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Abstract
Given an unordered list of 2D or 3D point trajectories corrupted by noise and partial observations, in this paper we introduce
a framework to simultaneously recover the incomplete motion tracks and group the points into spatially and temporally
coherent clusters. This advances existing work, which only addresses partial problems and without considering a unified and
unsupervised solution. We cast this problem as a matrix completion one, in which point tracks are arranged into a matrix with
the missing entries set as zeros. In order to perform the double clustering, the measurement matrix is assumed to be drawn
from a dual union of spatiotemporal subspaces. The bases and the dimensionality for these subspaces, the affinity matrices
used to encode the temporal and spatial clusters to which each point belongs, and the non-visible tracks, are then jointly
estimated via augmented Lagrange multipliers in polynomial time. A thorough evaluation on incomplete motion tracks for
multiple-object typologies shows that the accuracy of the matrix we recover compares favorably to that obtained with existing
low-rank matrix completion methods, specially under noisy measurements. In addition, besides recovering the incomplete
tracks, the point trajectories are directly grouped into different object instances, and a number of semantically meaningful
temporal primitive actions are automatically discovered.

Keywords Point track completion · Spatiotemporal clustering · Augmented Lagrangian multiplier

1 Introduction

Motion visual tracking is an important and essential com-
ponent of perception that has been an active research area
in computer vision for past two decades. The developments
of 2D and 3D visual tracking algorithms have shown rapid
progress thanks to the explosive growth of video data which
in turn creates high demand for accuracy and speed of track-
ing methods. Current approaches are motivated to design
faster and better methods in spite of the challenges that exist
in this topic, especially robustness to large occlusions, dras-
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tic scale change, accurate localization, multi-object tracking,
and recovery from failure [25,27]. Despite the success in
addressing numerous challenges under a wide range of sce-
narios, a number of core problems still remain unsolved. A
major challenge in real scenarios is handling missing entries
of the data, due to ad hoc data collection, presence of out-
liers, sensor failure, or partial knowledge of relationships in a
dataset. For instance, to recover object motions and deforma-
tions from video, the tracking algorithmmay lose the track of
features in some image frames due to lack of visibility ormis-
matches. In a similar manner, for 3D tracking, multi-camera
systems (such asmotion capture systems) [26,46] are applied
to obtain the time-varying evolution of a scenario. While
these systems are now capable of recovering most of the
observations, they can fail on real-world scenarios, such as
those formed by multiple objects while performing different
activities, deforming, moving, and even interacting between
them. In these cases, missing tracks continually appear, as
either self-occlusions or occlusions between objects. It is
worth mentioning that this is especially relevant in outdoors
scenarios,where current algorithms to estimatemotion tracks
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often produce partial solutionswith awide amount ofmissing
entries.

In many fields, an underlying tenet is that the data may
contain certain type of structure that enables intelligent pro-
cessing and representation, and they can be characterized by
using parametric models. Assuming that, the visual tracking
completion problem can be addressed as amatrix completion
one. To this end, one can use thewell-known linear subspaces
since they are easy to estimate, and often effective in many
real-world applications. For instance, thesemodels have been
successfully used to characterize several types of visual data,
such as motion [39,49], shape [32], and texture [35]. Maybe,
the most common choice it is to use the principal compo-
nent analysis method that is based on the hypothesis that
the data are approximately drawn from a low-rank subspace.
Unfortunately, real data from complex scenarios can rarely
be well described by a single low-rank subspace. For these
cases, a more reasonable model is to assume data are lying
near several subspaces, i.e., the data are considered as sam-
ples approximately drawn from a union of several low-rank
subspaces. The generality and importance of subspaces nat-
urally lead to a challenging problem of subspace clustering,
whose goal is to group data into clusters with every cluster
corresponding to a different subspace. Solving clustering and
finding low-dimensional representations of data are impor-
tant unsupervised learning problems in machine learning
with numerous applications, including image segmentation,
system identification, data visualization, and collaborative
filtering to name just a few. The problem becomes even more
complex if the data are partially observed, due to either sensor
failure or visual occlusions [1,2,4,24].

In this paper, we propose, to the best of our knowledge,
the first attempt to approximate high-dimensional data using
a dual union of low-dimensional subspaces, accounting for
two distinct criteria. Additionally, input data are assumed
to be corrupted by partial observations and noise. We apply
our approach to the specific case in which the input data
encode 2D or 3D point trajectories of multiple dynamic
objects with large percentages of missing entries, and we aim
at hallucinating these missing tracks while simultaneously
approximating the data using spatial and temporal subspaces,
as well as filtering the noisy measurements.

Wewill formulate the problemas amatrix completion one.
Input data will be arranged into a matrix with the missing
entries set to zero. To encode data similarities, we introduce
two affinity matrices to be learned. We will then devise an
optimization scheme based on augmented Lagrangian multi-
pliers (ALM) to simultaneously and efficiently estimate the
missing entries, and the bases and dimensionality for of each
low-rank subspace. The proposed algorithm is unsupervised,
does not depend on the initialization nor relies on training
data at all, and can be solved in polynomial time. An impor-
tant corollary of our approach is that applying off-the-shelf

state-of-the-art spectral clustering on the estimated affinity
matrices results in consistent temporal and spatial segmen-
tations of the input data.

