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Abstract
The growing advocacy of thermal imagery in applications, such as autonomous vehicles, surveillance, and COVID-19 detec-
tion, necessitates accurate object detection frameworks for the thermal domain. Conventional methods could fall short,
especially in situations with poor lighting, for instance, detection during night-time. In this paper, we propose a paced multi-
stage block-wise framework for effectively detecting objects from thermal images. Our approach utilizes the pre-existing
knowledge of deep neural network-based object detectors trained on large-scale natural image data to enhance performance in
the thermal domain constructively. The employed, multi-stage approach drives our model to achieve higher accuracies. And
the introduction of the pace parameter during domain adaption enables efficient training. Our experimental results demonstrate
that the framework outperforms previous benchmarks on the FLIR ADAS dataset on the person, bicycle, and car categories.
We have also illustrated further analysis of the framework, such as the effect of its components on accuracy and training
efficiency, its generalizability to other thermal datasets, and its superior performance on night-time images in contrast to
state-of-the-art RGB object detectors.

Keywords Object detection · Thermal images · Pace · Multi-stage · Domain adaptation · Transfer learning · EfficientDet

1 Introduction

With the increasing popularity of artificial intelligence and
machine learning in recent years, more techniques are being
developed for object detection. However, the majority of
interest has been focused on object detection in the visible
spectrum [2] for applications such as surveillance and self-
driving vehicles. Although very effective with the current
state-of-the-art technologies, its limitations arise in situa-
tions like difficult lighting conditions, camouflaging colours,
and environmental occlusions. Attention has turned towards
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thermal imaging with the infrared (IR) spectrum to solve the
problems in the RGB images, and thus, the thermal sensors
are seeing an industry boom [19]. Another vital advantage
that thermal imaging has over RGB format is the added prop-
erty of privacy protection. People captured in the visible
spectrum are readily identifiable, which is not the case in
thermal images [25].

The recent COVID-19 pandemic may cause the global
thermal sensing market to reach 6.7 billion dollars within
the next four years, according to [18]. This increase in ther-
mal cameras also increases the importance of a robust object
detection methodology on thermal images, especially when
considering the vital class of objects in pedestrian detection
applications, such as persons, cars, and bicycles. The need
for both an accurate and efficient framework for training such
models is a challenging task since the pursuit for increased
accuracy often leads to decreased efficiency and vice versa.
We aimed to create a framework that learns object detec-
tion in IR images as efficiently as possible while attaining
increased accuracy.

Another challenging aspect of object detection in thermal
images is the limited number of object detection algorithms
in the IR domain compared to its RGB counterparts. This
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might be due to factors such as a limited number of datasets
and the markedly smaller size of these datasets compared to
their RGB counterparts [5,7,10,13,14,16]. For example, the
popular RGB dataset, Common Objects in Context (COCO)
[29] contains over 200,000 labelled images, while the FLIR
system’sAdvancedDriverAssistance Systems dataset (FLIR
ADAS) [20] consists of 10,000 labelled thermal images only.
We address this challenge by utilizing state-of-the-art detec-
tors with rich visible information and applying it to the IR
domain. Some researchers have worked with multi-spectral
datasets [23], wherein the detectors make use of aligned
RGB-thermal pairs and can benefit from the advantages of
both domains. However, this may not always be practical
since applications like self-driving cars, surveillance, etc., do
not have access to cameras that capture the required synchro-
nized multi-modal inputs. Thus, focusing only on thermal
imagery reduces the computational burden, and it facilitates
the usage of our method more suitable for daily applica-
tion.

Specific aspects of thermal images in object detection
have been largely unexplored, such as the generalizability
of models to other thermal datasets, as well as a quantifi-
able approach to the effect that occlusion has on thermal
object detection. We have addressed these challenges also in
our work. In this paper, we propose a novel framework for
object detection in thermal images, namely the paced multi-
stage block-wise framework, for object detection on thermal
images. We have introduced the usage of multiple stages
of training to accurately adapt a state-of-the-art detector to
the thermal domain while also leveraging information from
the visible domain. We have also introduced the concept of
pace in the block-wise domain adaptation, which improves
efficiency without a significant accuracy drop. Using this,
to the best of our knowledge, we report the highest accu-
racy on the FLIR ADAS dataset on the classes of persons,
cars, and bicycles for any existing thermal object detection
framework. Also, we have demonstrated several inferences,
such as how the detector retained information in the visi-
ble domain while adapting to the thermal, the framework’s
efficacy when dealing with night-time images, the effective-
ness on other thermal datasets, and the performance of our
detector when objects are occluded.

2 Related works

Researches have come up with solutions that bridge the gap
between thermal and RGB detectors, which can be catego-
rized into two types, those that usemultispectral imagery and
those that use solely thermal imagery.

2.1 Multispectral pedestrian detection

Several works such as [37,39,45,46] rely on visual images
for detection; [37] proposed a novel backbone architecture
for pedestrian detection based on the human visual system
that can be applied to most of the existing architectures.
In many cases combining RGB and thermal images has
improved the accuracy of object detectors. For example,
improved detection in difficult lighting conditions with a
cross-modality learning comprised of a region reconstruction
network (RRN) and multi-scale detection network (MDN)
was used in [44]. [42] devised a fusion network of RGB
and thermal image pairs and explored two different types of
networks, early fusion, and late fusion. Illumination-aware
faster R-CNN (IAF RCNN) [27] used FRCNN to perform
multi-spectral pedestrian detection by leveraging a two-stage
network to combine RBG and thermal image features. [28]
also proposed the use of a fusion network by combining
results from a multi-spectral proposal network (MPN) and
a multi-spectral classification network (MCN) to perform
pedestrian detection. A region feature alignment module
along with weighted feature fusion was proposed by [48].

