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Abstract

We present a novel compositing framework for full-length human figures that maintains their surface details and appends
the localized nature of light and shadow, thereby synthesizing composite results with high visual coherence. The framework
is extended from the compositing pipeline proposed in our previous study so that it deploys five stages for photometric
information estimation, as well as for 3D reconstruction, global illumination simulation, lighting transfer, and compositing.
Based on the interpretation that a sense of coexistence can be achieved through visual coherence, we demonstrate that the
proposed framework functions properly as a group portrait compositor. The composite results that the proposed framework
composed the images separately rendered 3D human models compared favorably with the results which rendered multiple
avatars together. Based on this empirical evaluation, the proposed framework is expected as a new means of fostering a sense
of coexistence in remote societies and of efficiently generating highly photorealistic cyberworlds.

Keywords Image processing - Digital image compositing - Visual coherence - Perception

1 Introduction

Image compositing, which combines multiple visual ele-
ments to generate a single image, is known as one of the
fundamental techniques of visual effects. In particular, com-
positing human figures onto a specific scene to create the
illusion of being there has a wide range of applications,
including virtual scenes in movie production [6], video con-
ferencing [34], and portrait shooting/editing on smartphones
[39].

Compositing different visual elements in a harmonized
manner is considered an important task in image composit-
ing. Early studies in this field proposed graphcut textures [17]
and Poisson image editing [21] as blending methods focusing
on image gradients. In seamless image cloning based on solv-
ing Poisson equation, an extended method [11] has also been
proposed. The quality of these methods is unfortunately lim-
ited because they rely only on the image space information,
not 3D illumination information. Once the method of image-
based lighting [9] was established, relighting methods that
use information from off-screen space, i.e., areas outside the
image, were proposed. With the development of deep learn-
ing, the quality of compositing has continued to be enhanced
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with improvements in off-screen space estimation. However,
most compositing studies focus on relighting. For example,
the work proposed by Xu et al. [38] can shade the object that
will be inserted in a scene based on lighting estimation, while
the shadow is cast by just one dominant directional light.
That is, the effect of shadows caused by localized occlusions
is not considered. This limits the scope of applications only
to cases where the effects of shadows can be ignored, such
as bust shots or scenes with no elements other than people.
On the other hand, our previous study [19] incorporated 3D
reconstruction and global illumination simulation, which are
not handled in conventional relighting methods, to enable
high-quality compositing in situations where the effects of
shadows caused by localized occlusions cannot be ignored.

In this paper, we extend the compositing pipeline proposed
in our previous study [19] to demonstrate that the proposed
framework functions properly for its new example applica-
tion: group portrait compositing. Group portraits are obtained
by capturing several people that share the same time and
space in a common lighting environment. In group portraits,
all the elements should have the same color tone, and the exis-
tence of the elements should be optically constrained by the
shadows cast onto the elements and surrounding structures.
These features give an irreplaceable sense of coexistence to
group portraits.
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The global response to the COVID-19 pandemic has led
to many remote collaborations. Owing to the shift to the era
of “remote everything,” many people feel less connected to
others and more fatigued with few face-to-face collabora-
tions [15]. For example, Microsoft Teams aims to address
this issue with an additional function called Together Mode
[33], but this function is only a simple collection of snap-
shots, and there remains room for improvement in terms
of visual coherence. The proposed framework is intended
to reproduce a sense of coexistence, an intrinsic value of
group portraits, by relighting people captured in different
lighting environments under a new lighting environment and
by casting shadows that account for the occlusions that occur
between each element, as illustrated in Fig. 1. The ability to
produce high-quality composite results of multiple people
gathering is expected to establish a new means of fostering
a sense of coexistence in remote societies and of efficiently
generating highly photorealistic cyberworlds.

The main contributions of this paper are twofold:

(1) We establish a novel lighting representation within a neu-
ral network updated from our previous study [19], which
translates humans’ surface normals to their high dynamic
range diffuse reflection components, to utilize them for
state-of-the-art lighting transfer. It considers both the
relighting of full-length humans and the reprojecting of
their shadows.

(2) We demonstrate that the proposed framework functions
properly for its new example application: group por-
trait compositing, and we demonstrate the ability of the
proposed framework to create group portraits in remote
societies.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces related works. Section 3 presents our revised
compositing framework. Section 4 demonstrates that the
proposed framework functions properly as a group portrait
compositor. Section 5 discusses the limitation of the proposed
framework, and Sect. 6 concludes the paper with some direc-
tions for future research.

