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Abstract
Unmanned aerial vehicles (UAV) can be used to great effect for wide-area searches such as search and rescue operations. UAV
enable search and rescue teams to cover large areas more efficiently and in less time. However, using UAV for this purpose
involves the creation of large amounts of data, typically in video format, which must be analysed before any potential findings
can be uncovered and actions taken. This is a slow and expensive process which can result in significant delays to the response
time after a target is seen by the UAV. To solve this problem we propose a deep model architecture using a visual saliency
approach to automatically analyse and detect anomalies in UAV video. Our Temporal Contextual Saliency (TeCS) approach
is based on the state-of-the-art in visual saliency detection using deep Convolutional Neural Networks (CNN) and considers
local and scene context, with novel additions in utilizing temporal information through a convolutional Long Short-Term
Memory (LSTM) layer and modifications to the base model architecture. We additionally evaluate the impact of temporal
vs non-temporal reasoning for this task. Our model achieves improved results on a benchmark dataset with the addition of
temporal reasoning showing significantly improved results compared to the state-of-the-art in saliency detection.

1 Introduction

Modern advances in technology have enabled the use of
UnmannedAerialVehicles (UAV) for the purposes of surveil-
lance and search and rescue operations, reducing the costs
and improving the capabilities of such operations. UAV can
cover large distances and areas quickly and efficiently; how-
ever, processing and analysing the video recorded by UAV is
still a costly and time-consuming task. The time to response
is often critical to the outcome of search and rescue opera-
tions, meaning an automated solution which reduces the cost
and increases the speed of this analysis would be beneficial
for this task.

Visual saliency is a measure of the conspicuity of objects
in an image, meaning how much they stand out from the
image or how unique they are [1]. Through the application of
visual saliency detection, computer vision systems are capa-
ble of identifying and extracting the most distinctive parts
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of an image. Contextual saliency is an extension of visual
saliencywhich considers the context of an image in determin-
ing the salient objects, or anomalies, in it. There are various
types of context which can be considered such as the local
context (pixel neighbourhood) of a given pixel, or the type
of scene portrayed by the image. In processing videos as a
whole instead of images individually, video saliency detec-
tion approaches seek to apply temporal reasoning to improve
the accuracy and consistency of saliency predictions, typi-
cally by propagating information from previous frames to
be considered when processing future frames. By applying
these concepts to the task of anomaly detection in UAV video
the goal is to produce a general solution which is capable of
detecting any object of interest in the video.

Images and video captured by UAV commonly feature a
set of distinct properties when compared to the images con-
sidered in most saliency detection approaches. These include
potentially being grainy, low-quality and noisy (from the
motionof theUAV, encoding/transmissionof the image, etc.),
the possibility of being captured at varying altitudes (and
thus scales) and speeds (and thus level of motion noise) and
more. Additionally, the salient objects in typical images con-
sidered for saliency detection are often large in the image and
placed at or near the centre. However, the salient objects in
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UAV images are typically very small and scattered across the
image. These properties place limitations on the application
of general saliency detection methods to UAV images, but
may also be exploitable by a model specifically designed for
this type of imagery.

Previous approaches to the problem of anomaly detection
in UAV video have commonly relied on classical computer
vision techniques to achieve saliency detection, for example
colour space manipulation in [2] and image region segmen-
tation in [3]. Those approaches achieving the best results are
generally very slow, taking several minutes to process each
frame, and they often do not scale well with larger image
sizes [4], making them unsuitable for processing UAV data
where target objects may be very small in the image. More
recent approaches have achieved great results while limiting
the scope of the solution to detecting a small set of object
classes, or only considering a specific target environment.
Previous approaches have also disregarded the temporality
of video by processing frames independently, making them
more versatile but less suited for processing video.

