,
and the limited energy contained in the battery has to be
conserved for the primary function of the device (in case of
a mobile phone, connectivity, and communication). Smart-
phones in particular are bringing in additional challenges to
mobile image processing.Market competition has resulted in
smartphones with cameras that have very high resolutions,
having a large number of pixels to process calls for efficient
algorithms. Another important, non-technical factor is the
need to meet the user expectations. Smartphone users expect
high-quality photographs and videos from their devices, and
they also want the processed content to be available very
quickly.

In this paper, we survey image processing and computer
vision algorithms that are used on mobile devices, explain-
ing how the algorithms have been modified/adapted to work
under the constraints and requirements mentioned above. As
industry researchers whose primary focus is mobile image
processing, we believe that we have a good grasp of research
advances, device limitations, and user needs, all of which are
key factors in selecting the right algorithm for a given task.
Focusing the survey on mobile devices will help researchers,
who intend to apply image processing and computer vision
algorithms to mobile applications, to identify the critical
issues and select algorithms that are more effective for the
intended usage scenarios.

While drones and autonomous vehicles are not mobile
devices in the above context, the technology surveyed in this
paper can also be deployed in these two device categories.
This is because they share several characteristics and limita-
tions thatmobile devices do. Examples are limited processing
power, use of battery power, and unstable photography due
to movement.

The rest of this paper is organized as follows: Sect. 2
describes the evolution of mobile devices to their current
state, in terms of hardware, features, and software libraries.
Section 3 surveys in detail the algorithms for still image pro-
cessing, while Sect. 4 covers video processing techniques.
Section 5 introduces image processing techniques that make
use of multiple cameras, or cameras supported by other mul-
tidimensional sensors, that have an overlapping view of the
same scene. Section 6 is a brief but broad survey of image
analysis, with particular emphasis on machine learning-
based techniques.After a quick look at recent trends (Sect. 7),
we conclude the paper in Sect. 8.

2 Mobile devices as image processors

As mentioned in Sect. 1, the cameras in mobile devices lack
larger lenses and sensors, requiring image processing tech-
niques to improve image quality. The present-day mobile
devices contain both hardware and software that support
faster and more efficient image processing. This section is
a brief survey of such hardware and software.

2.1 Processing units

According to the von Neumann architecture [79] for dig-
ital computing devices, the central processing unit (CPU)
of a computer handles all computational tasks. However,
by the time camera phones were developed, this architec-
ture had already evolved to distribute computing tasks in
multiple ways. Multiple cores within the CPU operate in
parallel to speed up computations. Graphics processing units
(GPUs) handle the display of content at high resolution and
frame rates. Digital signal processors (DSPs) are used where
extensive signal processing is required. These hardware tech-
nologies were already available when the first smartphones
were introduced to the market. While von Neumann archi-
tecture is based on serial data processing, parallel processing
of image data was an active research topic by the time com-
mercial digital cameras became available [19].

Due to the large number of pixels in an image that has
visually pleasing resolution, image processing algorithms are
computationally intensive. The presence of multiple CPU
cores can allow the device to make sure that the CPU is not
fully occupied with image processing, allowing the device to
perform other required tasks. This is especially useful since
image processing is not the primary function of many con-
sumer mobile devices; for instance, the primary function of
a smartphone is to keep the user connected to a mobile com-
munication network. Surveys by Georgescu [30] and Singh
et al. [93] demonstrate howmobile CPUs becamemore pow-
erful and feature-rich over time.
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GPUs were originally designed to relieve the CPU from
the burden of rendering high-quality graphics on display
devices. They consist of a large number of smaller com-
puting units, so that graphics operations on pixels could be
carried out in parallel. Almost all present-daymobile devices
have GPUs in them. However, it was soon observed that
the computing power of a GPU was not fully utilized at all
times, depending on what has been displayed on the device.
This resulted in general-purpose computing on graphics pro-
cessing units (GPGPU), allowing computing tasks that are
normally carried out on a CPU to be performed on the GPU
[57]. Given that images contain a large number of pixels,
and most image processing techniques require a repetition of
operations on someor all of these pixels, aGPU is a good can-
didate for handling image processing tasks. Consequently, it
is quite common to use the GPU of a present-day mobile
device for image processing tasks. Software libraries such
as OpenCL can be used for using GPUs for general purpose
computing tasks.

Deep neural networks (DNNs) are an AI technology that
is very effective in a variety of image processing and anal-
ysis tasks. DNNs benefit from the ability to process image
pixels in parallel, and therefore the parallel architecture of
GPUs. On mobile devices, the already-present GPU could
be used for deep neural inference (processing or analyzing
data usingDNNs)when theworkloadof rendering graphics is
low. Hardware manufacturers have also designed AI accel-
erators that are dedicated for implementing DNNs. Some
mobile device makers such as Apple (Bionic AI Processor),
Google (PixelCore), and Qualcomm (Hexagon 780) have
added hardware AI accelerators to their devices [5,84].

2.2 Cameras and additional sensors

Cameras in mobile devices have improved in terms of sensor
resolution; ten Megapixel smartphone cameras are common
at the time of writing. Given the constraints due to form
factor, however, it has been difficult to improve the optics of
mobile cameras. Multiple cameras facing the same direction
(see Sect. 5) have been added to smartphones as a solution
to this problem.