We evaluate the proposed algorithm on 2D and 3D incom-
plete motion capture and real sequences of several objects
performing complex actions and interacting with each other.
We will show that the accuracy of the completed tracks
we obtain improves that of state-of-the-art methods by a
considerable margin, while we additionally provide a spa-
tiotemporal clustering of the data, which in most cases has
a direct physical interpretation (either the object identity or
the type of motion it is performing).

2 Related work

The most standard approach to perform matrix completion
is to assume the underlying data lies in a single low-
dimensional subspace. Early works [30,44] enforced this
constraint based on expectation maximization strategies to
optimize non-convex functions of the model parameters and
the missing entries. Other attempts constrain the solution
space using trajectory [24], or spatiotemporal models [5].
Nevertheless, all these methods require a good initializa-
tion, and most importantly, they need to set the rank of
the subspace a priori, performing poorly when the dimen-
sion of the subspace increases. Additionally, trajectory-based
methods normally use a predefined basis, making them
very problem specific. To address these limitations, another
family of low-rank matrix completion techniques has been
recently proposed [7,9–11,14,15]. These methods estimate
missing entries by optimizing the convex surrogate of the
rank, i.e., by they enforce the nuclear norm of the complete
matrix. These ideas were also applied in problems where the
matrix directly includes visual tracking information, impos-
ing smooth [42,43,54] and sparse [47] representations.When
the underlying subspace is not consistent with standard basis
components andmissing track locations are spread uniformly
at random, these approaches are guaranteed to recover miss-
ing entries.

Unfortunately, matrix completion techniques based on a
single low-rank subspace cannot handle the challenging and
more general scenario in which input data lie in a union of
low-rank subspaces (e.g., when dealing with simultaneous
and incomplete tracks of multiple objects performing com-
plex motions). Data segmentation from full annotations was
proposed by assuming a union of subspaces by means of
a subspace clustering based on sparse representation [18]
or seeking the lowest rank one [34]. Going back to the
completion problem, the objective would extend to recov-
ering the missing entries together with the clustering of
the data according to the subspaces. Mixture of factor ana-
lyzers [22], mixture of probabilistic principal component
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Table 1 Qualitative comparison
of our approach against
competing techniques

Approaches Missing Automatic Temporal Spatial Unified
entries rank clustering clustering framework

Category #1 � �
Category #2 � �
Category #3 � � �
Category #4 � � � �
Ours � � � � �

We split the methods into four incremental categories, depending on a number of desirable properties, namely
robustness to missing entries, automatic estimation of rank, computation of temporal/spatial clusters, and
unified formulation. Note that the method proposed in this paper is the only that can simultaneously offers
all these properties. Some examples for every category are: #1 methods to solve completion using a single
low-rank formulation [7,9–11,14,15,43], #2 methods to solve completion by means of multiple subspaces
where the rank is known a priori [6,45], #3 methods able to automatically retrieve the matrix rank, such
as [36,40,50], and finally #4, methods that can solve the problem in a unified manner [17,20]. It is worth
noting that [3] used a spatiotemporal constraint for shape reconstruction, but not for shape completion as we
do in this paper. Self-expressive models [18,34] solved for one type of clustering but considering full data

analysis [45], and incremental matrix completion algorithms
with K -subspaces [6] are some earlymethods used to address
grouping and completion of multi-subspace data. Again,
the performance of these methods highly depends on the
initialization and degrades for large subspace ranks. A poly-
nomial number of data points in the ambient space dimension
are required in [19] which often cannot be met in high-
dimensional datasets. Ma et al. [36] proposed an algebraic
approach to model data drawn from a union of subspaces
based on generalized principal component analysis. Yet, due
to the difficulty of estimating the polynomials from data,
the method is sensitive to noise and is computationally very
demanding. This strategy was extended in [40], yielding
more robust solutions but only for low-dimensional input data
and a reduced number of subspaces. A Lipschitz monotonic
function was assumed to model the low-rank matrix in [21],
even though this cannot cover the case of multiple subspaces.
Another family of solutions proposed solving completion and
clustering as a two-stage problem [50], by first obtaining a
similarity graph for clustering and then applying low-rank
matrix completion to each cluster. While this is an inter-
esting direction, the solution proposed in [50] is prone to
fail when subspaces intersect or when the initial grouping
is incorrect. To solve this limitation, Elhamifar [17] has pro-
posed self-expressivemodels for simultaneous clustering and
completion of incomplete data. Along the same line, Fan and
Chow [20] have recently presented a sparse representation to
solve the problem. However, these approaches can only clus-
ter the data based on one single criterion. In parallel, some
works have relied on neural networks to learn temporal clus-
tering [52] and infer missing entries [37,55], but solving just
a single problem. In all cases, these approaches propose to
exploit a loss function as we do in this paper, but they require
a large amount of training data to learn themodel and demand
a specific hardware to complete the training step. Unfortu-

nately, this cannot be assumed for generic scenarios,where an
unknown number of unknown object typologies can deform,
move, and even interact between them, doing the process of
simultaneously obtaining training data for track completion,
spatial groups, and temporal ones very hard and expensive
in practice. In contrast, our formulation can solve the prob-
lem in just few seconds in a commodity computer, without
requiring sophisticated hardware, nor prior knowledge about
the scenario to be solved.Moreover, none of them simultane-
ously solvemultiple clustering and completion aswe propose
in this paper.