Pseudo-multi-modal thermal object detector (MMTOD)
[12] consists of parallel ResNet branches for thermal and
RGB images, respectively. These branches capture the fea-
tures connecting the two spectra before being passed through
a Faster-RCNN [36]. It performs inference on only thermal
images as it does image-to-image translation and creates a
pseudo-RGB image using CycleGAN [51], which acts as a
second input.

Though the above detectors leverage the power of two-
stage networks, they are preferred when learning features
of the thermal and RGB inputs fall short in speed. These
detectors have a high inference time because of their com-
plex frameworks. A popularly used solution to speed up the
inference time is to use a single-stage framework. For exam-
ple, two single-shot detectors (SSDs) were adopted by [50]
to fuse RGB and thermal features with gated fusion units
(GFU).

Manyworks also use RGB-Depth images for object detec-
tion or pose estimation. In [39], transfer learning on a
pre-trained deep CNN is utilized to provide a rich feature
set, and it incorporates a depth channel according to distance
from the object centre. In [45], a multistream input of flow,
RGB, anddepth combinedwith the contextual region of inter-
est pooling layers that deal with contextual information for
joint human detection and head pose estimation, is proposed.
Utilization of 3D physical structure and colour information
along with a multi-channel colour shape descriptor proposed
in [46] works as a physical blob detector to detect humans.
Occlusion is another factor that affects the performance in
the realm of multi-object tracking, as observed in [49].
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2.2 Pedestrian detection in thermal imagery

Initial attempts such as [24] use an adaptive fuzzy C-means
clustering for segmentation and retrieval of candidate pedes-
trians, which were then classified with the CNNs. The
resultant architecture was computationally less complex as
compared to the sliding window framework. The work in
[1] uses thermal position intensity histogram of oriented gra-
dients (TPIHOG) and additive kernel SVM (AKSVM) for
night-time only detection. The authors in [17] use a pixel-
wise contextual attention network (PiCA-Net [30]) orR3-Net
[11] to create saliency maps. Then, faster R-CNN [36] is
trained for pedestrian detection using the original thermal
image, replacing the last channel with the generated saliency
map.

A few approaches leverage RGB images as a data aug-
mentation by performing thermal to RGB image translation.
For instance, several data pre-processing steps were applied
by [22] to make thermal images look more similar to
greyscale-convertedRGB images, then a fine-tuning stepwas
performed on a pre-trained SSD300 [31] detector. The com-
mon drawbacks of most of the methods mentioned above are
the use of many complex pre-processing steps or handcrafted
features, negatively impacting performance.

In [6], as thermal images contain lesser information as
compared to RGB images ( colour, texture), the paper
attempts to capture as much information from the ResNet
backbone as possible using a dual-pass fusion block (DFB)
and a channel-wise enhance module (CEM) to retrieve infor-
mation from every layer, combining each of the features with
varying weightage.

More recently, the authors of [8] prioritized efficiency
using aVGGnetwork andmade robustwith a residual branch,
which was used only during training thereby retaining the
inference time performance. It was also improved using their
proposed continuous fusion strategy. In [47], a dilation and
deconvolution single-shot multibox detector (DDSSD) that
improves SSD with feature fusion using dilation convolu-
tion and deconvolution modules for better performance on
smaller objects was proposed.

Domain adaptation [26], a form of transfer learning,
attempts to use the learned knowledge from the source
domain on the new target domain. Early works of domain
adaptation used feature transformations (inversion, equaliza-
tion, and histogram stretching) to convert the thermal images
to as close as RGB images. Another approach [21] used
a shallow CNN before the main model that transforms the
input image to the target. The authors of [26] later tried
a top-down domain adaptation approach [25] where pre-
trained weights from the RGB spectrum were retrained for
the thermal spectrum using top-down loss. Another approach
to domain adaptation was explored in [34], where the style of
an RGB image was applied to a thermal image to transfer the

low-level features of RGB images to thermal images, while
still maintaining the high-level features. This was carried out
by a multi-style generative network (MS-GNet) which draws
inspiration from GANs such as CycleGAN. The resultant
image is fed into a cross-domain detection model which is
a pre-trained RGB detector, fine-tuned on the outputs of the
MS-GNet.

The layer-wise domain adaptation builds on [26] slowing
down the training procedure to retain more knowledge from
the original RGB domain. The approach also trains using a
bottom-up approach rather than top-down loss to train the
network. This is done by progressively training the network
one layer at a time from the bottom to the top.

The rest of this paper is organized as follows: Sect. 3
describes our approach to create the proposed object detec-
tion framework and its finer details. Section 4 describes the
datasets used, evaluation metrics, baseline, set-up, and the
experimental results. We summarize our contribution and
discuss further research plans in Sect. 5.

3 Proposedmethodology

Our objective was to improve over the industry-standard
architectures used in thermal object detection by implement-
ing a combination of transfer learning and domain adaptation
with the help of state-of-the-art research on RGB object
detection in the form of EfficientDet [41]. In this section, we
discuss the motivation behind choosing the base architecture
and the process of multi-stage domain adaptation.

3.1 Choice of base architecture

The first motive for selecting EfficientDet is its ability to
support compound scaling as it provides a range of con-
figurations by varying resolution, depth, and width of the
architecture. This aids in finding the suitable architecture
needed for our motive to transfer knowledge accurately and
efficiently from the RGB to thermal spectrum for object
detection.

The second criterion that EfficientDet satisfies is the abil-
ity of the model to borrow features from the rich visible
spectrum [12]. An accurate object detectionmodel trained on
a substantial RGBobject detection dataset is needed to obtain
this information. EfficientDet (D7x configuration) obtained
a new state-of-the-art average precision (AP) of 55.1 on the
large-scale RGB object detection dataset, MS-COCO [29].
Further, EfficientNet [40], the backbone of EfficientDet, is
pre-trained on the ImageNet [10] dataset, providing further
insight and information into features in the visible domain.