Mobile devices also contain other sensors that are either
essential for their main function (for example, microphone
for a mobile phone), or auxiliary (such as gyrosensors and
accelerometers on a smart phone). Data from some of these
sensors can be used for improving the quality of photographs
and enable more accurate analysis of the scene captured in
the photograph.

2.3 Software Neural engines

Software libraries (middleware) that cater for faster deep neu-
ral inference are another new addition to mobile devices.

NVIDIA’s CuDNN library is one of the earliest of such
libraries, though it was not specifically designed for mobile
devices. ARM Compute Library [7], Qualcomm’s Snap-
dragon Neural Processing engine(SNPE) [83], and Apple’s
CoreML [3] library are some examples that are specifically
designed for the platforms of the respective makers. Tensor-
flow Lite [51] and Morpho’s SoftNeuro [74], on the other
hand, provide support for multiple platforms. Tensorflow
Lite is open-source and provides a high-level applica-
tion programming interface (API) for several programming
languages, facilitating quick development. SoftNeuro has
industry-oriented features such as model encryption and the
ability to apply device specific tuning to trained machine
learning models, for faster inference.

3 Image processing

This section focuses on still image processing for mobile
devices. An image processing algorithm accepts an image
as input and outputs a modified version of the input image.
A common example for image processing on a smartphone
is to improve the visual quality of a photograph taken by
its user. The rest of this section highlights the motivation for
mobile image processing and describes a few techniques that
are widely used.

3.1 Characteristics of mobile image processing
compared to DSLR Cameras

One of the most significant differences of hardware speci-
fications between mobile devices and DSLR (digital single
lens reflex) cameras is the size of image sensors. DSLRs
are equipped with image sensors with sizes such as full
frame (36×24mm), APS-H (28.7×19mm), APS-C (22.2×
14.8mm), and so on. All of these are more than ten times
larger in surface area than those for mobile devices. Pixels
in a larger sensor can receive a larger amount of light. This
contributes not only to capture bright images with less noise
even in dark scenes but also to enlarge the dynamic range,
thereby preventing over-exposure and under-exposure.

Ability to attach a variety of lenses is another functionality
of DSLRs. Lenses with large aperture facilitate capturing
bright images as well as a more impressive bokeh effect.
On the other hand, lenses with long focal lengths provide
optical zoom with high zoom ratio. Such lenses tend to be
thick because they consist of systems of multiple lenses. The
form factors of mobile devices do not allow for thick lenses,
limiting their optical zoom potential. Hence, most cameras
for mobile devices need to rely on digital zooming.

From the early days of mobile image processing in fea-
ture phones, engineers have taken efforts to improve image
quality using software. Improved image quality due to image
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processing combined with other advantages (portability, and
all-in-one functionality including image editing and net-
work connectivity) has helpedmobile devices to successfully
establish themselves as alternatives to digital cameras. More
and more people take photographs with their smartphones
instead of carrying around a digital camera, not only in their
daily lives but also for trips and other events.

3.2 Basics of mergingmultiple images

In order to overcome the limitations of mobile devices with
respect to noise, dynamic range and zoom quality, one of the
most powerful approaches by software is to capture multiple
images in a short interval andmerge them to synthesize into a
result image [98].Multi-framenoise reduction (MFNR), high
dynamic range (HDR) compression, and super-resolution
are techniques to reduce noise, enlarge dynamic range, and
increase resolution, respectively.

There are three advantages in smartphone hardware, when
compared to DSLRs: (1) faster shutter speed and frame rate
due to electronic shutters, (2) large amount of RAM, and (3)
powerful processors.

Using electronic shutters enables capture at extreme high
speed such as 1/32,000s,whilemechanical shutters generally
max out at 1/4000 or 1/8000s. The faster the shutter speed is,
the more robust the image is to motion blur, which is difficult
to be removed by post-processing. Because of the absence of
moving mechanism in electronic shutters, the frame rate can
be increased, shortening the interval between captures. Elec-
tronic shutters enable us to shoot with 30 frames per second
(fps), while mechanical shutters support around 10 fps. It is
highly important for merging images to shorten the interval
of captures in order to reduce ghosting artifacts. Therefore,
smartphones have more potential in terms of capturing mul-
tiple images for post-processing than DSLRs.

Recent image sensors have resolutions of higher than
ten megapixels, which sometimes requires more than 100
Megabytes of memory to hold multiple captured images.
Smartphones are equipped with several Gigabytes of RAM
because they are designed to run rich applications such as
web browsers, media players, and games. In addition, such
large size of RAM is embedded in SoC (System-on-a-chip),
not as an external storage, providing smartphones with suffi-
cient data throughput to store images capturewith high frame
rates.

Recent smartphones also have powerful processors, which
are comparable with those for desktop and laptop computers.
As mentioned in Sect. 2, other types of hardware resources
are also available for image processing.

In conclusion, smartphones have mechanisms and com-
putational resources to compensate for the disadvantages of
the optical system by image processing. In the following sub-

sections, we will deep dive into some algorithms to enhance
image quality of smartphones by merging multiple images.

3.3 Blur and image alignment

When we take a picture without using a tripod, the camera
may move slightly due to hand jitter during capture even if
we take as much care as possible. Such movement causes
two kinds of blur [82].