2.1 Our contributions

We go beyond previous works by proposing an efficient and
robust method that does not require initialization, and it can
jointly perform two types of clustering (spatial and tempo-
ral), while recoveringmissing entries and filtering the rest. To
the best of our knowledge, no previous approach has jointly
addressed the three problems in a unified and unsupervised
framework. To this end, we assume the input data to lie in a
dual union of low-rank subspaces, where no a priori knowl-
edge about the dimensionality of the subspaces or which data
points belong to which subspace is required. It is worth not-
ing that our approach does not require any training data at
all. Additionally, the proposed solution can handle situations
with complex motion patterns, affected by large degrees of
overlapping and percentage of missing entries, in a com-
pletely unsupervised manner.

Table 1 summarizes a qualitative comparison of our
approach and the aforementioned techniques to jointly solve
completion and clustering.
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3 Preliminaries and problem statement

3.1 Notation

Matrices are represented with boldface uppercase letters,
e.g., X. In particular, IA is used to denote the identity matrix
of size A × A, and 1A a column vector of ones of size
A × 1. The entries of matrices are denoted by means of
subscripts [·]. For instance, X[: j] corresponds to the j th col-
umn of the matrix X, X[i :] is the i th row of the matrix X,
and X[i j] indicates its (i, j)th entry. We also define two
types of products: X ⊗ Z to denote the Kronecker prod-
uct, and X � Z to denote the Hadamard (or element-wise)
one. The negative of a binary matrix X is denoted as X̄.
We also define several norms on matrices: The l∞-norm
is defined as ‖X‖∞ = max(i, j) |X[i j]|, and the l2,1-norm
as ‖X‖2,1 = Σ j‖X[: j]‖2, where the l2-norm of a vector is
denoted by ‖X[: j]‖2. The Frobenius and nuclear norms are
represented as ‖X‖F and ‖X‖∗ = Σiσi (X), respectively,
with σi (X) being the i th singular value of the matrix X.
Finally, the Euclidean inner product between two matrices
is denoted as 〈X,Z〉 = tr(X	Z), where tr(·) represents the
trace of a matrix.

3.2 Problem Formulation

Let us consider F temporal subspaces {S f }Ff =1 of dimen-

sion {d f > 0}Ff =1 in a C-dimensional space, and G spatial

subspaces {Sg}Gg=1 of dimension {dg > 0}Gg=1 in a H-

dimensional space. Let Y ∈ R
C×T be a matrix of T data

points lying on the union of the temporal subspaces, and
Ŷ ∈ R

H×N a matrix of N data points lying on the union
of spatial subspaces. If we assume that both dimensions can
be factorized by a factor D (i.e., C = DN and H = DT ),
the two matrices Y and Ŷ can then contain exactly the same
number of values but in a different arrangement. Addition-
ally, we will assume that only some entries of these matrices
are observed, i.e., some locations can include null values. To
denote this, we include the matrix Ỹ, a sparse version of Y,
in which non-observed entries are set to zero.

Our problem consists in, given an incomplete and noisy
matrix Ỹ of data points from motion tracking, retrieving the
fullmatrix,Y or Ŷ, and clustering the data into the underlying
temporal and spatial subspaces. To this end, we will encode
the spatial and temporal subspaces using affinity matrices. It
isworth noting that both the bases ({S f }Ff =1 and {Sg}Gg=1) and
dimensions of each subspace (d f and dg , respectively) are not
known a priori, nor to which cluster each data point belongs
to. The incomplete and noisy input matrix can be provided
by any tracking algorithm, by considering, for instance, opti-
mization [25,27] or deep learning approaches (Joo et al. [28]).
We next describe our unsupervised and unified approach that

can solve the problem without requiring any training data at
all.

4 Spatiotemporal subspace clustering

Drawing inspiration on the ideas of [3] for reconstruct-
ing non-rigid shapes, we next generalize a spatiotemporal
constraint for joint motion track matrix completion and clus-
tering. Note that this constraint was not used previously in
the literature for completing missing entries as we present
here.We first introduce the two types of interpretations of the
tracking matrices we shall use. After that, and considering
the previous interpretations, we will introduce the temporal
and spatial constraints, extending our formulation to handle
missing tracks.

4.1 Motion trackingmatrix interpretations

Let us consider a dynamic set of N D-dimensional points
tracked along T time instances. For the particular case of
D = 3, i.e., a tridimensional space, we shall denote by xti =
[xti , yti , zti ]	 the spatial coordinates of the i th point at time
instant t . All acquired point coordinates can be collected into
the matrix Y ∈ R

DN×T in an unordered manner in terms of
any type of grouping that stores the x , y, and z coordinates
in a block matrix form as:

Y =
⎡
⎢⎣
x11 . . . x1N y11 . . . y1N z11 . . . z1N
...

. . .
...

...
. . .

...
...

. . .
...

xT1 . . . xTN yT1 . . . yTN zT1 . . . zTN

⎤
⎥⎦

	

.