2 Related works

The proposed method builds on knowledge from several
domains. First, Sect. 2.1 describes conventional image-based
relighting methods, and Sect, 2.2 reviews the related works
for shadow editing, which is particularly important in image
compositing. Further, Sect.2.3 reviews some aspects of
image-to-image translation. Finally, Sect.2.4 highlights our
approach in terms of differences from related works.
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2.1 Image-based relighting

The origin of global illumination is believed to be environ-
ment mapping [5], which is a kind of texture mapping that
refers to texels from the surface of a cube or sphere surround-
ing a target object. Lighting methods using environment
mapping are referred to as image-based lighting [9], from
which image-based relighting was derived. Devebec et al.
used one-light-at-a-time (OLAT) images to obtain reflectance
fields, which enable the relighting of the human face in any
desired environment [10]. Recently, many methods based
on deep learning have been proposed. Sun et al. realized
relighting by estimating an environment map from a given
image and retargeting it to the desired environment map [32].
Kanamori et al. estimated the albedo, light transport map, and
ambient light to achieve the relighting of full-length humans
by considering their self-shadows [16]. However, they focus
only on humans as the composite target and do not consider
the effects of humans on other elements, including cast shad-
ows.

2.2 Shadow editing

Shadows play an important role as visual cues in human
perception and thus are vital for convincing image composit-
ing. Chuang et al. enabled shadow reprojection for complex
shapes with the shadow compositing equation [8]. However,
the work does not support relighting and makes it hard to
edit flexibly the direction and color of shadows. There is
also a known method to reproduce optically correct shadows
while image compositing [7], but it has some limitations,
one of which is that this method is only valid for scenes with
one dominant, high directive light source, that is, it does not
support global illumination effects. Wang et al. developed a
generative adversarial network (GAN)-based framework to
estimate and cast the shadows of a composite target from a
given background static video sequence [37]. However, due
to the characteristics of GAN, it is difficult to edit lighting
conditions flexibly. Philip et al. reconstructed proxy shapes
from multi-view images to enable shadow removal and repro-
jection while relighting [22], and our framework was strongly
inspired by this flow of relighting via proxy shapes.

2.3 Image-to-image translation

Color transfer [26] is a well-known method for matching
the color statistics of source and target images. It enables the
source image to be transferred linearly to another image with
a color tone similar to that of the target image. This method
was later extended to support nonlinear transfers [23], mak-
ing it possible to perform more general transfers. There exists
a method to transfer lighting for human face relighting with
a single source image and a single reference image [18]. A
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Sources Standard composite Proposed

Fig. 1 Composite group portraits. The group portraits were produced
from five individual portraits shown in the column Sources, each of
which was captured in a different environment. Standard compos-
ite shows the composite results without considering visual coherence.
Proposed shows the composite results using the proposed framework.
Reference shows the rendered images of the 3D reference models. RMSE
visualizes the root mean square error for each pixel between Proposed
and Reference with a Turbo colormap [2], which considers visual con-

recent method achieved a more geometry-aware transfer by
adding geometric properties [31]. In deep learning, many
image-to-image translation networks consisting of encoders
and decoders have been proposed, and each has achieved
remarkable results. Among them, pix2pix [14] is a GAN-
based method that incorporates U-net [28] as a generator,
and it is highly versatile. In terms of relighting, there is a
translation method [35] to harmonize the colors of the fore-
ground and background elements in a composite image, but
it does not consider 3D lighting.

2.4 Our approach

We present a novel compositing framework that considers
visual coherence. The proposed framework reproduces shad-
ows caused by localized occlusions. Note that most existing
image-based methods are formulated on environment light-
ing, which can consider only illumination from a textured
surface on an infinite distant sphere/cube, so they cannot han-
dle localized occlusions. Because localized occlusions are
likely to occur in the case of group portrait compositing, a
method to bridge the 3D and 2D information is needed. In the
proposed framework, we utilize a single-view 3D reconstruc-
tion method to reconstruct a low-resolution proxy shape and
to simulate global illumination to obtain more precise illumi-

Reference

48

tinuity. The composite images without considering visual coherence
have neither a uniform color tone among the elements nor cast shad-
ows, while the composite images produced by the proposed framework
compare favorably with the rendered one. Further, the upper portrait
is configured with a simple background scene and the visual effects
between the people and the scene can be confirmed clearly, while the
lower one is configured with a photorealistic background scene and it
evokes actual usage scenarios

nation properties. The low-resolution shape is then rendered
into a2D image, and by mapping its illumination properties to
the source image, the illumination properties are transferred
to the composite target. This series of processes enables inter-
reflection between the composite target and its surrounding
elements, which could not be represented using conventional
methods.