One is called motion blur, which results in a streaking of
moving objects. Because motion blur occurs when a cam-
era or objects in a scene move during capture, it tends to
occur when capturing with long exposure time. Motion blur
is hardly removed once caused. Therefore, keeping exposure
time short is an important factor to prevent frommotion blur.

The other is ghosting artifacts, which is caused by the syn-
thesis of the same object to different positions, whilemerging
objects inmultiple images takenwith intervals.Ghosting arti-
facts are caused by both global motion due to hand jitter and
local motion due to moving objects in a scene. The former
can be reduced by aligning images to be merged to cancel
out global motions. The latter should be treated in merging
algorithms, but it can be made easier by shortening intervals
of continuous shooting.

In the early development of cameras for feature phones,
manufacturers considered embedding a motion sensor in the
phone. However, it was difficult to install a motion sensor in
addition to a camera mechanism in a small housing due to
space constraints and was also unprofitable in terms of price.
SOFTGYRO® [76], which was developed by Morpho Inc.
in 2004, is a software-based estimator for motion between
images. The offset between similar image features on adja-
cent frames of a multi-frame sequence was used to estimate
camera motion.

3.4 MFNR—Multi-frame noise reduction

As described above, it is important to take pictures with
high shutter speed to prevent motion blur. The drawback of
increasing shutter speed is the need to gain up pixel values
to obtain bright images, which results in noisy images (espe-
cially in night scenes). Denoising filters are typical solutions
to reduce noise, but they also lose some texture in the scene.

Noise reduction in images is a well-researched topic, and
a variety of techniques is available to choose from [35].
Multi-framenoise reduction (MFNR) is a technique to reduce
noise bymergingmultiple images takenwithin short intervals
under the same capture parameter. Assuming that additive
independent and identically distributed (i.i.d) noise contami-
nates an original image, averaging pixel values is the simplest
and themost effective approach to reduce noise. As described
above, image alignment is mandatory for MFNR to prevent
ghosting artifacts. In addition,MFNRneeds to detectmoving
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objects in a scene. When moving objects are detected, they
should be either aligned locally before merging or excluded
from merging.

MFNR is a common noise reduction scheme on recent
smartphones, especially for night scenes. While some smart-
phone manufacturers research in-house MFNR algorithms,
others use MFNR products licensed by software vendors.
Morpho’s PhotoSolid® [76] is an example MFNR-capable
product that has been widely used in smartphones globally.

3.5 High dynamic range (HDR) imaging

Dynamic range of a scene is a relative scale of irradiance in
the entirety of the captured scene.On the other hand, dynamic
range of an image sensor is a relative scale of a signal that
one pixel element of the sensor can detect. If the dynamic
range of an image sensor is narrower than that of a scene,
high irradiance exceeds the capacity of the pixel element to
white out (over-exposure), and/or low irradiance falls below
the threshold of the pixel element to detect a signal to black
out (under-exposure).

Because over- and under-exposed pixel values cannot be
recovered from a single capture, one of the most effective
ways to store the information in high dynamic range scenes
is to take multiple captures with different amount of expo-
sure [16]. If parameters of an image acquisition pipeline can
be obtained, we can estimate the true radiance values in the
scene. Because estimated radiance values at the same posi-
tion of a scene are proportional to the exposure levels of the
captures, they can be merged to compensate lost information
by over- or under-exposure. A good survey on HDR imag-
ing is available in [27]. Recent research has also focused on
HDR imaging for mobile devices, due to more challenging
requirements [38].

Images merged with multiple exposures should be basi-
cally stored using a data format with more bits than the
number of bits used during capture, in order to preserve both
their dynamic range and tone. On the other hand, displays
and commonly used image file formats only support images
with a lower number of bits (for example, 8 bits per channel).
A technique called tone mapping is used to map the levels in
the merged image to the output. Local tone mapping, which
adapts mapping to local appearance, is commonly used to
emphasize local contrasts (textures) while limiting the global
dynamic range.

Figure 1 shows an example of HDR merge. Three images
at the top row are the input images to HDR algorithm, which
are sequentially taken with different exposures. In Fig. 1b,
while the stained glasses are over-exposed, the other areas are
relatively dark. HDR algorithm compensates the textures of
the stained glasses from the low exposure input (Fig. 1a) and
brightens the other areas by merging the middle exposure

(Fig. 1b) and the high exposure (Fig. 1c) images with the
optimal weight ratios with respect to the local brightness.

One problem in the above approach is that the parameters
of the image acquisition pipeline in smartphones are rarely
available to those outside the companies involved in device
manufacture. Image processing software vendors therefore
use methods that do not depend on such parameters. Morpho
HDR™ [76] is one such product that directly merges images
taken with different exposures and performs tone mapping
to synthesize an output image without using the linearized
relation of radiance values.

3.6 Super-resolution

Pixels in an image sensor sum up the number of incoming
photons; therefore, taking a photograph with a digital camera
amounts to applying a low-pass filter to a scene. Tiny textures
(such as characters that measure a few pixels) are observed
blurry. This loss of resolution is increasingly noticeablewhen
performing digital zoom. Conventional image resizing algo-
rithms, such as bilinear interpolation, cannot recover the
high-frequency information of a scene once lost.

Super-resolution imaging, [99] a technique to increase
the resolution of an image, is not just a interpolation of
signals. Super-resolution algorithms are classified into two
categories: (1) approaches that reconstruct a high resolution
image from itself and (2) approaches that register multiple
low-resolution images to interpolate sub-pixel information.