In order to solve this problem we evaluate the benefit
of temporal information processing for anomaly detection
in UAV video, and propose a novel Temporal Contextual
Saliency (TeCS)model based on theDeep Spatial Contextual
Long-term Recurrent Convolutional Network (DSCLRCN)
model of [5], state-of-the-art approach in saliency prediction
using a deepConvolutionalNeuralNetwork (CNN).Our pro-
posedmodel considers local and scene context in each frame,
and is novel in leveraging the temporal information in UAV
video.

While the state-of-the-art in saliency prediction has
recently been dominated by deep learning approaches, no
such approach has previously been applied to the task of
salient object detection in UAV video. Within this work we
detail novel additions to the baseline DSCLRCN architecture
proposed by [5], and additionally explore the use of tem-
poral vs. non-temporal reasoning within a further extended
architectural approach. Specifically, we evaluate the impact
of using a convolutional Long Short-Term Memory (con-
vLSTM) layer in place of a standard convolution operator
on overall saliency detection across a number of exemplary
UAV missions (video episodes) and show improved bench-
mark performance on the UAV123 dataset [6].

2 Related work

One of the first and most seminal works on visual saliency
detection is [1], which has served as the basis and inspira-
tion of many more recent methods such as [7] and [8]. These
works use a bottom-up approach based on low-level features
such as intensity, colour and orientation, inspired by neuro-
science principles.Due to the focus on low-level information,

these approaches commonly suffered shortcomings such as
reliance on priors, difficulties in detecting objects that touch
the edges of the image and in detecting smaller andmore sub-
tle objects. Additionally, the approach of [8] suffered from
over-detection in UAV/aerial-style images.

Other approaches considered high-level information in
the image in the form of the context of the image. This is
information about the general contents of the image as a
whole, for example the terrain, environment or conditions
displayed in the image, or the presence of additional objects
in other areas of the image. One of the earliest usages of
context for automated saliency detection is [9], which uti-
lized an “auto-context classifier” to learn the context of a
salient object through a prior step of iterative learning. More
recently, [5] sought to use contextual information together
with a neural network-based approach for saliency detec-
tion, proposing the DSCLRCN model. This model evaluates
saliency per pixel in the image while considering the local,
global and scene context, achieving better results than all
previous models on eye-fixation datasets.

Another neural network-based approach was presented by
[10], which achieved significantly faster processing speeds
by using a fully convolutional network. However, this
approach was not designed for nor tested on UAV footage,
and resizes images to 352×352 for evaluation, potentially
losing out on small-scale information and context which
could be very important for UAV images. It also did not
consider the scene context of the image unlike [5], instead
processing only local and global context within the image.

Early methods specifically designed for salient object
detection inUAV imagery such as [2] and [3]were commonly
based on the bottom-up approach of [1]. These methods
achieve good results by targeting specific scenarios, such as
“rural, uncluttered and relatively uniform environments” [2]
and detecting people and vehicles on roads [3].

Very recently a survey of UAV saliency detection carried
out by [4]was built uponby [11].Based on their findings, [11]
present an approach that uses the wavelet transform-based
model in [12] to produce a saliency map which is used to
select the 300most salient patches in the image. Next, a CNN
trained to detect people is applied to each patch. Their model
achieves state-of-the-art results, achieving a higher precision
but lower recall score than aFasterR-CNNmodel [13] trained
on the same dataset. However, the model is only designed for
the scope of detecting people in land-based situations and
is therefore not directly generalizable to the more general
task of anomaly detection, and it does not utilize temporal
information.

Considering temporal information could massively ben-
efit any saliency approach that is designed for video. A
model for video saliency prediction for non-UAV videos
is presented by [14], which utilizes a deep CNN and
spatial-temporal object candidates to improve the temporal
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consistency of the saliency prediction. Another approachwas
taken by [15], who used the convLSTM architecture created
by [16] to process spatial-temporal information in video bidi-
rectionally.No previous approacheswere foundwhich utilize
temporal information to process UAV video.