3 Framework

Figure 2 schematically illustrates our framework. For brevity
and simplicity, a case of individual portrait compositing is
described in this section. The photometric information esti-
mation stage estimates the alpha matte, albedo, and surface
normals of a full-length human figure from a given RGB
image. The shape reconstruction stage reconstructs the entire
human model from a single-view image. The global illumi-
nation simulation stage uses the reconstructed shape and the
given 3D scene to output globally illuminated images for
the background and foreground images separately. Here, the
two globally illuminated images include photometric infor-
mation, i.e., alpha matte, albedo, and surface normals of the
reconstructed shape. The lighting transfer stage maps the
surface normals and diffuse reflection components to the

@ Springer
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Fig. 2 Proposed framework. The proposed framework starts with the
photometric information estimation and 3D reconstruction for a single
full-length human figure. The reconstructed shape(s) is placed onto a
given 3D scene manually and global illumination is simulated; then,
the globally illuminated images for the background and foreground are
output separately. The lighting is retargeted to the estimated photomet-

globally illuminated images, and applies this map to the
estimated surface normals at the photometric information
estimation stage to transfer the diffuse reflection compo-
nents and achieve relighting. Finally, the compositing stage
superimposes the foreground image onto the background one
and converts through tone mapping the dynamic range of the
composite image from high dynamic range (HDR) to stan-
dard dynamic range (SDR).

The 3D human models and the HDR environment maps
used in our experiments were acquired from 3D Scan Store!
and Poly Haven?, respectively. A laptop computer with an
Intel® Core™ i9-9980HK CPU @ 2.4GHZ (8 cores, 16
threads), 64 GB memory, and a NVIDIA GeForce RTX 2080
with Max-Q Design GPU (8 GB VRAM) was used for the
system implementation and all the experiments.

3.1 Photometric information estimation

Because our previous study [19] cannot be applied to
in-the-wild portraits—portraits whose 3D information is
unavailable—we needed to estimate the foreground alpha

! https://www.3dscanstore.com/3d-model-bundle/arch-viz-mega-
bundle.

2 https://polyhaven.com/hdris.
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ric information (input-a) based on the obtained photometric information
(input-b). Finally, the retargeted foreground image is superimposed onto
the background image and converted through tone mapping from high
dynamic range to standard dynamic range to produce the composite
result

matte, albedo, and surface normals of a full-length human
figure from a given RGB image. Then, a stage for estimating
various photometric information was added.

Preliminary experiments have revealed that high accuracy
is required for each estimation at this stage. Figure3 com-
pares the composite results, one of which uses the ground
truth photometric information and the other uses the esti-
mated photometric information. To estimate the alpha matte,
albedo, and surface normals, UZ?-net [25], OW [4], and
pix2pixHD [36] were employed, respectively. Figure 3 shows
that even if the highest-level methods currently available are
applied, the photometric information for obtaining a satis-
fied composite result cannot be estimated. To address this
issue effectively, a known deep learning-based method [20]
using OLAT images is considered useful. If the pre-trained
model of this method was available, high-quality alpha matte,
albedo, and surface normals could have been estimated from
asingle-view image. Note that the pre-trained model is unfor-
tunately unavailable at this time, so the alpha matte, albedo,
and surface normals are assumed given in this paper.