Third, the modularity of the architecture can efficiently
adapt information from the RGB to the thermal domain. Effi-
cientDet comprises fourmodular components: the backbone,
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Fig. 1 A simplified diagram of the EfficientDet architecture, highlight-
ing the modules used to construct it, i.e. the EfficientNet backbone, the
weighted bidirectional feature pyramid network (BiFPN), the classifier,

and the regressor. In our case, a thermal image is given as input to pro-
duce appropriate output detections, i.e. bounding boxes around detected
objects and the corresponding class label for each object

bidirectional feature pyramid network (BiFPN), regressor,
and classifier, as shown in Fig. 1. Further, the Efficient-
Net backbone comprises a multitude of mobile inverted
bottleneck blocks (MBConv) [38] which makes the design
within the backbone modular. We utilized these features dur-
ing block-wise and multi-stage training in our framework,
described in Sect. 3.2.

Model efficiency is the last criterion for choosing an archi-
tecture. Among the various configurations, EfficientDet-D0
achieves accuracy similar to YOLOv3 [35] with 28x fewer
FLOPs. Similarly, even the largest and most accurate con-
figuration EfficientDet-D7x uses 7x lesser number of FLOPs
than the prior state-of-the-art methods. With all these con-
sidered, we further endeavour to improve training efficiency
with the pace parameter used in our framework, described in
Sect. 3.2.1. In the next section, we describe the features of
the proposed paced multi-staged block-wise approach.

3.2 Multi-stage domain adaptation

The principal component of the proposed framework is
the multi-stage domain adaptation approach that transfers
knowledge from the RGB to the thermal domain. The base
architecture, EfficientDet [41], comes with different compo-
nents, each serving a specific purpose. The EfficientNet [40]
backbone generates features which are fed into the BiFPN
to perform fast, multi-scale feature fusion followed by the
bounding box and class prediction networks. We hypothe-
sized that training specific components of the architecture in
multiple stages could successfully adapt the entire network
for the thermal spectrum and give accurate results. The initial
state of the EfficientDet model loaded with information-rich
pre-trained weights from the RGB domain is used rather
than training the network from scratch. Thus, the model,
when trained with the multi-staged approach, adds informa-
tion to the features it has already learned from the COCO
dataset [29]. Conversely, replacing the said features would

be detrimental to the model’s performance since these fea-
tures contain a large amount of helpful information for
object detection. In the proposed design, we carried out the
multi-stage procedure in three stages: block-wise backbone
training, first round fine-tuning, and second round fine-
tuning. We have detailed them in the following sections. To
better elucidate the framework, we first introduce and explain
some notations.

Notations Let E denote the entire EfficientDet network used
in this approach, and let x refer to the input image such that
x ε X , where X represents the thermal domain, i.e. images in
the thermal dataset. As explained in [41], there are different
configurations of the EfficientDet model, and we have rep-
resented it by a compound coefficient denoted by φ. In this
paper, we use four configurations of EfficientDet; in other
words, the values of φ we use are D0, D1, D2, and D3.
Let the network with configuration φ working on an input
image x be denoted by Eφ(x). The network consists of four
different modules denoted as follows: the backbone, Γ , the
BiFPN, β, the classifier, C , and the regressor, R. Thus, the
entire network with default settings of its modules is denoted
as Eφ(Γ , β, C , R). When a particular module is frozen, the
weights for all parameters in all the layers in that module are
not learnable, and we denote such modules with a bar. For
instance, if the entire BiFPN is frozen, then it is denoted by
β̄. Since the backbone, Γ , is comprised of several MBConv
blocks [38], let ψ signify this number. If the first n blocks in
the backbone are unfrozen, while the remaining are frozen,
then let this setting of the backbone be denoted by, Γ̄n:ψ . The
pace parameter, explained in the next section, is denoted by
P .

3.2.1 Block-wise backbone training

As stated earlier, the chosen backbone architecture, Effi-
cientNet, acts as a feature extractor and incorporates several
MBConv blocks. Though this backbone can have varying
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Table 1 Compound coefficients
D0–D3 and their corresponding
number of blocks in the
backbone

Sl. No. φ ψ

1 D0 16

2 D1 23

3 D2 23

4 D3 26

depths, widths, and resolutions based on the compound scal-
ing method, for the first stage of training, we focus on
the depth of the backbone, as this controls the number of
MBConv blocks used in the architecture. Each block can be
assigned a number from0 toψ−1 in a sequentialmanner. The
value ofψ is dependent on the configuration of EfficientDet,
which is decided by the compound coefficientφ. Based on the
original implementation of EfficientDet, we have assigned
the values of ψ and φ as shown in Table 1. Note that we
only include the values of ψ for those configurations used
in our experiments. After determining the number of blocks
used in the backbone, it becomes necessary to adapt their
weights to the thermal domain methodically. The authors of
[25] demonstrated that a bottom-up adaptation of the net-
work could provide accurate results. We integrate a similar
approach to training the backbone of the network, specializ-
ing it for the architecture of EfficientNet. Initially from the
network Eφ(Γ , β, C , R), we set the network to Eφ(Γ̄ , β,
C , R) by freezing all the parameters of every block from 0
to ψ − 1 in the backbone. Following this, we unfreeze one
block at a time, i.e. unfreezing one block per epoch till all
the blocks have unfrozen. Therefore, for any epoch e (e < ψ

), the network would be Eφ(Γ̄e:ψ , β, C , R). This gradual,
sequential unfreezing of layers ensures that the backbone

has successfully adapted to the thermal domain with satis-
factory accuracy. Figure 2 portrays the block-wise backbone
training.