Super-resolution from a single image exploits prior infor-
mation about images of natural scenes such as fractals, which
assumes that there are large-scale structures in an image
that are similar to the small structures to be super-resolved.
Registration-based approaches assume that input images are
misaligned to each other due to hand jitter and thus sub-pixel
information can be derived. Some cameras have a func-
tionality named pixel shift, which captures multiple images
while shifting the image sensor. Such active and controlled
shift of images enables registration-based super-resolution
even if a camera is mounted on a tripod. We have devel-
oped Morpho Super-Resolution™, [76] a registration-based
super-resolution product that does not require pixel shift.
Image alignment at sub-pixel level, using the motion estima-
tor software SOFTGYRO® [76], contributes to the increase
of resolution of tiny textures.

Figure 2 shows a comparison between the images upsam-
pled by bilinear interpolation (Fig. 2a) and super-resolution
(Fig. 2b). Bilinear interpolation results in blurry edges
because it cannot reproduce the high-frequency components
by interpolation. Super-resolution, on the other hand, can
reproduce the sharp edges and the textures.
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Fig. 1 HDR merge. a Low
exposure input. bMiddle
exposure input. c High exposure
input. d Result of HDR
algorithm

Fig. 2 Comparison between
bilinear upsampling and
super-resolution. a Upsampled
image by bilinear interpolation.
b Upsampled image by
super-resolution
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3.7 Remarks

The algorithms that we described in this section are based
on Computational Photography (CP). CP-based techniques
try to model optical processes using computations on the
captured image data. While this has been the established
method for image processing until recently, machine learn-
ing (ML) methods are increasingly being applied to solve the
sameproblems.Machine learningmethods use statistical pat-
terns learned from a collection of training data, to process
previously unseen data. For instance, an ML-based super-
resolution image processor infers finer details from learned
patterns while enlarging an image. Machine learning-based
methods require a larger amount of computing resources
when applied to high-resolution images. Also, their black
box nature makes it difficult to explain and correct problems
that occur with specific input data. Due to these limitations,
CP-based techniques are still more popular for still image
processing on mobile devices.

4 Video processing

A video consists of a series of image frames. Applying a
single frame image processing algorithm to each frame, we
obtain a solution for videos. Then, a question arises: Do
we really need special algorithms for videos? The answer
is “yes.” We will justify this answer with four reasons.

The first reason is an obvious one. Some quantities are
defined only for videos. An important example is inter-frame
camera shake, which leads to shaky videos. Video stabiliza-
tion, an algorithm to suppress it, has no counterpart in still
image technologies, because they have no inter-frame values.
Note that still image stabilization is for suppressing intra-
frame camera shake.

The second is the difference between spatial and tempo-
ral processing. Simply put, the goal of still image algorithms
is to create clear and natural images. The point here is that
“natural” means natural as a single frame. A natural video
consists of natural frames, but a sequence of natural frames
does not always form a natural video. There are many “natu-
ral as a still image, but not as a video” examples. For instance,
suppose that there is an apple in a given video frame. If this
apple disappears in the following frame, that looks unnatu-
ral as a video, but the frame may still be natural as a single
photograph. Because still image algorithms only make use
of spatial information, temporal naturalness cannot be guar-
anteed. Therefore, we need to design algorithms that look
after the naturalness of video. Further, if we take temporal
information into consideration, results of processing will be
better.

The third is processing time. Think about shooting a 60
FPS video. Then, any real-time video processing solution

must finish its process for each frame within 1/60th of a sec-
ond. For the still image case, we do not have this kind of strict
processing time limit. For this reason, we should develop
much faster algorithms than their still image counterparts.

The fourth and the last reason is power consumption.
Think of a fast enough, but power-consuming algorithm.Tak-
ing a still image is a one-shot process. A single peak in the
power consumption graph might not cause any severe prob-
lem to the device, or the user. However, shooting a video is a
continuous and relatively long process. A power-consuming
algorithm can cause a smartphone to heat up. Because this is
not an acceptable situation for many phone or device makers,
we have to keep algorithms lite, or less power consuming.

Video stabilization [107], noise reduction, [88] frame rate
conversion [81], and motion blur reduction, to name a few,
are widely used video processing algorithms. At the time of
writing, most video processing algorithms are based on con-
ventional image processing approaches rather than machine
learning-based approaches. This is because conventional
vision technologies have so far been faster and more stable.
However, this situation is changing rapidly. The challenge
we are facing at the moment is to find effective approaches
that can process video using the current machine learning
techniques.

In the following subsections, we will briefly explain two
typical video solutions: video stabilization and noise reduc-
tion.

4.1 Video stabilization

In this subsection, we abbreviate inter-frame camera shake
as camera shake. As stated above, video stabilization is an
algorithm only for video. Hence, this is a suitable exam-
ple to begin with. Stabilization algorithms are classified into
either 3D or 2D models. In the 3D algorithm, both scenes
and camera positions/orientations are reconstructed in 3D
world coordinates. Then, we virtually recapture a video with
a smoothed trajectory to obtain a stabilized output. In theory,
it is an ideal algorithm. However, for mobile video process-
ing, it is too unstable and heavy.