Previous methods for saliency detection in UAV images
and video are generally limited in scope, not considering
contextual or temporal information available, or making
assumptions about the type of salient object or environment
expected. While there has been a large amount of research
into the topics of contextual saliency andvideo saliency, these
ideas have not been extensively applied to UAV video. In the
field of visual saliency detection deep learning models are
dominating the state-of-the-art, both in terms of accuracy
and execution speeds. A recent evaluation of the perfor-
mance of existing visual saliency models on UAV video by
[17] drew the same conclusion, while stressing the impor-
tance of developing UAV-centric models tailored for this
task.

Our proposed TeCSmodel is novel in applying these ideas
to the topic of anomaly detection in UAV video. It does so
by building on the DSCLRCNmodel of [5]. By adapting this
model by replacing the last convolutional layer with a con-
volutional LSTM layer and changing the activation function
of the last convolutional layer as well as the loss function
we produce our novel TeCS model, which achieves signifi-
cantly improved salient object detection performance inUAV
video compared to the base DSCLRCN model. A compar-
ison of a temporal and non-temporal version of this model
demonstrates the significant improvement yielded by tempo-
ral processing.

3 Solution

Our proposed solution is a deep CNN model based on the
state-of-the-art in contextual saliency detection. The model
is adapted to the task of anomaly detection in UAV video by
changing the activation function as well as the loss function
used to train themodel. It additionally utilizes temporal infor-
mation carried in video by propagating data through time to
improve the analysis of subsequent frames via a convolu-
tional LSTM layer.

Based on the results of the literature survey, we chose
to construct the solution based on the state-of-the-art deep
learning model for contextual saliency proposed by [5].
This choice was made because the survey of related works
revealed that deep learning models generally outperform
classical computer vision approaches, both in terms of accu-
racy and execution speeds. The structure of our proposed
TeCS model is shown in Fig. 1. For more details of the orig-
inal architecture see [5].

3.1 Modifications for UAV data

In order to adapt the DSCLRCN model for use with UAV
images wemake several modifications to the model architec-
ture and training procedure. Firstly, we change the activation
function applied to the output of the final convolution layer,
originally the Softmax() function, to the Sigmoid() function.
Although the lateral competition introduced by the Softmax()
function is desirable as it helps produce cleaner saliency pre-
dictions, it has the side-effect that themagnitude of the output
is always the same. A model using the Softmax() activation
function as the last activation function is therefore unable to
produce an output that contains no predicted saliency for an
input image. The model is also incapable of predicting the
overall saliency level of an image (i.e. whether the image
contains many or very few salient objects, the magnitude of
the saliency prediction remains the same).

This is not an issue for the case of typical visual saliency
prediction, as the model should predict the most salient item
in every image. Such cases therefore have no negative exam-
ples (images with no salient objects in them). This is however
an issue for applying saliency prediction for salient object
detection, as the model should be able to predict a lack of
any salient objects in an image. Using the Sigmoid() activa-
tion function removes this issue. As this function has a range
of (0, 1), it is well suited for tasks that evaluate probabili-
ties. By applying this activation function to the output of the
last convolutional layer, each pixel in the output is assigned
a value in this range, corresponding to the saliency of that
pixel. As the Sigmoid() function is applied to each pixel indi-
vidually, no constraints are placed on the image as a whole,
or on the relationship between pixels. The model is thus able
to output a low value at every pixel in the image if it does not
detect any salient objects.

We also adjust the testing procedure used when validating
and testing the model. The authors of [5] found that applying
a Gaussian blur to the saliency prediction produced by the
DSCLRCN model improved its performance by smoothing
out the saliency response. Such blurring may improve the
saliency prediction for large objects by removing large peaks
and small gaps in the prediction but it also removes detail at
smaller scales. In UAV video target salient objects can be
present in varying scales due to factors such as the altitude of
the UAV. We therefore omit this stage of processing in order
to preserve small-scale detail in the predictions.