PaceThe training timeof the traditional block-wise backbone
training increases in proportion to the values ofφ as the size of
the architecture increases.We have introduced a paced block-
wise backbone training to reduce the training time without
drastically affecting the detection accuracy by adding a pace
parameter (P). This parameter (P) takes an integer value and
works as follows: starting with the network Eφ(Γ̄ , β, C , R),
we unfreeze P layers at a time rather than just one. Therefore,
for any epoch e (e < ψ ), the network would be

Eφ(Γ̄x :ψ, β,C, R), where

x =
{
e ∗ P if e ∗ P ≤ ψ,

ψ if e ∗ P > ψ

(1)

The pace process, visualized in Fig. 3, speeds up the
training process, making the framework more efficient. The

number of epochs required for this stage of training is
⌈

ψ
P

⌉
when compared to ψ using the traditional approach. Here,
the number of epochs decreases for a given compound coef-
ficient as the pace parameter increases. However, we expect
that, even intuitively, after a certain level, the pace might
become too quick for the model to transfer to the thermal
domain accurately. Hence, to achieve efficient training and
accurate results, a moderate value for the pace parameter is
required, which is demonstrated in Sect. 4.6.1.

After this initial stage of adapting the backbone to the
target domain, the results can be further improved with the
use of the following two stages.

Fig. 2 An overview of block-wise backbone training: a exhibits a sim-
plified version of the initial setting of the framework with all blocks
frozen (gray), b displays the first epoch when the first block is unfrozen

(green) and c represents the final epoch of the first stage where all the
blocks have become unfrozen, after ψ epochs
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Fig. 3 An overview of block-wise backbone training with the use of
the pace parameter to make the training process efficient: a a simplified
version of the initial setting of the framework with all blocks frozen
(gray), b displays the first epoch when the first P blocks are unfrozen

(green), with each subsequent epoch unfreezing P more blocks and c
represents the final epoch of the first stage where all the blocks have

become unfrozen, after
⌈

ψ
P

⌉
epochs

3.2.2 First round fine-tuning

During the first stage, we have trained only the layers of the
EfficientNet Backbone, and hence it becomes necessary to
train the remaining components of the detector using fine-

tuning. The backbone, having been trained for
⌈

ψ
P

⌉
epochs,

can also be trained further in this stage. Thus, the purpose
of this additional stage of training is to focus on fine-tuning
the entire network, which allows all the parameters in the
network to further adapt to the new domain, thereby improv-
ing the framework’s accuracy. A fixed network parameter
setting, Eφ(Γ , β, C , R), is used for the training procedure
in this stage; the backbone, BiFPN, classifier, and regres-
sor are unfrozen. Training continues until there is no further
improvement in the network.

3.2.3 Second round fine-tuning

The final stage of our multi-staged approach has a similar
purpose as the previous stage, but the target modules are only
the classifier and regressor, i.e. only the head of the detector.
We observed that training the model for a number of epochs
with the network set to the configuration of Eφ(Γ̄ , β̄, C ,
R), consistently results in a small boost in performance over
the first round of fine-tuning and allows the detector to be
as accurate as possible. Performing this round of fine-tuning
is also computationally inexpensive as the training is done
only on the classifier and regressor, thus serving the purpose
of efficiently attaining even higher accuracy, enough to obtain
a new state of the art. The number of epochs needed for this
round is usually very less before saturation. We cease at this

stage of training once the reported accuracies have saturated,
which we observed to have more visible outcomes for larger
values of φ.

The entire training procedure is summarized in Algorithm
1. It was evident that increasing the value of φ would also
improve accuracies, as shown in [41]. However, the effect of
increasing φ appears to be more significant, especially when
dealing with small objects. This detail is discussed further in
Sect. 4.5.

4 Experimental results and discussion

4.1 Datasets

FLIR starter thermal dataset The dataset used for train-
ing was the FLIR starter thermal dataset [20]. This dataset
contains 10,288 thermal images captured on a FLIR Tau2
camera, with a collection of RGB images thatmay ormay not
have a pair with a thermal counterpart. For our approach, we
solely utilized the thermal images in the dataset for training
and testing. The dataset consists of 8862 images for training
and 1366 images for testing. The annotations of the dataset
followed the COCODataset [29] format, and only the classes
of person, bicycle, car, and dog were used during the annota-
tion. However, following the precedence of the baseline and
previous research, we train and test on only the three main
categories, i.e. person, bicycle, and car. Although the dataset
contains RGB images, it does not have any annotations. The
annotations corresponding to the thermal counterpart may
be inaccurate and misaligned for the RGB images. The final
dataset comprises 67,618 annotations (22,372 for person,
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Fig. 4 Examples of the FLIR ADAS dataset

3986 for bicycle, 41,260 for car) in the training set and 11,682
annotations (5779 for person, 471 for bicycle, 5432 for car)
in the test set. Each image resolution is 640 × 512. Some
sample images can be seen in Fig. 4.

Other datasets

(a) We utilize the thermal images of databases present in
the OTCBVS benchmark dataset collection, including
the OSU thermal pedestrian database [9], the terravic
motion IR database [33], and the BU-TIV (Thermal
Infrared Video) benchmark [43]. Thermal cameras
such as the Raytheon PalmIR 250D and Raytheon L-
3 Thermal-Eye 2000AS were used to capture these
datasets. These cameras differ from the FLIR Tau2
images on which we have trained the models. We con-
sider only the person category, as these datasets are
specialized for pedestrians/people.