In the 2Dalgorithm, there is no reconstruction.Weapprox-
imate camera movement as 2D homographies between
frames and smooth them out using a filter. Suppose that
xi ∈ P

2 is coordinates of i-th frame, and Hi is the approxi-
mated homography between first and i-th frames:

xi = Hix1. (1)

Think about a transformation of i-th frame xi → x′
i :

x′
i = H−1

i xi . (2)
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This transformation is equivalent to the alignment of the i-th
frame to the first. Thus, every single frame can be aligned
to the first frame. In some sense, this is perfect stabilization,
because there is no camera motion left in the output. The
problem of this simple algorithm, however, is that it also
wipes out intentional camera motion such as panning and
tilting. We need to design a filter f to separate camera shake
from intentional motion and suppress only the former:

x′
i = f

(
H−1
i

)
xi . (3)

This equation shows what 2D video stabilization does in the
simplest form. The 2D model has only limited stabilization
capability, but it is robust and fast. Hence, in the mobile field,
the 2D algorithm is a more realistic choice. Morpho’s video
stabilization product,MovieSolid® [76], is an example video
processing solution based on 2D video stabilization.

One drawback of the 2D model is the smaller angle of
view in the stabilized video. The shape of input frames is
rectangular, but warping of the 2D model changes this. For
many use cases, non-rectangular video is not acceptable. To
retain rectangular shape, we have to crop the output, and this
results in a smaller angle of view.

Naively thinking, the most important ingredient of 2D
video stabilization seems to be filtering of homographies. Of
course, it is important, because a better filter results in more
smooth output. However, in practice, there is a more critical
issue that has to be handled during processing. To avoid arti-
facts, or unnaturalness, is top priority in video acquisition for
consumer devices. To the human eye, a stabilized video with
artifacts looks much worse than a video with no stabiliza-
tion. Here, the main causes of artifacts are lens and rolling
shutter distortion. Figures 3 and 4 show examples of them in
extreme cases. Because it is impossible to describe them as
2D homographies, thinking of an algorithm handling them
properly is essential for 2D video stabilization development.

4.2 Noise reduction

In order to perform noise reduction, we need to manipulate
all the pixels in image frames. Hence, this kind of algorithm
tends to be slow and power consuming. A technique widely
used to mitigate this difficulty is infinite impulse response
(IIR) filters. IIR filters utilize not only the input frame but
also the output of past frames. The simplest example is as
follows:

x̂i = α x̂i−1 + (1 − α)xi , (4)

where xi and x̂i are pixel values of input and output of i-th
frame, respectively. The coefficient α is for controlling the
strength of the filter. This simple filter is equivalent to a more

complicated one:

x̂i = (1 − α)
(
xi + αxi−1 + α2xi−2 + · · ·

)
. (5)

This is a filter for summing up input values over an infinite
number of frames, and α determines the weight of the past
frames. It is difficult to implement filter (5) directly. How-
ever, using IIR filter (4), an effectively identical filter can be
implemented easily. In this way, IIR filters enable us to real-
ize fast and lightweight noise reduction, compared with still
image-based techniques.

For temporal filtering, it is important to compare pixels
corresponding to the same 3D world coordinates. For exam-
ple, pixel values x̂i−1 and xi in filter (4) must point to the
same 3D coordinates. Hence, image frames must be aligned.
There are two types of alignment: global and local. Theglobal
alignment is for compensating camera motion and usually
approximated by a 2D homography. The local one is for
subject motion, such as walking or waving hands.Whenmis-
alignment occurs, pixels of different 3D points are added up
to create output, and the image gets blurred. Local misalign-
ment is particularly problematic, since it leads to ghosting, as
shown in Fig. 5. Therefore, an accurate alignment algorithm
and a mechanism to suppress blurring artifacts are necessary
to develop video noise reduction algorithms.

In Fig. 6, we show a result ofMorpho’s video noise reduc-
tion technology, Morpho Video Denoiser™ [76].

5 Multi-camera image processing

As mentioned in earlier sections, it is difficult to fit a good
lens with a wide range of variable focus on most mobile
devices. One simple solution to this problem is to add multi-
ple cameras that are facing the same direction. Each camera
can have a different lens, providing the device with a good
combination of lenses such as tele, normal, and wide. The
camera that is most appropriate for the current scene can be
used for taking the photograph.

However, in practice, using multiple cameras leads to
additional complications. A user should be able to use a
single zoom control to zoom in and out, while the cam-
era is automatically selected in a way that is transparent
to the user. Additional software support is required for
smooth transition between cameras, especially when captur-
ing videos.

The presence ofmultiple cameras sharing the field of view
also brings in the ability to estimate distances to the objects in
the scene. By estimating the relative depth between objects,
a depth map of the scene can be constructed. The most com-
monuse for a depthmap is applying abokeh effect, something
that is difficult to achieve using small lenses in mobile phone
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Fig. 3 Lens distortion. Because
of the un-homographic nature of
lens distortion, a straight object
(pole) appears curved

Fig. 4 Rolling shutter is a
widely used shutter mechanism
for mobile imaging. It induces
artifacts, because the image is
captured line by line. In this
example, the pole appears
unnaturally bent

Fig. 5 Ghosting artifacts.
Moving subjects, namely the
metronomes and the Ferris
wheel, are strongly blurred
because of local misalignment
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Fig. 6 Input and output of a
video denoising algorithm. a A
frame from an input video. b
The output of the corresponding
frame. The IIR filter reduced
noises in the frame (see the
building wall), and suppressed
artifacts (the woman is waving
her hand)

cameras. This effect occurs when the depth of field pro-
duced by the lens setting of the camera is shallower than
the depth range of the scene that is being photographed. The
objects near the distance of focus appear sharp, while other
objects appear blurry. Most flagship smartphones apply vari-
able amounts of blur to objects depending on their depth
inferred from the depth map, to achieve fairly realistic bokeh
effects.