3.2 Shape reconstruction

PIFuHD [30] is known as a state-of-the-art method to
reconstruct a highly detailed entire human model from a
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Fig. 3 Low-quality photometric information leads to poor composite
results. The composite result that uses the estimated photometric infor-
mation is compared with the other composite result that uses the ground
truth photometric information. This preliminary experiment shows that
even if the highest-level methods currently available are applied, the
photometric information for obtaining a satisfied composite result can-
not be estimated. U2-net [25], IIW [4], and pix2pixHD [36]

single-view image. Its pre-trained model is available and
can be adopted to digitize humans from full-length portraits.
At this stage, we decided to reconstruct shapes with the
512 x 512 x 512 grid cells, which is the prescribed resolu-
tion in the paper [30]. It is also shown there that PIFuHD has
extremely high accuracy compared with competing methods,
such as Tex2Shape [1], PIFu [29], and DeepHuman [40], but
when comparing the reconstruction results with the ground
truth, the details are not completely reproduced, contrary to
our expectation, as demonstrated in Fig. 4. In addition, the
pre-trained models do not include texture restoration. There-
fore, direct rendering of the reconstructed shape will not
resultin complete visual content. Here, the reconstruction tar-
get will be clarified in terms of human poses, camera angles,
and props. First, the supported human poses are limited to
standing poses. Because the pretrained model of PIFuHD
is fitted to the clothed human dataset, it mostly consists of
standing poses. However, ARCH++ [12] has recently suc-
ceeded in reconstructing sitting poses with the same dataset
as PIFuHD. This implies that target poses can be diversi-
fied by changing the 3D reconstruction method. Second,
the camera angle will be desirable to fix the elevation 0
degrees, because the pretrained model of PIFuHD is fitted
to the images rendered with the elevation fixed at O degrees.
The images that deviated from this condition are more likely
to fail the reconstruction. Finally, the props are partially sup-
ported. In our preliminary experiment, the person who carried
their bag was totally reconstructed, but there is the failed case
in a paper on PIFuHD [30]. This is due to unavailability of
large-scale and diverse avatars. On the other hand, the props
surrounding the people can be composed by creating them
as part of the background scene.

s 3

Reference Reconstructed
=
) 5
B g .

e
l
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Fig. 4 Comparing the reconstructed shape using PIFuHD with the
ground truth 3D model, the reconstructed shape lacks details

3.3 Global illumination simulation

The reconstructed shape is placed onto the given 3D scene
manually, and then the global illumination simulation begins.
Autodesk Maya (ver.: 2022) and Arnold for Maya (ver.:
MtoA 4.2.4) were employed as the digital content creation
tool and renderer, respectively. In the global illumination
simulation, the alpha matte, albedo, and surface normals
were rendered as arbitrary output variables (AOVs), in addi-
tion to shading color using Arnold with GPU acceleration.
Here, AOVs are secondary images generated by render-
ers. Any number of AOVs can be produced simultaneously,
and each may be used to edit the corresponding light-
ing component while compositing. Most renderers support
AOVs’ output, including Arnold [3]. Because the recon-
structed shape has neither the material nor the texture, we
set its material as a Lambertian model and its albedo as
(H,S,V)=1(0.0,0.0,0.5). In the previous study [19], neg-
ative values of surface normals were clamped, but herein,
the range of values was converted from [—1, 1] to [0, 1],
which successfully improved the prediction accuracy of the
correspondence between the surface normals and the diffuse
reflection component at the lighting transfer stage.

3.4 Lighting transfer

The structure of the lighting transfer module is illustrated
in Fig. 5. The illumination net predicts the diffuse reflection
component from the alpha matte and surface normals. The
illumination net plays a central role in translating the shading
color from a low-detailed shape to high-detailed one. Here,
this translation holds the assumption that the low-detailed
and high-detailed surface normals are well correlated and
the correspondence between the surface normals and shading
color is invariant with respect to level of detail. Then, the
prediction is multiplied by the albedo ratio of input-a to input-
b to produce the relit image.

@ Springer
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Fig.5 Lighting transfer module. The illumination net predicts the dif-
fuse reflection component from the alpha matte and surface normals of
input-a. By taking the albedo ratio of input-a to input-b, the quotient
image is obtained. Finally, the relit foreground image is produced by
multiplying the diffuse reflection component by the quotient image
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Fig.6 Architecture of the illumination net. It is based on the U-net and
has the mask connections to multiply alpha mattes in the deconvolution
layers. The input is a 1024 x 1024 RGBA image (surface normals +
alpha matte), while the output is a 1024 x 1024 RGB image (diffuse
reflection component)

3.4.1 lllumination net

The illumination net predicts the diffuse reflection com-
ponent from given alpha matte and surface normals. The
network is trained using the foreground image, which is the
output of the global illumination simulation stage (input-b in
Fig. 2).