(b) The hiding subset of the LTIR dataset [3] contains 358
images of a single annotated instance of the person
category. We sectioned the dataset into two based on
occlusion: no occlusion, which consists of 213 images,
without any obstruction in front of the person, and full
or partial occlusion, which consists of 145 images with
some object. We used this dataset to test the model’s
performance when detecting occluded objects or sub-
jects in an image.

4.2 Evaluationmetrics

We use the evaluation metric of mean average preci-
sion (mAP) for all experiments using the paced multi-
staged block-wise framework for object detection in thermal
images. The process of calculating this metric begins with
calculating Precision and Recall as follows:

Precision = TP

TP + FP
(2)

Recall = TP

TP + FN
(3)

where TP denotes the number of accurately detected bound-
ing boxes for a given Intersection of Union (IoU). IoU is
the ratio of the area of overlap to the union between the
ground truth and prediction. FP denotes the number of incor-
rect detections, while FN denotes the number of ground
truth detections that were missed during prediction. To com-
pare with other state-of-the-art methodologies, we follow the
COCO 101 point metric of determining AP (average preci-
sion), i.e.:

AP = 1

101

∑
xεMP

(x) (4)

where MP denotes the maximum precision in the recall area
(for COCO, it is 0 to 1 in steps of 0.01). Asmentioned earlier,
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Algorithm 1: Paced Multi-Stage Block-Wise Frame-
work Training Procedure
Input : Training data: {xi }ni=1 ε X ; pretrained initial

EfficientDet network: Eφ(Γ , β, C , R), where
φ ε {D0, D1, D2, D3}; pace parameter: P; number of
blocks in backbone: ψ ; number of epochs for each stage:

e1, e2, e3 where e1 =
⌈

ψ
P

⌉
Output: Trained thermal object detection network
Set network to Eφ(Γ̄ , β, C , R).
Stage 1: Block-Wise Backbone Training
for e1 do

Let e be the current epoch.
for xi , i = 1, · · · , n do

if e ∗ P ≤ ψ then
train the network Eφ(Γ̄e∗P:ψ , β, C , R) for image xi .

else
train the network Eφ(Γ , β, C , R) for image xi .

end
end

end
Stage 2: First Round Fine-Tuning
for e2 do

for xi , i = 1, · · · , n do
train the network Eφ(Γ , β, C , R) for image xi

end
end
Stage 3: Second Round Fine-Tuning
for e3 do

for xi , i = 1, · · · , n do
train the network Eφ(Γ̄ , β̄, C , R) for image xi

end
end

for evaluation purposes, we use three main classes of the
FLIR ADAS dataset: person, bicycle, and car. Let us denote
this set of classes as C . We calculate the AP values for these
classes, and the following averaging equation gives the final
mAP value:

mAP =
∑

cεC APc
|C | (5)

where in this case |C | = 3.
We have used the official pycocotools package (https://

pypi.org/project/pycocotools/) for the source code. The IoU
is fixed at 0.5, similar to state-of-the-art models. We also
calculate the mAP for different object sizes: small, medium,
and large, denoted by APS , APM , and APL , respectively.
Small objects have an area less than 322, medium objects
between 322 and 962 and large objects greater than 962.

4.3 Baseline

A baseline accuracy was established from the FLIR ADAS
dataset [20], with anmAP of 54.0% at IoU of 0.5. Further, we
compare the performance of our framework with the state-
of-the-art models, primarily those who have dealt with the

FLIR ADAS dataset, to show that our approach is not only
competitive with prior work but also provides the highest
overall mAP values. As a point of reference, the prior state-
of-the-art method [6] achieved an mAP of 74.6%.

4.4 Experimental setup

We have conducted all the experiments using PyTorch
implementation of EfficientDet, and we have made the
training code available at https://github.com/shreyas-bk/
PMBW_Object_Detection_In_Thermal_Images. The Effi-
cientDet series comes with pre-trainedweights on the COCO
dataset, which serves as the starting point for all training
instances. The maximum coefficient used in our experiments
is D3, for two reasons: we found no significant increase
in performance between coefficients D2 and D3, and the
computational power increases for higher network configu-
ration. We apply only the first two stages of our framework
whenworkingwith coefficients D0 and D1 and the complete
framework for coefficients D2 and D3. The pace parameter
is varied primarily when using coefficient D1 to determine
which pace is the most optimal, as shown in Table 4. Before
feeding the thermal images into the network, we normalize
themwith the calculatedmean and standard deviation of 0.53
and 0.19, respectively (assuming image pixel intensities are
in the range [0, 1]). The optimizers we have used vary for the
different stages of training: we use the AdamW optimizer
[32] (a variant of the Adam optimizer that uses decoupled
weight decay regularization) for the block-wise backbone
training for both the first and second round of fine-tuning we
select the stochastic gradient descent (SGD) optimizer with
a Nesterov momentum of 0.9. A vital factor in our setup was
the learning rate. When training is in the first stage, we used
an exponential decay of learning rate, as we found it pro-
vided better performance without affecting the efficiency.
The γ parameter (multiplicative factor of the learning rate
for every epoch) was set to 0.75 for the given decay, with a
base learning rate of 0.001. Also, this exponentially decaying
learning rate was applied to coefficients D2 and D3 during
the first round of fine-tuning. For all other training stages, we
have used a fixed learning rate of 0.001.