Estimating depth using multiple cameras had already
been researched well before the invention of mobile phones
[10,91]. Camera calibration is a necessary step for enabling
depth estimation using computational imaging techniques.
Metric calibration Zhang et al. [105] uses a reference cal-
ibration object of which the feature dimensions are known
with very high precision. Online calibration [43] using infor-
mation derived by image processing can be used to get rid of
errors in initial calibration during manufacture and also cater
for errors in degradation.

5.1 Light field cameras

Light field cameras record both the intensity of light in a
scene and the direction that the light rays are traveling in
space. They are implemented by placing a microlens array
in front of a conventional image sensor. The arrangement of
lenses and the resulting data enable “post-focusing” images,
that is focusing images at multiple distances after capturing
them. The concept of the light field camera was proposed by
Gabriel Lippmann in 1908, but the first digital implementa-
tions with post-focusing ability arrived much later [70,80].
Several manufacturers (Adobe, Lytro, Pelican Imaging) have
produced consumer-level light field cameras.

Despite their ability to produce photographs with variable
focus and depth of field, light field cameras have not been
deployed on mobile devices at the time of writing. The key
reasons behind this are their low spatial resolution and high
cost. If further research and development facilitate overcom-
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ing these two weaknesses, they will be a valuable addition to
mobile devices.

5.2 Image-like data from other sensors

Several other alternatives to usingmultiple cameras have also
been researched. Structured light had been used for recording
depth information since the early days of machine vision
[33]. Structured infrared (IR) is a better alternative for use
with ordinary photographs, since it is not visible to the human
eye. Microsoft Kinect used structured IR to sense depth and
motion for gaming applications [73]. Apple’s iPhone uses a
structured IR grid of approximately 30,000 points for true
depth estimation.

Coded light technology is an extension of structured light.
With coded light, a rapidly changing series of infra-red pat-
terns are projected onto the scene while recording an image
sequence. The resulting image sequence can be used for
deriving more accurate depth information than with struc-
tured IR. Some models of Intel’s RealSense depth cameras
use coded light for depth estimation [53].

Time of flight (ToF)-based systems have been used in radar
and other distance measurement applications for more than
30years [1]. The basic principle behind these systems is to
send a signal from the device, receive its reflection from an
object and calculate the distance to the object based on the
time between sending and reception. ToF sensors are now
used in several smartphone models, for depth estimation and
tracking subjects while capturing video.

Light detection and ranging (LiDAR) is a variant of ToF-
based systems that uses a laser or a grid of lasers for depth
map creation. LiDAR sensors are widely used on automo-
biles, but their recent adoption to Apple’s iPad Pro suggests
the possibility of them being used in other mobile devices.

Both ToF and LiDAR sensors capture low resolution and
sparse depth data due to the limited sensing range and power
consumption constraints. This calls for additional image pro-
cessing where a smooth depth map over all image pixels is
required [9,11,77,104].

6 Image analysis

In image analysis, symbolic information regarding the image
content is extracted from the image. While such information
can be used for a variety of purposes, we herein discuss appli-
cations of image analysis on mobile devices, with emphasis
on image enhancement.

6.1 Face image analysis

Faces are one of the most common types of content in pho-
tographs taken using smartphone cameras. Automatic face

detection in digital images has been researched since 1970s,
and there is a large amount of published work available
[46]. Digital cameras that employ face detection for control-
ling focus and exposure were commercially available even
before smartphones were made. These devices mostly used
techniques based on Haar cascade classifiers [100]. Addi-
tional features such as facial expression (particularly smile)
recognition [61] and age estimation [2] followed, allowing
customization of image processing parameters to produce
better photographs.

Face landmark detection enabled further localization of
different regions of a face, enabling different filtering param-
eters for skin, facial hair, eyes, lips, etc. A number of
techniques, including active shape modeling, Haar cascade
classifiers, regression trees and deep neural networks can
be used for fast and accurate face landmark detection [56].
Several smartphone makers include face landmark detection
software in their devices.

With the advances in machine learning technologies, fur-
ther detailed face analysis has become possible in smart
phones. Face mesh modeling [4,55] and portrait-relighting
[34] with good accuracy are now available in high-end smart-
phones.

6.2 Image classification

In this section, we discuss image classification and object
detection. Image classification and object detection are tech-
niques that may focus not only on local features of a specific
region of an image but also on global features, and in some
cases, context. In recent years, methods using convolutional
neural networks (CNN) or transformers have become the
mainstream methods to capture both local and global fea-
tures of an image and utilize them for recognition.

Image classification is a technology that aims to esti-
mate the category to which the image belongs. It has various
applications. Some digital cameras and smartphones auto-
matically classify images in albums or change shooting
settings based on the result of image classification. Some
advanced driver assistance systems (ADASs) recognize road
signs in images captured by dash-cams via image classifica-
tion techniques.