In addition to the changes made to the architecture and
post-processing of the model we also change the loss func-
tion used to train the model. To train the DSCLRCN model
[5] used the negative Normalized Scanpath Saliency (NSS)
[18] to compute the loss of a prediction with respect to the
ground truth from human eye fixation data. However, the
NSS loss function assumes the presence of target pixels in
the ground truth. If there are no targets in the ground truth fix-
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Fig. 1 Anoverview of our proposed architecture - original DSCLRCN (white background, taken from [5]) andmodifications (light grey background,
our variant TeCS)

ation data, as could be the case in the data considered forUAV
anomaly detection, then the NSS is not defined. Therefore,
we are unable to use this loss function for training our model
while including images that contain no salient object in the
dataset. Another loss function commonly used in saliency
prediction is Pearson’s Correlation Coefficient (CC), which
was recommended for use for saliency prediction evaluation
by [19]. This function suffers from the same problem as the
NSS score, being undefined for images where the ground
truth has no salient objects, and thus is also unsuitable.

In order to solve this problem, we investigated several
other loss functions for training ourmodel. First, based on the
recommendationof [15]weused a compound loss functionof
theCross Entropy (CE) and theMeanAbsolute Error (MAE),
CE_MAE, of the predicted saliency compared to the ground
truth. By combining these two loss functions in this way,
[15] found that their model for video salient object detection
achieved better results as the compound loss function better
captured different factors contributing to the overall quality
of the results.

A second loss function we investigated was a modified
version of Normalized Scanpath Saliency. We noted that the
NSS loss function had been used to great success in recent
works, and is recommended for evaluating saliency predic-
tions by many surveys of common metrics such as the work
of [19] and [? ], which found that out of nine scores surveyed
NSS performed the most consistently with human evalua-
tions. For these reasons, we wished to apply the NSS loss
function to our task of anomaly detection inUAVvideo,while
still being able to include negative images in the dataset. Our
chosen approach for this was to use the NSS loss function

when possible, and apply a different loss function when the
NSS is not defined. Given a prediction x and ground truth y,
the resultant NSSalt loss function is computed as:

NSSalt (x, y) =
{

−
∑

(x̄◦y)∑
y

∑
y > 0

σ(x)
∑

y = 0
(1)

x̄ = x − μ(x)

σ (x)
(2)

where ◦ denotes element-wise product, x̄ is the saliency map
of x normalised to have amean of 0 and standard deviation of
1, μ denotes the mean of x , and σ denotes the standard devi-
ation of x . The rationale behind the design of this function is
that if there is no target salient object in the ground truth y,
then the model should output a predicted saliency map that is
monotonous and invariable across the image, as there are no
spatial locations in the image that are more salient than the
others. Although this loss function is likely imperfect, and
is not well balanced between the two cases as the ranges of
them are significantly different, this simple alteration allows
us to apply the NSS loss function to our UAV data.

We also considered another loss function which we cre-
ated, inspired by theNormalized Scanpath Saliency function.
We took the idea of NSS to measure the mean predicted
saliency value at target salient points, but rather than normal-
ising the saliency prediction to a mean of 0 and a standard
deviation of 1, we introduce a second term in the form of
the mean predicted saliency value at non-target points. This
loss function, which we name Difference of Means (DoM),
is computed as:
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DoM(x, y) = μ(xi , yi = 0) − μ(xi , yi > 0) (3)

where μ(xi , yi = 0) denotes the mean value of the set of
pixels in x where the corresponding location in y has a value
of 0. If no pixel in y has a value greater than 0, μ(xi , yi > 0)
is taken to be 0. The investigation of this loss function was
inspired by the observation that the dataset used in training
our model for anomaly detection in UAV video contained
a large number of frames with a single small target. This
meant that when trained with some loss functions such as
CE_MAE recommended by [15] the model was able to
achieve a very low error by outputting low saliency pre-
dictions throughout the image. This issue led us to want a
loss function where the task of predicting high saliency at
the salient object locations and the task of predicting low
saliency at non-salient locations were balanced, rather than
each pixel being treated as equal. Additionally, this loss func-
tion has an advantage in that it is applied equally to all images
and ground truths, unlike theNSSalt loss functionwhich uses
a piecewise function to handle ground truths with no salient
objects.