4.5 Results

4.5.1 Systematic results for the coefficients

This section systematically describes how each coefficient
from D0–D3 was trained and tested. Here, in order to
represent a completely trained system of our proposed
paced multi-stage block-wise framework, we denote it with
PMBW(φ, P), where φ is the compound coefficient and P
is the pace parameter used in the block-wise backbone stage
of training. More precisely, the term PMBW entails all train-
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Table 2 Results with φ = D0

Framework APS APM APL mAP

PMBW(D0, 1) 29.0 81.2 81.6 55.6

Table 3 EfficientDet results for
different sizes on the COCO
dataset

φ APS APM APL mAP

D0 12.0 38.3 51.2 33.8

D1 17.9 44.3 56.0 39.6

D2 22.5 47.0 58.4 43.0

D3 26.6 49.4 59.8 45.8

Table 4 Results with φ = D1

Framework APS APM APL mAP

PMBW(D1, 1) 43.6 86.3 85.2 67.7

PMBW(D1, 2) 43.8 85.0 85.2 67.4

PMBW(D1, 3) 42.7 85.3 86.0 67.2

PMBW(D1, 4) 35.3 78.1 74.8 58.6

ing stages of themulti-stage approach detailed earlier with its
various settings of the base network Eφ(Γ ,β,C , R). All three
stages are assumed to have been performed unless specified
otherwise.

Compound coefficient φ = D0 The framework used for
this coefficient was PMBW(D0, 1), with only the initial two
stages of training. The results for this setting are tabulated in
Table 2. Notably, the mAP value, 55.6%, exceeded the base-
line using only the first coefficient.We can easily observe that
the performance of this setting on small objects is nearly 50%
off the mAP values for medium and large objects. With this
observation, we can discuss the base object detector’s capa-
bilities when detecting objects of varied sizes. From Table 3
taken from [4] we can see that the AP values are proportional
to the coefficient value. However, it is also important to note
that the values of APS increase quicker than the values of
APM and APL ; for example, the increase in APS from D0 to
D3 is 14.6%, which is a substantially larger increase when
compared to the 8.6% increase of APL . Since the APS val-
ues of our framework are poor for this coefficient, we shifted
our attention majorly to φ = 1 and beyond. The values for
APM and APL are already comparatively high and are not
the primary area that needs to be enhanced, though there is
room for improvement. Further, the mAP is still nearly 20%
off the state of the art, giving us another reason to focus our
efforts on higher compound coefficients.

Compound coefficient φ = D1 Starting with φ = 1 we imple-
mented different values for the pace parameter of the block-
wise backbone training with the networks PMBW(D1, 1),
PMBW(D1, 2), PMBW(D1, 3), and PMBW(D1, 4). All

implementations used just the first two stages. The results
for this setting can be seen in Table 4. Among the dif-
ferent pace variations, the trained network PMBW(D1, 1)
obtained the greatest performance with an mAP of 67.7%.
However, as we had hypothesized, there was a marginal dif-
ference compared to the other pace settings. For example,
using a larger pace parameter resulted in similar mAP values
for PMBW(D1, 2) and PMBW(D1, 3). Both had a marginal
drop in performance of 0.3% and 0.5%, respectively, from
PMBW(D1, 1). As delineated in the methodology, the train-
ing time for these two settings was markedly lower than
PMBW(D1, 1). Hence, the training efficiency (explained
in Eq. 6) improved without drastically hampering the per-
formance. As predicted earlier, improvement in efficiency
without a significant loss in accuracy is observed when we
increased the pace parameter further, which is apparent from
the results for PMBW(D1, 4), where the mAP values were
nearly 9% off PMBW(D1, 1). Thus, we can find an optimal
value of the pace parameter, providing increased efficiency
with competitive accuracy. From the results, it is evident that
there was a considerable boost of 13.3% in overall mAP
compared to φ = D0. However, the highest mAP value
obtained was still 5% off of the state of the art. Also, the
performance on small objects was poor, i.e. 40% away from
medium and large objects. We also experimented with the
effect of block-wise backbone training compared to training
without block-wise domain adaptation. The network setting
of ED1(Γ , β,C, R), when trained for the same number of
epochs as the block-wise backbone stage of PMBW(D1, 1),
resulted in a maximum mAP of only 60%.

Compound coefficient φ = D2 Following the idea from
φ = D1, that implementing pace could improve training
efficiencywithout reducing performance, we directly applied
a pace of 2 and 3 for φ = D2, i.e. the networks used were
PMBW(D2, 2) and PMBW(D2, 3). The results can be found
in Table 5. The first stage was carried out normally, using the
specified pace, while for the second stage, we observed an
average increase of 1% in mAP using the exponential decay
of learning rate. The network PMBW(D2, 3) gave the high-
est mAP of 75.6% after the second stage. Following this, we
applied the final stage of the second round of fine-tuning for
both configurations. From the results, we can verify that an
increase of 0.5% and 1.6%were achieved for PMBW(D2, 2)
and PMBW(D2, 3), respectively. Notably, PMBW(D2, 3)
reached an mAP value of 77.2%, thereby improving upon
the state of the art. In this case, the gap between mAP values
for small objects and medium and large objects reduced to
25%.

Compound coefficient φ = D3 For this final coefficient,
using the knowledge we had gained from the previous exper-
iments, we took the single configuration of PMBW(D3, 3)
with all three stages. The results given in Table 6 show that
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Table 5 Results with φ = D2 Framework After second stage After third stage APS APM APL

PMBW(D2, 2) 73.4 73.9 58.8 85.3 84.8

PMBW(D2, 3) 75.6 77.2 61.4 88.7 87.6

Table 6 Results with φ = D3

Framework APS APM APL mAP

PMBW(D3, 3) 64.6 86.7 82.1 77.3

the final value procured only slightly exceeds that ofφ = D2,
but it is the highest mAP value obtained in all the configura-
tions of our framework and a new state-of-the-art on the FLIR
ADAS dataset. Examples of detections using PMBW(D3, 3)
can be found in Fig. 5.