We could assume the previous motion tracking matrix
admits a low-rank decomposition of rank K (K = 1 for
rigid objects), where K represents the number of bases in a
single subspace. We know from the structure from motion
theory this matrix is of low rank (Dai et al. [16], Xiao
et al. [48]), but since no information about the motion is
assumed, only a low-rank constraint can be considered.How-
ever, as discussed above, the single low-rank assumptionmay
not have sufficient expressiveness power to model complex
motion patterns of multi-object tracks. It is worth mention-
ing that if we know some kind of clustering or grouping of
the T data points, we might handle this situation by enforc-
ing the low-rank assumption to every particular cluster. In
this work, however, the number and type of clusters is not
known a priori, making the problem more challenging and
generic. Consequently, we need to jointly solve for comple-
tion and clustering, without assuming any information about
the dimensionality of the subspaces.

Since each column of the matrix Y encodes all points at
a time instant, this matrix cannot be directly used to retrieve
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spatial similarities. To address this limitation, we consider a
new DT × N matrix Ŷ, for which each column stores the
point tracks. Following the previous case of D = 3, this
matrix can be written as1:

Ŷ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 x12 . . . x1N
y11 y12 . . . y1N
z11 z12 . . . z1N
...

...
. . .

...

xT1 xT2 . . . xTN
yT1 yT2 . . . yTN
zT1 zT2 . . . zTN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

that is also low rank as Y but differing in value.
Bothmatrices use twodifferentmatrix arrangements of the

data points, but they include exactly the same information.
We can map from Y matrix to Ŷ using the relation:

Ŷ = (ID ⊗ Y	)A, (1)

whereA is a (DDN )×N binarymatrix. The inversemapping
can be written as:

Y = (Ŷ	 ⊗ ID)B, (2)

where B is also a (DDT ) × T binary matrix. Both A and B
matrices are known a priori, and they can be easily obtained
by considering the data structure in data matrices Ŷ and Y.

4.2 Dual union of spatiotemporal subspaces

The arrangement of the point tracks through the matrices Y
or Ŷ gives two different interpretations, and each of it can
be associated with a distinct subspace clustering process. For
instance, when analyzing the temporal domain using Y, we
can define an affinity matrix to capture the temporal similar-
ities between instances at different time steps. This relation
can be written as:

Y = YT + Et , (3)

whereT encodes a temporal affinity T ×T matrix andEt is a
DN × T residual noise. In this context, the temporal affinity
matrix T measures the similarities between D-dimensional
poses along time. Using this relation, we enforce Y to lie in
a union of S f temporal subspaces, each of them with rank
d f . We could say that the matrix T is the lowest rank rep-
resentation of the data Y with respect to itself. It is worth

1 Note that other dimensions could be used, such as 2Dmotion tracking
where D = 2. In this case, we only need to eliminate the rows of the
matrices Y and Ŷ corresponding to the z component. Theoretically,
other dimensions can be also used, such as 1D image sensors.

noting that T will be block-diagonal when the data samples
have been grouped together in Y according to the subspace
memberships. This block pattern is lost for random entries,
obtaining null entries when no affinities are provided. This
type of self-expressivemodel was previously used by [18,34]
in the context of subspace clustering.

Similarly, we can analyze the spatial domain through the
matrix Ŷ, by introducing an affinity matrix associated with
a union of spatial subspaces in the presence of noise. In this
case, we can write:

Ŷ = ŶS + Es, (4)

where S encodes a spatial affinity N × N matrix and Es is a
DT × N residual noise. In this case, we are enforcing Ŷ to
lie in a union of Sg spatial subspaces of rank dg , respec-
tively, measuring the similarities between D-dimensional
points in a same time instant. Basically, S and T are made
of low-rank coefficients that define the union of subspaces
in every domain, respectively. Once these affinity matrices
are learned from data, off-the-shelf spectral clustering algo-
rithms like [13] can be applied on each of them to discover the
grouping in every domain. The temporal clustering splits the
data into motion primitives and the spatial one into different
object instances.

Nevertheless, the previous formulation requires full mea-
surements on the tracking matrices Y or Ŷ, which is
not often the case in real applications. Previous subspace
clustering algorithms assume the observation matrices to
be complete [3,18,29,34,56]. As mentioned above, other
approaches [17,20] proposed an algorithm to jointly estimate
missing entries and build a similarity graph for clustering,
when considering a single union of temporal subspaces. The
algorithm we present in the following section goes beyond
these approaches and allows solving the matrix completion
problem when considering the data to be spanned by two
different union of subspaces. Our approach can handle high
levels of missing entries and noisy measurements, and solve
the problem bymeans of a one-stage optimization algorithm.
This means our approach can produce more accurate solu-
tions than competing techniques, while being more general.

5 Motion tracking completion and
spatiotemporal subspace clustering

We next present our algorithm to simultaneously recover
missing entries and estimate two similaritymatrices for com-
puting the spatial and temporal grouping. Note that neither
prior information nor training data is used at all. The input
to our algorithm are incomplete motion tracks of N D-
dimensional points observed along T time instances that are
arranged into the matrix Ỹ. In addition, we also introduce

123



3942 A. Agudo et al.

an observation matrix O ∈ R
N×T with binary entries that

indicate whether the coordinates of a point at a specific time
instant are observed or not.