In order to speed up the learning process we use the Adam
optimiser [20]with a learning rate of 0.01, aβ1 of 0.9 and aβ2

of 0.999. When training our non-temporal model we instead
use SGD with a momentum of 0.9 and weight decay of
0.0005, as per in [5]. We also use a learning rate scheduler to
reduce the learning rate by a factor of 2.5 every epoch. Since
pre-trained weights are used for the local feature extractor
and the scene context extractor models we reduce the learn-
ing rates for these layers by a factor of 0.1 compared to the
rest of the model, allowing the weights to be fine-tuned for
our task and reducing the risk of decay in performance of
these parts of the model. Implementing the above modifi-
cations produces the non-temporal version of our proposed
TeCS model, NTeCS.

3.2 Temporal implementation

As the DSCLRCN model is designed for the task of visual
saliency prediction in images, it is not adapted to processing
videos. We therefore further augment the model to lever-
age the temporal consistency of the saliency in consecutive
frames of a video, producing our proposed TeCS model.
We do this by replacing the final convolution that reduces
the channel dimension to 1 for saliency prediction with a
convolutional LSTM (convLSTM) layer [16]. By using a
convLSTM layer, the saliency prediction at each spatial loca-
tion is computed as a function of the feature vector computed
by the previous layer in the model at that location and neigh-
bouring locations, as well as feature vectors from previous
frames at that location and neighbouring locations.

We apply a convLSTM layer with 3 × 3 kernel size and
256 input channels and a single output channel. As the output

is produced using the tanh() activation function, which has a
range of (−1, 1), the output values cannot be directly output
as saliency prediction values. Since tanh() is a rescaled Sig-
moid() function, we map the output of the convLSTM layer
ht to the range (0, 1) as pt = ht+1

2 . After deconvolution we
threshold the output to produce the saliency prediction p.

3.3 Dataset

There is currently no publicly available dataset designed for
the task of salient object detection in UAV video. Due to
this, we use the UAV123 dataset [6] to train, validate and test
our proposed model. Although this dataset is designed and
labelled for object tracking, not salient object detection, a sig-
nificant number of the sequences in it feature a single salient
object and thus the ground truth data function well as salient
object labels. We also considered a subset of this dataset
labelled for human visual attention named EyeTrackUAV,
created by [21]. However, the original labels serve better as
salient object labelswhichwe need for our task, and therefore
we do not use this dataset.

In order to improve the quality of the dataset for use for our
task we remove all ‘building’, ‘UAV’ and ‘bird’ sequences
due to their design and the extreme levels of noise present.We
also removed all sequences produced by simulation, leaving
a total of 70 sequences. We split the sequences into train-
ing, validation and testing sets with 35, 17 and 18 sequences,
respectively. We spread sequences with the same class of tar-
get object as evenly as possible between the sets. Due to the
large total number of frames in the dataset we only use the
first 300 frames of each sequence, resulting in ∼10000 total
frames in the training set and ∼5000 frames each in the val-
idation and testing sets. This was done to reduce the training
time of the model without further reducing the number of
different sequences considered.

4 Evaluation

We compare three distinctive model architectures:
DSCLRCN, the baseline, NTeCS, our proposed solution
without the temporal implementation, and TeCS, our full
proposed model. We report the results of each model using
several loss functions as performance metrics: our NSSalt
score, whichwas used to train the TeCSmodel, split into pos-
itive and negative images, Cross Entropy andMean Absolute
Error (CE_MAE) based on the recommendation of [15], and
our DoM score, which was used to train the NTeCS model.
All models were tested using a GeForce RTX 2080 Ti GPU,
and run at a processing speed of 2.2 FPS without any paral-
lel processing. The NTeCSmodel was trained using the SGD
optimiser while Adam was used for the TeCS model. Each
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Table 1 Performance of models
on our UAV123 [6] test set

Architecture ↑ NSSalt(+) ↓ NSSalt(−) ↓CE_MAE ↓DoM
DSCLRCN 3.552 0.091 0.286 −0.398