4.5.2 Final results and discussion

Table 7 shows the highest mAP value and paced multi-
stage block-wise setting for each value of φ. To the best
of our knowledge, the proposed PMBW(D3, 3) frame-
work achieves the highest overall mAP, among existing
thermal object detectors, for the FLIR ADAS dataset.
PMBW(D3, 3) yields the highest mAP for person and
car, whereas PMBW(D2, 3) for the bicycle class. Table 8
demonstrates this by comparing with other methodologies
[6,12,15,25,34]. We consider the mAP for only the person,
bicycle, and car categories from [15], which is simply the
mean of the reported AP’s.

Our new state-of-the-art mAP value is 77.26% (person-
81.19%, bicycle-64.04%, car-86.55%), and in Table 8 these
values are marked in bold. We demonstrate the utility of the
procedural components we have introduced in this paper in
the following section.

4.6 Further discussion

4.6.1 Effect of pace

To demonstrate the effectiveness of Pace, we are required
to quantify the training efficiency. The training efficiency
depends on the performance of the model and the number
of epochs required to achieve the desired performance. The
time taken per epoch is nearly the same across different val-
ues of Pace, as we consider only the coefficient D1 for our
experiments. To measure the performance, we have devised
Eq. (6):

ηP,φ = mAP(PMBW(φ, P)) − mAP(Baseline)

e
(6)

where ηP,φ is the training efficiency and mAP(PMBW(φ,
P) is the achieved mAP value for a particular coefficient
and pace. mAP(Baseline) is the mAP value of the baseline
(54.0%), and e is the number of epochs taken for training. The
results can be seen in Fig. 6 for different pace values when
φ = 1. Thus, as we had intended, adding a certain amount of
pace can speed up the training process without hampering the
overall performance. Further, we had also expected that after
a certain point, the pace would be too quick for the model
to successfully adapt to the thermal domain, which is visible
when using the PMBW(D1, 4) framework.

4.6.2 Effect of multiple stages

We can demonstrate the effect of multiple stages by plotting
themAPvalues for each value ofφ across stages. In Fig. 7,we
represent the stages on the x-axis, with stage 0 implying the
mAP value calculated using the EfficientDet detector loaded
with the pre-trained weight for the respective value of φ,
without any training. As shown in Fig. 7 for every value of φ

taken, there is an increase inmAPvalues for each consecutive
stage. The average increase in mAP was 7.7% for block-
wise backbone training, 5.45% for first-round fine-tuning,
and 2.55% for second-round fine-tuning. Thus, the necessity
of multiple stages as well the effectiveness of the block-wise
backbone training is evident.

We have examined the training efficiency of the fine-
tuning round by calculating the average increase in mAP
per epoch from the first stage to the second stage. The results
from Fig. 8 show that for pace value of 2 for PMBW(D1, P)
has a large improvement in training efficiency. The low train-
ing efficiency for PMBW(D1, 1)may be since it took a larger
number of epochs to train in the first stage andmay already be
nearly saturated before the second stage. However, the result
that this ablation study indicates in Fig. 8 is similar to that of
Sect. 4.6.1; there is an initial increase in training efficiency
followed by a decrease.

4.6.3 Performance of the trainedmodel on other datasets

OTCVBS We tested our trained model on the images of the
OTCVBS [9,33,43] dataset to show that the model can adapt
other thermal datasets that the detector has not previously
seen. Visual evaluation of the model is shown in Fig. 9.
Because they were captured on different sensors as men-
tioned in Sect. 4.1 the images of these datasets are diverse
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Fig. 5 Examples of detections on thermal images from the FLIR ADAS dataset using our PMBW(D3, 3) framework

Table 7 Best result for each value of φ

Framework Person Bicycle Car mAP

PMBW(D0, 1) 58.2 41.9 66.7 54.4

PMBW(D1, 1) 70.2 55.7 77.1 67.7

PMBW(D2, 3) 80.6 66.5 84.5 77.2

PMBW(D3, 3) 81.2 64.0 86.5 77.3

and present a contrasting collection of thermal images than
the FLIR ADAS dataset. We can infer from the detections in
Fig. 9 that the trained model is capable of generalizing over
a broad set of thermal images with reasonable accuracy and
no additional training cost.
LTIR Previous works [12,25] yielded hindered performance
when these thermal object detectors were presented with
occludedobjects, both fully or partially. Toget a concrete idea
of the impact of occlusion, we consider the hiding subset of
the LTIR dataset. For testing on this dataset, we have consid-
ered the PMBW(D2, 3) framework. As shown in Table 9, the
mAP when there is no occlusion present is much higher than
when there is some form of occlusion present. Further, the
confidence scores for these images are very high, as shown
in Fig. 10a. As expected, our proposed detector suffers when
there is close to full-occlusion as shown in Fig. 10c. How-
ever, when there is partial occlusion, the model can detect a
person, albeit with low confidence, as shown in Fig. 10b.

4.6.4 Importance of thermal object detection at night-time

Although images taken in the visible domain can be rich in
semantic information during the daytime, the same is not true
about night conditions. From the road safety viewpoint, espe-
cially in the context of self-driving cars, errors in detections
made on images captured in the RGB spectrum can have
untoward consequences. However, we can overcome these
unfavourable outcomes using object detection in thermal
images. It can be made evident by comparing the detections
made on RGB images by a fully trained RGB detector (row 1
of Fig. 11) and comparing itwith the respective thermal coun-
terpart, using our framework (row 2 of Fig. 11). It is clear
that when compared to the thermal, RGB detector may fail
in certain instances such as unfavourable lighting, missing
objects that are smaller/more concealed, or even misconstru-
ing a crowd and output thewrong number of detections.More
accurate results can be obtained, simply by switching to ther-
mal inference as shown in Row 2 of Fig. 11.