5.1 Proposed formulation

Let us denote by Θ ≡ {Y, Ŷ,T,S,Et ,Es} the set of model
parameters we have to learn from the input data Γ ≡ {Ỹ,O}.
We introduce an optimization framework ruled by a cost
function that accounts for the spatiotemporal clustering con-
straints of Eqs. (3) and (4), and enforces the similarity
matrices T and S to be spanned by low-rank subspaces. Con-
sequently, the combination of both constraints enforces the
data in order to lie in a dual union of subspaces. Indeed, the
single union of subspaces model can be seen as a degenerate
case of our model (see Remark 1).

Since rank minimization is a non-convex NP-hard prob-
lem [41], the nuclear norm is approximated by its convex
relaxation [12,14]. Additionally, in order to be able to deal
with data corrupted by noise and outliers, we use l2,1-norm
regularization, as the convex relaxation of the l2,0-norm [33].
The objective function can therefore be written as:

argmin
Θ

‖ (1D ⊗ O) �
(
Ỹ − Y

)
‖2F + φ (‖T‖∗ + ‖S‖∗)

+ γ ‖Y‖∗ + λt‖Et‖2,1 + λs‖Es‖2,1 (5)

subject to Y = YT + Et

Ŷ = ŶS + Es

(ID ⊗ Y	)A = Ŷ

where {φ, γ, λt , λs} are predefined penalty term parameters.

Remark 1 When the data points are not connected in the
spatial domain, it means that the affinity matrix S becomes
the identity IN (we assume the data points are clean in this
domain, i.e., Es = 0), and hence, our formulation degener-
ates to a union of temporal subspaces. On the other hand,
when this occurs in the temporal domain (T = IT and
Et = 0), our formulation degenerates to a union of spatial
subspaces.

5.2 Efficient augmented Lagrangianmultiplier
optimization

The optimization problem in Eq. (5) can be efficiently solved
in a unified manner via an ALMmethod [8,31]. Without loss
of generality, we setλ ≡ λt ≡ λs . In order to reduce the num-
ber of parameters and the complexity of the problem while
improving convergence, we choose to bring the clustering
constraints into the energy function using several Lagrange
multipliers with a unique penalty weight β > 0. In addition,
we introduce three support matrices Y ≡ M, T ≡ J, and

S ≡ K, to obtain the corresponding augmented Lagrangian
function that can be written as:

argmin
ΘL

‖ (1D ⊗ O) �
(
Ỹ − Y

)
‖2F + φ (‖J‖∗+‖K‖∗)

+γ ‖M‖∗+λ
(‖Et‖2,1+‖Es‖2,1

)

+〈L1,Y−YT−Et 〉+ β

2
‖Y−YT−Et‖2F

+〈L2, Ŷ−ŶS−Es〉+ β

2
‖Ŷ−ŶS−Es‖2F

+〈L3, (ID ⊗ Y	)A−Ŷ〉+ β

2
‖(ID ⊗ Y	)A−Ŷ‖2F

+〈L4,Y−M〉+ β

2
‖Y−M‖2F

+〈L5,T−J〉+ β

2
‖T−J‖2F

+〈L6,S−K〉+ β

2
‖S−K‖2F (6)

where Θ L ≡ {M,Y, J,T,K,S, Ŷ,Es,Et } includes the
tracking completion, spatiotemporal similarity parameters,
and residual noises. The Lagrange multipliers are defined as
{L1,L4} ∈ R

DN×T , {L2,L3} ∈ R
DT×N , L5 ∈ R

T×T , and
L6 ∈ R

N×N . Recall that we do not need to know the dimen-
sions nor the bases of the temporal and spatial subspaces
a priori, since Eq. (5) automatically selects the appropriate
number of data points from every spatiotemporal subspace.

We propose to solve the problem in Eq. (6) by minimizing
each variable individually and in closed form, while keeping
fixed the rest of model parameters. Algorithm 1 explains the
details. The expressions for estimating Y, T, S, and Ŷ (steps
4, 6, 8, and 9) are obtained by computing the derivatives of
Eq. (6) in Y, T, S, and Ŷ, respectively, and equating to zero.
The subproblems to recover M, J, K, Et , and Es are con-
vex and have closed-form solutions. Particularly, for steps 2,
5, and 7, we apply a singular value thresholding minimiza-
tion [10]with a ‘shrinkage operator’ S ∗

β
(x) = max(0, x− ∗

β
)

where ∗ = {φ, γ }. In order to optimize the noise terms Et

and Es (steps 10 and 11, respectively), we apply the Lemma
4.1 in [51]. After each iteration, the Lagrange multipliers are
updated according to standard rules as shown in lines 12-
13. Additionally, we also update the penalty weight β (step
14) to guarantee the convergence of our algorithm, following
the upper bounded requirement of the alternating direction
methods. Particularly, we apply a factor of 1.1 to increase β

every iteration.
The theoretical convergence of our algorithms is not easy

to proof, as the method is based on nine different blocks.
However, we have empirically observed that for all experi-
ments reported in the following section, the algorithm always
converged in about 190 − 220 iterations. Additionally, we
observe the optimality gap obtained in every iteration to
monotonically decrease. An example of this analysis is dis-
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Algorithm 1: Algorithm for optimizing Eq. (6).