Network architecture The illumination net is based on U-net
[28] and has the mask connections to multiply alpha mattes
in the deconvolution layers, as shown in Fig. 6. The input is
an RGBA image (surface normals + alpha matte) with the
size of 1024 x 1024, while the output is an RGB image (dif-
fuse reflection component) with the size of 1024 x 1024. The
convolution and deconvolution blocks consist of a combina-
tion of a 3 x 3 convolution layer, a batch normalization layer,
and a leaky rectified linear unit activation layer. To make the
final output HDR, the last part is activated to [0, +-00) by the
rectified linear unit activation layer, except for the batch nor-
malization layer. When implementing, the maximum value
was set to the maximum possible value of the single-precision
floating-point number.
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Training Training was performed on-demand for each scene,
and the foreground image output from the global illumina-
tion simulation stage (input-b in Fig. 2) was used as the only
training data. The network was trained to take the surface
normals and alpha matte as the input, and it outputs the color
of the diffuse reflection component. Note that the diffuse
reflection component is necessary to adjust its HDR values
to match the value range [0, +00) of the output layer. One of
the reasons for the errors in our previous study [19] was the
handling manner of these HDR images. If the pixel values
are clamped to [0, 1], overexposure occurs in some areas,
preventing accurate learning. To improve the generalization
performance of the network, the training data were randomly
translated in the range of [—10, 10] for the top, bottom, left,
and right of the image space, respectively, for data augmenta-
tion. The batch size was set to 1, and training was performed
for 10 steps x 100 epochs. Mean squared error was used as
the loss function, and RMSprop [13] was used as the opti-
mization method. This on-demand training was completed
in about 2 minutes.

3.4.2 Relighting

Because the illumination net predicts the diffuse reflection
component for the albedo of input-b, it is necessary to retarget
the prediction result to the albedo of input-a. We now intro-
duce a quotient image [27], which is defined as the albedo
ratio of two objects and is known to be illumination-invariant.
If input-a’s albedo is denoted as p, and input-b’s albedo as
Pp, the quotient image Q, for input-a is represented by:

loa (l/l, 'U)

Qq(u,v) = o (. D) ,

where u, v denote the coordinates in the image space. p,
and pp, are given from the previous stages, so O, is obtained
immediately. Finally, by multiplying the predicted diffuse
reflection component by Q, it is retargeted to input-a.

3.5 Compositing

The composite result is produced by superimposing the fore-
ground image onto the background one. Each pixel value in
the composite image C represents the linear interpolation of
the pixel value of the foreground image F and the pixel value
of the background image B [24]

C=a*xF+(—a)xB,

where o (€ [0, 1]) denotes the pixel value of foreground
alpha matte. Because the composite result is an HDR image,
it is finally converted to an SDR image through tone map-
ping. Figure 7 shows individual composite examples for
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Proposed

Reference RMSE

Fig.7 Individual composite examples for the scenes appearing in Fig.
1. The framework was tested on five different models, each of which
was rendered in a different lighting environment. The columns Pro-
posed and Reference show the composite results using the proposed
framework and the rendered images of 3D reference models, respec-
tively. The column RMSE visualizes the root mean square error for each
pixel between Proposed and Reference with a Turbo colormap [2],
which considers visual continuity. The quality of the composite results
is comparable to the rendered ones, although an error from tone mapping
appears in some of the images

the scenes appearing in Fig. 1. The root mean square error
(RMSE) is used for comparison, and the Turbo colormap
[2], which maintains visual continuity, is used for visual-
ization. The quality of the composite results is comparable
to that of the rendered ones, although an error from tone
mapping appears in some of the images. The following
link (https://msrohkwr.github.io/Illumination-aware-group-
portrait-compositor/) provides more results.

Fig. 8 An overhead view of a group portrait compositing example.
The reconstructed shapes are manually placed onto the scene and will
be globally illuminated. Note that the output at the global illumination
simulation stage is rendered while their relative positioning

4 Group portrait compositing

As a daily life scenario to apply the proposed framework, we
present group portrait compositing. One of the roles of group
portraits is to give the visual cue that multiple people have
shared the same time and space. However, in actual shoot-
ing, it is often the case that the space cannot be shared due
to the remote collaboration or the time cannot be shared due
to the absence of some members. Although, in such cases,
convincing group portraits are expected to be produced with
compositing techniques. The issue here reduces to visual
coherence. When the shooting environment of each person is
different, standard composite results are visually incoherent.
However, the proposed framework produces group portraits
with high visual coherence.