NTeCS 3.315 0.163 0.220 −0.571

TeCS 8.851 0.023 0.144 −0.251

Fig. 2 Performance of models on the ’person9’ sequence from UAV123 [6], used in our test set. Shown are three consecutive frames near the start
of the sequence. Note: the ground truths have been modified for qualitative evaluation (see above discussion of the UAV123 dataset)

Fig. 3 Performance of baseline and proposed models on a sparse sequence. Sequence extracted from youtube.com/watch?v=V4YhIFm2no8
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modelwas trained for 10 epochs,with validation experiments
after each epoch.

An overview of the performance of the different models
on the test set we created of UAV123 sequences is shown
in Table 1. In this table the NSSalt metric is reported sepa-
rately for images containing some salient pixels and images
containing none, indicated by (+) and (–), respectively. Addi-
tionally, for each metric the arrow indicates whether a higher
or lower score is better, and the best score for each is shown
in bold. These results clearly show that our proposed model
achieves improved performance when compared to the base-
line DSCLRCN model. While the non-temporal NTeCS is
narrowly beaten by the DSCLRCN model in NSSalt, it
achieves better CE_MAE and DoM scores. The temporal
TeCS model achieves significantly better performance than
both of these models with respect to nearly all metrics. This
quantitative result is further supported by qualitative analy-
sis.

Figure 2 presents a qualitative comparison of the three
models on a sequence from the UAV123 dataset. The tem-
poral model outperforms both the other models, in terms of
accuracy as well as consistency. The baseline model suffers
from overdetection, erroneously detecting a salient object in
the left half of the image in all three frames. Thenon-temporal
model performs better than the baseline, correctly detecting
both salient objects in all frames, but produces temporally
inconsistent output. Both the size and the confidence of the
leftmost detection varies from frame to frame, and the first
and third frame have gaps within the saliency prediction of
the left object. This suggests that the inclusion of temporal
reasoning improves both the accuracy and consistency of the
saliency prediction of the TeCS model. As the determination
of saliency in a frame is based on both features in the current
frame and features from past frames, any small variation in
the appearance of an object that may occur frame-to-frame
will produce a smaller change in the prediction, leading to
more consistent output.

Figure 3 shows another qualitative comparison of the three
models on a typical UAV video. The shown frames are 20
frames apart and are taken from late in the video, ∼1000
frames in, with nearly all previous frames containing no
salient objects. As in the previous example, the baseline
DSCLRCN performs worse than the two TeCS models. This
model produces extreme erroneous detections in the first and
third frame where no salient object is present or is very small
near the edge of the image, the reasons for which were dis-
cussed previously. The non-temporal TeCS model correctly
detects no salient object in the first frame, and although it fails
to detect the object in the third frame, unlike the baseline it
does not produce any incorrect detections. However, in the
second frame it performsworse than the baselinemodel, only
producing a small detection near the people in the image. The
temporalmodel performs equally in the first and third frames,

but performs significantly better than theNTeCSmodel in the
second. Despite the sudden appearance of salient objects in
the sequence after a long period without any the temporal
model correctly detects the salient objects, and produces no
erroneous detection once the objects leave the frame.

5 Conclusion

In this work we present novel additions to the baseline
DSCLRCN architecture proposed by [5], and explore the
use of temporal vs. non-temporal reasoning in the form of
a convLSTM layer. We present quantitative results on the
UAV123 dataset [6], and qualitative results on two exemplary
UAV video sequences. Our proposed TeCS model signifi-
cantly outperforms the baseline DSCLRCN model.

The inclusion of temporal reasoning drastically improves
the performance of the TeCS model, both in terms of accu-
racy, evidenced by the quantitative results, and in terms of
temporal consistency, showcased in the qualitative exam-
ples. Both the quantitative and qualitative results demonstrate
the importance of temporal reasoning for the task of salient
object detection in UAV video, and this is likely to be a vital
area to consider for future work on this topic.
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