A typical benchmark dataset for image classification is
ImageNet [17], where neural-network-based methods con-
tinue to have the highest accuracy since AlexNet [60]
in 2012. Continuously, researchers proposed new state-of-
the-art models with the new network structures following
AlexNet, which proposed ReLU and Dropout. GoogLeNet
[95] proposed the inception module, ResNet [40] showed
the effectiveness of the skip connections, SENet [49] pro-
posed the squeeze and excitation module, and EfficientNet
[96] aims to optimize the network depth, width and reso-
lution of the input images. Recently, structures based on
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attention, such as Vision Transformer [21], have also been
proposed. Besides, normalization of features, learning meth-
ods and new data augmentations also contribute to improving
the accuracy, for example, Batch Normalization [54], Layer
Normalization [8],Dropout [94],DropConnect [101], Cutout
[18], Random Erasing [108], mixup [106], and others.

In the context of neural networks, image classification is
essential not only for its use but also as a backbone for net-
work architectures used in other tasks. For mobile and edge
applications, the efficiency of performance versus computa-
tional complexity is important. MobileNet series [47,48,90]
are human-designed models with low computational com-
plexity, while NASNet [109] and EfficientNet [96] use the
model architecture search techniques to obtain good accuracy
versus computational complexity properties.

Also, techniques to reduce the number of parameters of
the trainedmodels, such as pruning [36,37], quantization [50,
85], tensor decomposition [58] and distillation [45], make
models more suitable for mobile and edge inference. For
practical use, it is necessary to adjust the kernel size, the size
of intermediate features and other parameters to fit specific
hardware.

6.3 Object detection

Neural networks have also become the mainstream tech-
nology for object detection tasks in recent years. Object
detection, as the basis of image understanding and computer
vision, supports image-based applications in various fields
such as automatic driving, robot vision and security. Typical
benchmark datasets include PASCAL VOC [25,26] and MS
COCO [64], while Cityscapes [14] is a well-known dataset
for automotive applications.

In the past, handcrafted image features [histogram of
gradients (HoG) [15], SIFT [69] and others] and repre-
sentations such as the deformable part model (DPM) [28]
have been successful in the field of object detection. How-
ever, in recent years, detection techniques using neural
networks have outperformed them in terms of accuracy.
Neural network architectures for object detection have been
continuously evolving. Conventional R-CNN [31] architec-
ture performs classification on cropped object proposals;
Faster R-CNN [89] proposed end-to-end trainable 2-stage
architectures, whereas SSD [66] and YOLO [12,86,87] pro-
posed anchor-based one-stage architectures. Cornernet [63]
and Centernet [22] estimate object regions by heat map and
do not use anchors. DETR [13] uses the transformer struc-
ture.

In some applications, there are situations where it is
required to produce individual masks of object areas in addi-
tion to detecting them as rectangles. Instance segmentation
covers such tasks, andMask R-CNN [42] and SOLOv2 [102]
are well-known examples.

Formobile and edge devices, the challenge is to reduce the
computational complexity of the neural network architecture.
In many cases, one-stage models such as SSD and Centernet
are advantageous. However, there are cases where relatively
lightweight inference can be made using two-stage methods
than one-stage methods. Therefore, when using object detec-
tion in edge devices, it is necessary to start by selecting the
backbone and the detection architecture depending on the
application.

6.4 Single image depth estimation

Using machine learning-based methods, it is possible to
analyze a single image and construct a depth map for the cor-
responding scene. Distance information and patterns learned
from the training data facilitate this, despite the complete
absence of depth information in the input image. In addition
to the applications of its multi-camera counterpart, single
image depth estimation provides a more convenient solution
for in-vehicle vision systems and drones. Using a single cam-
era eliminates the need for calibration and may require less
processing power if an efficient depth estimation algorithm
is used.

Many methods for directly estimating depth values using
deep neural networks (DNNs) have been proposed [23], [62],
and their accuracy has improved. Depth estimation is an ill-
posed problembecause the depthmap for a given input image
is not unique. Therefore, in order to obtain a reasonable solu-
tion, it is necessary to select appropriate training data for the
intended application. For research use, the KITTI Dataset
[29] and NYU Depth Dataset v2 [92] are commonly used.
Researchers in the industry often create their own datasets,
to match the application and the desired accuracy.

In general, it is costly to obtain sufficient depth data.
Therefore, in recent years, various methods that are capable
of training without ground-truth depth data have emerged.
For example, a method that indirectly obtains depth values
by estimating disparity map [32] and a self-supervised learn-
ingmethod by reconstructing images from time series images
have been proposed [71].

6.5 Image segmentation

The task of assigning a semantic label to each pixel of an
image is called semantic segmentation. The result of image
segmentation leads to amore detailed understandingof image
content. On a mobile device, such information can be used to
process each pixel differently according to its semantic label.
On a smartphone, accurate image segmentation can be used
for fine-level photo-enhancements.