Figure 1 shows the composite results for five individual
portraits, each of which was captured under a different light-
ing environment. The RMSE was used for comparison with
the reference image, and a Turbo colormap [2] was used for
visualization. The standard composite result is unconvincing
in terms of visual coherence, while the composite results pro-
duced by the proposed framework compare favorably with
the reference images rendered the multiple 3D human models
together. In addition, shadows, which cannot be reproduced
by common relighting methods, help augment the sense of
coexistence in the group portraits. In fact, significant errors
can be found between the composite image and the refer-
ence image overall, despite some localized errors. Table 1
provides the times required for group portrait compositing.
Our method required 4.6 and 3.1 times longer than rendering,
respectively, but this seems allowable because the composite
results compared favorably with the rendered ones.

@ Springer
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Table 1 Times required for group portrait compositing and for rendering are compared. Note that the times at the photometric information estimation
stage are not included because the photometric information is assumed to be in this paper

Target Ours (seconds)

Rendering (seconds)

Shape reconstruction ~ Global illumination simulation

Foreground Background

Lighting transfer = Compositing  Total

8.7 x 10! 2.4 x 10! 4.9 x 10!

8.7 x 10! 2.8 x 10! 1.3 x 102

1.1 x 102 27x1072 27x102 5.9 x 10!

1.1 x 10% 27x1072  3.6x 102 1.2 x 102

In Sect. 3, we discussed individual portrait compositing,
so we will now discuss how we extended it to group por-
trait compositing. Indeed, the extension to group portrait
compositing sounds straightforward: a foreground image
assuming the composite result can be produced by inputting
multiple foreground shapes of people at the global illumi-
nation simulation stage, as shown in Fig. 8. At this point,
photometric information should be estimated individually
at the photometric information estimation stage, be bundled
assuming the composite result, and be passed to the lighting
transfer stage.

5 Discussions

The current framework has several issues. As described in
Sect. 3.1, even though the framework relies on photometric
information, it was tested only with rendered images whose
actual photometric information was available. In addition,
it has the essential issue that supporting various illumina-
tion components other than the diffuse reflection is difficult
because the materials of the human figures are not recon-
structed. Besides, the requirement for manual operation at
some stages makes it difficult to realize full automation. In
Sects. 5.1 and 5.2, we discuss the availability of the pho-
tometric information and the limitations of the material,
respectively.

5.1 Availability of photometric information

The accuracy of the photometric information estimation
affects the quality of the final results, as shown in Fig. 3.
Total relighting [20], which is a deep learning-based state-
of-the-art method in portrait relighting, deploys a matting
module and relighting module. The matting module estimates
the alpha matte of the human, and the relighting module
estimates its surface normals and albedo; thus, they can be

@ Springer

utilized for relighting humans. Because OLAT images are
required for the training, the model cannot be constructed
without special equipment. However, if its pre-trained model
is available, the photometric information can be obtained
from a single-view RGB image. Because it was reported in
[20] that these modules achieved high-quality results, it is
technically safe to assume that the desired photometric infor-
mation can be obtained with these modules. However, these
modules suffer from quality degradation due to the albedo
imperfections on clothing, so practical verification will be
unavoidable.

5.2 Material limitation

To reproduce various illumination components other than
diffuse reflection in the composite results, it is required
to recover the materials of the human figures at the shape
reconstruction stage. Here, it is known that the task of simul-
taneously recovering texture and material in addition to shape
is challenging. PIFu [29], the framework on which PIFuHD
is based, can recover shape and texture from a single-view
RGB image, but its accuracy is not high enough in terms
of content creation, and the material is still not addressed.
Therefore, we need to develop a new method to recover the
texture and material simultaneously, in addition to the shape,
from a single-view image.

6 Conclusion

In this paper, we presented a global illumination-aware
compositing framework for full-length human figures and
attempted to apply the framework to group portrait com-
positing. Conventional compositing usually suffers visual
incoherence, so the proposed framework can create a com-
posite result with a sense of coexistence that considers optical
consistency. In the new era of “remote everything,” provided
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that the proposed framework is applied to video conferenc-
ing systems, people will be able to experience more unified
collaboration. More broadly, it could also contribute to the
construction of cyberworlds by leveraging the salient fea-
tures of the proposed framework, which efficiently generates
photorealistic contents.
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