Input : Incomplete trajectories Ỹ on a D-dimensional space.
Parameters {φ, γ, λ}, and β

Output: Matrix completion Y (or Ŷ), temporal T and spatial
S affinity matrices for clustering

1 while not converged do
/* Update Model Parameters */

2 M = min γ
β
‖M‖∗ + 1

2‖M − (Y + L4
β

)‖2F
3 D =

(
M − L4

β
+

((
(Ŷ − L3

β
)	 ⊗ ID

)
B

)
+ (Et −

L1
β

)(IT − T	)
)(

(IT − T)(IT − T	)+2IT
)−1

4 Y = (1D ⊗ O) �
(

1
2+β

(2Ỹ + βD)
)

+ (
1D ⊗ Ō

) � D

5 J = min φ
β
‖J‖∗ + 1

2‖J − (T + L5
β

)‖2F
6 T = (Y	Y+IT )−1(Y	(Y−Et )+J+ Y	L1−L5

β
)

7 K = min φ
β
‖K‖∗ + 1

2‖K − (S + L6
β

)‖2F
8 S = (Ŷ	Ŷ+IN )−1(Ŷ	(Ŷ−Es)+K+ Ŷ	L2−L6

β
)

9 Ŷ =
(
(Es− L2

β
)(IN − S	)+ L3

β
+ ((ID ⊗

Y	)A
) (

(IN − S)(IN − S	)+IN
)−1

10 Et = min λ
β
‖Et‖2,1 + 1

2‖Et − (Y − YT + L1
β

)‖2F
11 Es = min λ

β
‖Es‖2,1 + 1

2‖Es − (Ŷ − ŶS + L2
β

)‖2F
/* Update Lagrange Multipliers */

12 L1 = L1 + β(Y − YT − Et );
13 L2 = L2 + β(Ŷ − ŶS − Es)

14 L3 = L3 + β
(
(ID ⊗ Y	)A − Ŷ

)
15 L4 = L4 + β(Y − M)

16 L5 = L5 + β(T − J)
17 L6 = L6 + β(S − K)

/* Update Penalty Weight */
18 β = min(1.1 · β, βmax )

/* Check Convergence */
19 ‖Y − YT − Et‖∞ < ε

20 ‖Ŷ − ŶS − Es‖∞ < ε

21 ‖(ID ⊗ Y	)A − Ŷ‖∞ < ε

22 ‖Y − M‖∞ < ε

23 ‖T − J‖∞ < ε

24 ‖S − K‖∞ < ε

25 Setting: In our experiments, we use ε = 10−8, and
βmax = 1012 since the values in Y are normalized within the
range [-1,1].

played in Fig. 1, where both constraints and full errors in
Eq. (6) are represented for a specific case. As it can be seen,
after around 50 iterations all constraints are almost perfectly
satisfied and the overall energy converges.

5.3 Complexity analysis

The most computationally demanding parts of Algorithm 1
are the steps 2, 5 and 7, which require computing several
SVD operations over matrices of size DN × T , T × T and
N × N , respectively. Hence, our problem can be solved
in polynomial time with a computational complexity of at

Fig. 1 Convergence analysis: energy reduction as a function of the num-
ber of iterations. Evolution of the error for the six constraints (denoted
as Cc, with c = {1, . . . , 6}) and the full energy in Eq. (6) as a func-
tion of the number of iterations until convergence (corresponding to the
Jump scenario described in “Experimental results” section). Note that
two different scales are used to represent the errors of the constraints
(left axis) and the full error (right axis). For visualization purposes, we
plot the full energy scaled by a factor of 0.1

Fig. 2 Computation time as a function of the number of frames, points
and iterations. Computation time versus number of iterations until con-
vergence on the mocap sequences described in “Experimental results”
section, for two (red dots) and four (blue dots) people. Next to each
dot are indicated the number of images of the sequence. In all cases,
the number of iterations until convergence always remains within rea-
sonable bounds. The corresponding computation time depends on the
number of frames and points

most of O(N 2T + T 3 + N 3) [23]. Note that this complex-
ity could be easily reduced by orthogonalizing the columns
of the matrices Y and Ŷ. The computation times (in unopti-
mized MATLAB code) on a commodity laptop with an Intel
Core i7 processor at 2.4GHz for motion capture sequences
for two and four people are displayed in Fig. 2. On average,
the median computation time in experiments with sequences
between 277 and 652 frames, and two people (N = 82
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points) was of 51 seconds. Processing between 214 and 432
frames, and four people (N = 164 points) required a median
time of 44 seconds. In any case, to handle larger datasets we
could use current results Yao et al. [53] on the use of SVD
operations on large datasets to address large-scale low-rank
problems. This could really help to reduce the reported com-
plexity. Moreover, our formulation could be extended to be
employed in a sequential manner, being this a part of our
future work.

6 Experimental results

In this section we report the performance of our algorithm
to solve motion tracking completion, as well as temporal
and spatial clustering on several challenging datasets. For
all cases, we denote by ρ the fraction of missing entries
in the input data. In all experiments, we set φ = 1.0,
γ = 2.0 and λ = 0.03. It is worth pointing out that
we do not need fine-tuning these parameters, as the results
were stable for wide range of values for φ ∈ [0.1, 10]
and γ ∈ [0.2, 20]. Regarding the competing approaches,
we will compare our algorithm, denoted as spatiotemporal
track completion (ST2C), with the low-rank matrix com-
pletion (LRMC) [10], and the bilinear factorization matrix
completion (BFMC) [9], two approaches where the rank is
automatically estimated. We do not include [6,22] as these
methods require knowing the rank of every subspace a priori.
Unfortunately, neither can we report the results of [17,20] as
its source code is not publicly available. Recall, however,
that both approaches did only consider a single union of sub-
spaces.