Various methods using CNNs for semantic segmentation
have been proposed. For example, FCN [68] in which the
entire network is composed of convolution layers, is well
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known. Recently, a method that combines multi-scale seg-
mentation structure with an attention mechanism [97] has
achieved high accuracy.Another task that is similar to seman-
tic segmentation is to assign different labels to multiple
objects of the same class in an image,which is called Instance
Segmentation. Mask R-CNN [41] which is an extension of
Faster R-CNN [89] is well known as a representative method
for object detection. Another noteworthy technology is the
transformer [67]. This was originally invented in the field of
natural language processing, but has recently been applied to
a variety of vision tasks too.More recently, the task of adding
“Stuff” labels such as “sky” and “road” to Instance Segmen-
tation has been attracting attention. This is called panoptic
segmentation [59] and is currently a growing research topic.

Morpho Inc. recently published the results of a joint
research projectwithDensoCorporation that combines depth
estimation and semantic segmentation [78] for use in ADAS
applications. Thedepthmapand the results of scene segments
can be combined to create a 2.5-dimensional scene. Fig-
ure 7a, b shows such a scene from two different viewpoints.
We expect that such multitask approaches that simultane-
ously infer different types of information will be actively
researched by various companies in future.

6.6 Remarks

With the recent advances in DNN technology, the state-of-
the-art accuracy for most image analysis tasks now comes
from machine learning-based methods. The presence of
GPUs and neural processing hardware in mobile devices has
allowedmobile devices to deploy thesemethodswithin them.
While the large size of somemachine learningmodels makes
them less suitable for mobile devices, researchers have iden-
tified this as a problem and are working on possible solutions
such as creating lightweight models and compressing exist-
ing models.

7 Recent trends

Mobile devices are a relatively new category of computing
hardware and have been evolving fast. In this section, we
will have a quick look at some of the recent trends in mobile
devices and mobile image processing.

7.1 Sensing and capture

Ability to take better photographs can make subsequent pro-
cessing tasksmuch easier;whilemobile devices are not going
to get any larger, camera and camera module manufacturers
have been working on acquiring images with better quality
under the given constraints.

Dual pixel auto-focus (DPAF) is one approach for improv-
ing images and video captured by mobile devices. On DPAF
image sensors, each pixel has two photodiodes that can oper-
ate either separately or together. Each diode has a separate
lens over it. When light goes through the lenses and hits the
diodes, the processor analyzes each diode’s signal for focus,
and once focus is achieved, the signals are combined to record
the image. DPAF can greatly enhance the quality of video,
since it facilitates quick and accurate focus without the need
for adjusting the main camera lens for focus. It also makes
following and keeping focus onmoving subjects much easier
and more accurate. Originally developed as DSLR cameras
the main target, dual pixel AF sensors are now available in
high-end smartphones like Samsung Galaxy S7.

7.2 Semantic filtering

Another trend in smartphone image processing is to filter
different parts of an image using different parameters, to pro-
duce a photograph that is aestheticallymore pleasing than the
original. For example, a selfie can be enhanced by smoothing
the skin on faces to diffuse wrinkles, freckles, etc., while still
keeping the eyes, hair and facial hair sharp. The background
can be blurred to create a visually pleasing portrait. Color
correction on skin regions, to achieve better skin tones, is
also possible. Such processing that depends on the semantics
of the scene can be collectively called “semantic filtering.”
Semantic-based filtering can be performed by segmenting the
image to identify regions corresponding to different objects,
and automatically selecting the most appropriate filtering
technique to enhance each region [75]. Most high-end smart-
phones apply some sort of semantic filtering techniques to
refine photographs [52].

7.3 Recent trends due to the COVID-19 pandemic

The COVID-19 pandemic (ongoing at the time of writing)
resulted in the emergence of new market needs that could be
fulfilled using image processing techniques. The increase of
remote work resulted in extensive use of video conferencing
software. This posed several challenges to the users. Expos-
ing the home environment to business meetings became a
considerable burden to the user, since the user has to either
clear up the camera’s field of view or locate in a way that
his/her privacy is not offended. The offset between the cam-
era position and the center of the computer display resulted
in perceived lack of eye contact.

The industry responded fairly quickly, using existing tech-
nology. Background replacement is now available in major
video conferencing software such as ZoomandGoogleMeet.
Gaze correction to emulate better eye contact is provided
by Apple iPhone models with depth-sensing capability, and
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Fig. 7 A 2.5D scene created by
combining depth and
segmentation information. a
While the result looks like an
image from this viewpoint, it is
made of voxels and therefore
contains depth information as
well. bWhen seen from a
different viewpoint, it can be
seen that the result contains
depth data and occluded regions
of the scene are missing in the
final result

Microsoft Surface Pro X [6,72]. Zoom also provides seman-
tic filtering functionality to make faces look better.

8 Concluding remarks

With increasing versatility of mobile devices equipped with
cameras, the types of image processing and analysis tasks
that they carry out have also increased.We presented a some-
what broad survey of such tasks, while highlighting how the
constraints and requirements differ from their non-mobile
counterparts. Due to the constraints in camera optics and
sensors, and also the power consumption, the algorithms
used have to be robust, yet efficient. They also require high
accuracy and speed and good output quality when it comes

to smartphones.
In order to achieve these objectives, researchers and

developers in the industry use a combination of algorithms,
heuristics, refinements and knowhow. Some of these are not
always novel, and some others are unpublished. Therefore, it
might be difficult for readers to find a lot of details on image
processing pipelines for mobile devices. We hope that this
survey provided the reader with some insights on potential
challenges in solving mobile computer vision problems and
possible approaches to solve them.
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