4.6.5 Retention of visible information

As mentioned earlier, we intended to perform transfer learn-
ing without replacing the information possessed by the RGB
pre-trained weights to prevent the loss of a vast amount of
readily available knowledge. Thus, the effect was an amelio-
ration of the model’s performance in this domain while still
retaining an admissible detection capability in the visible
sphere. To demonstrate this, we visually compare the results
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Table 8 Comparison with
baseline and prior
state-of-the-art methods (all
values rounded to 1 decimal
place for consistency)

Method Person Bicycle Car mAP

Baseline 54.7 39.7 67.6 54.0

MMTOD-UNIT(MSCOCO) [12] 64.5 49.4 70.7 61.5

Transfer learning on SSD+VGG16 [15] 61.9 46.1 85.1 64.4

ODSC (SSD512+VGG16) [34] 71.0 55.5 82.3 69.6

BU(LT, T) [25] 75.6 57.4 86.5 73.2

ThermalDet [6] 78.2 60.0 85.5 74.6

PMBW(D2, 3) (ours) 80.6 66.5 84.5 77.2

PMBW(D3, 3) (ours) 81.2 64.0 86.5 77.3

Fig. 6 Training efficiencies for different values of pace for
PMBW(D1, P)

of the RGB trained detector, i.e. EfficientDet trained on the
COCO dataset and our framework, using the value of φ as
D3. As shown in Fig. 12, both RGB and thermal predictions
do not differ by a vast amount when considering detections
among person, bicycle, and car classes. Hence, there was
minimal visible information loss during the training process.

4.6.6 Failure cases and explanations

The proposed framework, when applied to EfficientDet, per-
forms with significantly high accuracy. However, there are
still cases where the trained model fails. The most accu-
rate setting (PMBW(D3, 3)) still fails to detect small, i.e.
distant objects. Although the performance concerning small
objects increased with each value of φ, the mAP value of
PMBW(D3, 3) for small objects (64.6%) is still much lower
than that of medium and large objects (86.7% and 82.1%,
respectively). The qualitative results also show this result, as
is evident in the first two columns of Fig. 13, where we can
observe that the model is capable of detecting nearer cars,
which appear larger in the image, while the cars farther away
and smaller in the image are undetected.

Fig. 7 mAP values for different coefficients across the stages

Fig. 8 Training efficiencies of fine-tuning for different values of pace
for PMBW(D1, P)
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Fig. 9 Predictions on OTCBVS dataset

Table 9 Results of occlusion testing with PMBW(D2, 3) on LTIR-
Hiding

Subset of LTIR-Hiding Number of images mAP

No occlusion 213 89.2

Full or partial occlusion 145 55.4

Overall 358 72.0

Further, occlusion was also a hindrance to performance,
as already observed in the LTIR dataset in Sect. 4.6.3. We
have demonstrated this with the FLIR dataset in the last two
columns of Fig. 13, where the presence of multiple persons
or cars close to each other are labelled erroneously, primarily
because one object occludes the others.

5 Conclusion

In this paper, we have explored a domain adaptation approach
to re-purpose the state-of-the-art, EfficientDet object detec-
tor, to work in the thermal domain. We have created a paced
multi-staged block-wise framework for efficient and accu-
rate training of the EfficientDet model to detect objects in

thermal imagery. By introducing block-wise adaptation and
pace parameter, we have also shown that we can improve the
training efficiency for larger and more complex detectors.
The highlight of this paper was the creation of a framework
that provides state-of-the-art performance for object detec-
tion in the thermal dataset, namely the FLIR ADAS dataset,
with an mAP of 77.3%. In doing so, we obviated the neces-
sity of RGB counterpart images during training to make the
model more suitable for real-life applications.

The experimental results have shown us a highly flexi-
ble, paced multi-staged block-wise framework that achieves
increased accuracy while striking a balance with available
computational power. Further, the results demonstrate its ver-
satility and capability to variations in the thermal domains,
especially when it comes to occlusion. We have also shown
that thermal domain features add to the pre-existing knowl-
edge from the RGB spectrum, giving favourable results on
visible images even after training on a thermal dataset.

The thermal object detector we have presented here is a
step forward, but still, there is much to improve. We have
observed that small or distant objects have the chance of not
being detected, for example, PMBW(D3, 3), which provided
the best overall results, still had an mAP disparity of roughly
20% for small objects.

Fig. 10 Results on LTIR-Hiding dataset with varying levels of occlusion
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Fig. 11 Contrast in detections between RGB and thermal detectors on night-time images. Row 1 contains detections made by EfficientDet (φ = 3)
trained on the COCO dataset, while Row 2 contains the detections made on thermal images by our framework PMBW(D3, 3)

Fig. 12 Information retention tested on RGB images. Row 1 contains detections made by EfficientDet (φ = 3) trained on the COCO dataset, while
Row 2 contains the detections made on thermal images by our framework PMBW(D3, 3)

Additionally the proposed approach is practically appli-
cable and can potentially be implemented in self-driving

cars and surveillance, as it can be inexpensively trained
only on thermal images, thereby preserving privacy and still
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Fig. 13 Failure cases of PMBW(D3, 3). Row 1 contains the predictions made by PMBW(D3, 3), while Row 2 contains the ground truths. The first
two columns demonstrate failure to detect smaller objects, while the last two columns demonstrate failure to distinguish occluded objects

acquiring accurate results. Further research can tackle these
problems through increased resolution or augmented data
and can push the state-of-the-art further. Approaches involv-
ing thermal image-based pre-processing could yield better
results for small objects. Additionally, implementing this
approach on other state-of-the-art detectors could produce
improvements. Our framework provides new insights into
domain adaptation, especially for object detection in ther-
mal images. However, we can utilize the maximum potential
of this framework by making it a general guideline for
improving efficiency while maintaining accuracy to enhance
performance in various other computer vision and domain
adaptation tasks.
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