To establish a quantitative evaluation, we will compute
three types of errors: the temporal eTC and spatial eSC clus-
tering error as well as the motion tracking completion eMTC

(this error is equivalent to a matrix completion evaluation)
that are defined as:

eTC = #Misclassified frames

#All frames
, (7)

eSC = #Misclassified points

#All points
, (8)

eMTC = ‖Y − YGT ‖2F
‖YGT ‖2F

. (9)

where YGT and Y denote the ground truth and the recov-
ered matrices, respectively. For the temporal clustering error,
we have obtained the ground truth segmentation over noise-
free and complete measurement matrices by applying [34]
to compute the similarity matrices and [13] to obtain the
clusters. Spatial ground truth were annotated by hand. This
means the evaluation we propose for temporal clustering is

Fig. 3 Patterns of missing entries. V patterns used to simulate missing
entries in the Jump sequence. White and black cells denote non-visible
and visible points, respectively. Top:ρ = 0.4 of randommissing entries.
Bottom: ρ = 0.4 of structured missing entries

actually an implicit comparison with respect to the compet-
ing approach [34] by assuming clear measurements.

6.1 Real experiments onmotion capture data

We evaluate the proposed approach on the CMU MoCap
dataset. We consider several scenarios with either two or
four people interacting and performing complex motions in
3D. On average, the sequences we consider are 433 frames
long, and the number of points per frame is either 82 (two
people) or 164 (four people). Specifically, we select eight
sequences with two people: 23_16 (Jump): subjects alternat-
ing synchronized jumping jacks; 19_05 (Pull): a subject pulls
the other by the elbow; 22_20 (Violence): a subject picks up
high stool and threatens to strike the other; 20_06 (Soldiers):
subjects follow a soldiers march; 23_19 (Stares Down): a
subject stares down the other and leans with hands on high
stool; 22_12 (Stumbles): a person stumbles into the other;
20_09 (Nursery): people follow a nursery rhyme; and 22_10
(Shelters): a person shelters the other from harm. A total of
four sequenceswith four people are considered, synthetically
generated by combining pairs of sequences with two people.

All sequences are corrupted in three different ways: 1)
randomly removing a fraction ρ = {0.1, . . . , 0.8} of entries
of the measurement matrixY; 2) removing a structured frac-
tion ρ = {0.1, . . . , 0.4} of entries of the measurement matrix
Y where we emulate temporal self-occlusions or lack of vis-
ibility, by including patterns with 50% of structured missing
entries per frame; and 3) adding noise to the observed points,
according to a Gaussian distribution with standard deviation
σnoise = τ

100ψ , where τ controls the amount of noise, and ψ

represents the maximum distance of a point to the centroid
of all the points. An example of these artifacts is shown in
Fig. 3, for both random and structured missing entries.

Figures 4 and 5 summarize the results for two and four
people, respectively. Each graph depicts the results of all 3
methods for one specific sequence, at increasing levels or
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Fig. 4 Motion completion errors of different algorithms as a function
of the missing entries rate ρ on motion capture sequences with two sub-
jects. Each algorithm is evaluated under noise-free (τ = 0) and noisy

(τ = {1, 2}) data. For visualization purposes, the error of LRMC has
been divided by a factor 3.5 in all graphs. Top: Randommissing entries.
Bottom: Structured missing entries

missing data for the two types of cases we propose. Solid
and dashed lines represent results for noise-free and noisy
measurements, respectively. Our approach and BFMC [9]
show similar error patterns, even though ours being always
consistently better. A breaking point is achieved earlier by
BFMC [9], showing our superiority in terms of robustness
against this type of artifacts. As it can be seen, our solution
by assuming noise can even provide better solutions than
the competing approaches for clean annotations. The perfor-
mance of LRMC [10] is far below the other two algorithms.
We hypothesize this is due to the pseudo-block structure of
the missing data, as eachmissing point does indeed represent
three—recall that for this experiment, D=3—adjacent null
elements in Y. This is especially relevant when the missing
entries are structured, as it can be seen in the bottom part
of Figs. 4 and 5. Note also that BFMC [9] and LRMC [10]

are specifically designed for matrix completion. These algo-
rithmsdonot provide anykindof affinitymeasure, that allows
subsequent clustering. Some instances for several scenar-
ios when the missing entries are random are displayed in
Fig. 6. Moreover, our algorithm is faster than the competing
approaches, producing an speed up of 2.7×when BFMC [9]
is considered.

As we have commented above, our approach also esti-
mates spatial and temporal clustering. Tables 2 and 3
summarize the mean error for each sequence and all lev-
els of missing data for the random and structured cases,
respectively, for noiseless (τ = 0) and noisy (τ = {1, 2})
measurements. As it can be seen, our approach produces very
good results for most of the sequences, especially in terms
of spatial clustering where we obtain an almost negligible
clustering error. In fact, our algorithm produces better spa-
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Fig. 5 Motion completion errors of different algorithms as a function
of themissing entries rate ρ onmotion capture sequences with four peo-
ple. Again, every algorithm is evaluated under noise-free (τ = 0) and

noisy (τ = {1, 2}) data. The error of LRMC has been divided by a fac-
tor 3.5 in all graphs. Top: Random missing entries. Bottom: Structured
missing entries

tial clustering solutions with artifacts that the provided by
LRR [34] even assuming full observations (remember that
this method needs full data, i.e., ρ = 0), as it is observed
in Table 2. For temporal clustering, our solution is implic-
itly compared with respect to LRR Liu et al. [34], showing
consistent solutions as a function of the level of noisy. For
both types of artifacts, the worst results are obtained for the
sequences Shelters and Nursery, since the type of motion
does not include many deformation cycles. In any case, even
for these complex motions, our algorithm provides a good
trade-off between accuracy and computational cost.

6.2 Real experiment on ASL tracking completion

We now consider the completion of time series trajectories
from a real monocular video. We use two American Sign
Language (ASL) sequences [24] of 114 image frames, where
77 feature points per sequence are tracked. For the purpose
of evaluating the spatial clustering ability of our algorithm,
we merge the frames of the two sequences to render a unique
video with two faces (with N=154 feature points). The face
tracks are corrupted by missing entries (corresponding to
ρ = 0.1445) due to partial occlusions produced by one or two
hands (self-occlusion), or by the face self-rotation causing
lack of visibility.

Results are shown in Fig. 7. We compare against [24], a
completion algorithm that estimatesmissing tracks enforcing
low-rank trajectory models. Note that this approach requires
fine-tuning the rank of the subspace a priori, producing very
different solutions when this is done. We use the rank value
provided by the authors. For the non-visible points, there is no

ground truth, but froma qualitative inspectionwe observe our
approach to be remarkably more accurate (see, for instance,
the rightmost frame of Fig. 7). We may nevertheless mea-
sure the accuracy of the estimated position for the visible
points (red dots). For these, our method provides a solution
2.35 times more accurate than that obtained by [24] without
assuming any rank knowledge.

6.3 Real experiment onmulti-fish data

Finally, we consider a very challenging multi-fish real
sequence taken from the DAVIS dataset Perazzi et al. [38].
Particularly, this is a sequence of 51 frames where 33 points
per image are tracked. The incomplete tracks are provided
by hand, obtaining a level of missing entries of ρ = 0.129
(as a combination of random and structured missing tracks),
due mainly to multiple partial occlusions produced by the
dynamic motion of the animals. A qualitative evaluation of
our algorithm is displayed in Fig. 8. As it can be seen, our
algorithm can accurately recover the missing tracks without
assuming any extra information about the type of observed
scene, such as the number of objects, the type of deforma-
tions, or the rank of every subspace.

7 Conclusion

We have proposed an algorithm for simultaneous motion
track completion and clustering based on two different cri-
teria. For this purpose, we have devised a model that allows
to jointly enforce the entries of the matrix to lie in a dual
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Fig. 6 3D motion track completion on multi-body scenarios, assum-
ing missing entries (ρ = 0.7) and noisy measurements (τ = 1).
The sequences in order of appearance (from top to bottom) are: Shel-
ters, Nursery, Greet4 and Zombie4, respectively. For everyone, several
instant frames are represented from two orthogonal viewpoints (z-x and
y-z). 3D ground truth is represented by circles and squares, where the
color denoted if a point is visible (black circles) or not (blue squares).We

represent our motion track completion by means of red dots. Observe
that even for high levels of missing entries, our algorithm produces
an accurate and clean completion. Although it is not represented in
this figure, it is worth pointing out that our algorithm also recovers
the spatiotemporal segmentation, even for large degrees of overlapping
between the bodies, as it can be seen in the displayed scenarios. Best
viewed in color
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Fig. 7 2D Tracking completion for the ASL dataset. Results for three
frames of the sequence. For every image, visible 2D tracking data are
shown as red dots. To complete the non-visible tracks, we use our algo-
rithm (blue crosses) and the low-trajectory-rank approach of [24] (green

circles). Qualitative results show that our approach provides more accu-
rate track completion for this challenging experiment. Best viewed in
color

Fig. 8 2D Tracking completion for the multi-fish sequence. Results for
four frames of the sequence. For every image, visible 2D tracking data
and hallucinated non-visible tracks by our algorithm are displayed as

red dots and blue crosses, respectively. As it can be seen, our algorithm
produces physically aware estimations on this experiment. Best viewed
in color

union of subspaces. This goes beyond state-of-the-art solu-
tions, which were restricted to single union of subspaces.
Using the machinery of the augmented Lagrange multipli-
ers, we have obtained an efficient solution to the problem,
and applied it to the case of input data obtained from motion
capture systems of multiple human motion, and to challeng-
ing real videos. Extensive evaluation demonstrates the ability
of our approach to recover missing tracks and segment input
data into each of the objects being captured, and automati-
cally discovering their motion primitives. Further theoretical
analysis of the algorithm and convergence proofs will be
investigated in the future. Moreover, we pretend to extend
our formulation for sequential estimation as the data arrive.
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