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Abstract
In recent years, researchers have made significant contributions to 3D face reconstruction with the rapid development of
deep learning. However, learning-based methods often suffer from time and memory consumption. Simply removing network
layers hardly solves the problem. In this study, we propose a solution that achieves fast and robust 3D face reconstruction
from a single image without the need for accurate 3D data for training. In terms of increasing speed, we use a lightweight
network as a facial feature extractor. As a result, our method reduces the reliance on graphics processing units, allowing
fast inference on central processing units alone. To maintain robustness, we combine an attention mechanism and a graph
convolutional network in parameter regression to concentrate on facial details. We experiment with different combinations
of three loss functions to obtain the best results. In comparative experiments, we evaluate the performance of the proposed
method and state-of-the-art methods on 3D face reconstruction and sparse face alignment, respectively. Experiments on a
variety of datasets validate the effectiveness of our method.

Keywords 3D face reconstruction · Lightweight network · Attention mechanism · Graph convolutional network

1 Introduction

As a fundamental topic in computer vision and graphics, 3D
face reconstruction can be used for face recognition [1–4],
face alignment [5–8], emotion analysis [9], and face ani-
mation [10]. Over the years, many novel approaches to 3D
face reconstruction from a single image have been proposed.
The major studies focus on how to achieve robust 3D face
reconstruction with high fidelity, but the considerations of
speed and cost are ignored or not mentioned. In practice, the
speed and cost of production use should be valued. Spending
much time reconstructing a 3D face model can lead to a poor
user experience, and the speed of reconstruction is largely
dependent on the performance of the method. The cost of
a complete 3D face reconstruction method includes, but is
not limited to, data collection cost, resource consumption
cost, and usage cost. It will be difficult to meet the produc-
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tion needs of a high-fidelity 3D face reconstruction that takes
excessive time to build or relies on special equipment. Thus,
a balance needs to be struck between the various aspects.

Since a 2D image contains severely limited effective fea-
tures, it is difficult to recover a detailed and highly realistic
face model. Apart from the expensive device capture meth-
ods, studies have developedways to conduct accurate 3D face
reconstruction from a single 2D image based on the addition
of prior knowledge. A traditional approach is to reconstruct
a 3D face model by fitting a statistical model (e.g. 3D mor-
phable model (3DMM) [11]). Amean face model with linear
representations of face shape and texture is employed to fit
a given image by optimization calculation. A limitation of
model fitting methods is the restricted representation of a
statistical model. They often fail to restore nonlinear facial
details, making the 3D face model artificial.

In recent years, deep learning has become the more pre-
ferred approach for adding prior knowledge. Modelling a 3D
face mesh is accomplished by learning the mapping between
the 2D image and the 3D facemodel.With the development of
neural networks, learning-based methods enable the acquisi-
tion of accurate 3D face reconstruction. Nevertheless, there
is a scarcity of 2D–3D paired face datasets available, and
collecting a large-scale detailed 3D face dataset is difficult
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for ordinary users. In addition, learning 3D face reconstruc-
tion through a deep neural network involves a great deal
of iterative computation, as well as processor and memory
consumption. When dealing with a large amount of data,
typical central processing unit (CPU) cores struggle to cope
with such demands. This restricts the application of 3D face
reconstruction on mobile phones even more. Moreover, the
stability and robustness of themethods should be guaranteed.

In this paper,we aim to propose an efficient learning-based
method of 3D face reconstruction from a single image. We
strike a balance between quality, speed, and cost. In con-
sideration of the cost of 3D data collection and preparation,
we convert the task of 3D face reconstruction into a small
set of 3DMM parameter regressions in the absence of accu-
rate 3D data. To improve speed, we apply a lightweight
network to extract features from images. Considering that
the lightweight network is prone to loss of precision, we
introduce an attention mechanism [12] and a graph convolu-
tion network (GCN) [13] in the regression. During training,
three different loss functions are added to calculate the loss
of 3DMM parameters, reconstructed 3D vertices, and land-
marks. Various combinations of loss functions are explored
to obtain the most efficient strategy. Furthermore, the per-
formance of the proposed method is evaluated not only in
a 3D face reconstruction benchmark but also in sparse face
alignment.

To summarize, in this study, we concentrate on maintain-
ing fast and robust 3D face reconstruction froma single image
without accurate 3D training data. Themain contributions are
as follows.

– We propose a lightweight network-based framework
for 3D face reconstruction to address the problems of
computation speed and graphics processing unit (GPU)
dependency.

– Wepropose a combination of an attentionmechanismand
a GCN for the regression of 3DMM parameters, which
can improve the accuracy and robustness of the recon-
structed model.

– In our experiments, we validate the effectiveness of the
proposed method and obtain an optimal result by com-
paring different loss function strategies. Compared with
state-of-the-art methods, our method achieves consider-
able benefits.

2 Related work

3D-from-2D face reconstruction is a long-standing topic in
the field of computer vision. A large number of complex
optimization calculations need to be carried out to recover a
3D face model from an image. To simplify the problems, a
common way to constrain the space of solutions is by adding

prior knowledge. Relevant studies on single image-based 3D
face reconstruction are mainly of two varieties: statistical
model fitting methods and learning-based methods.

2.1 Statistical model fittingmethods

Before the advent of deep learning, prior knowledge was
embedded in a statistical face model. Specifically, an initial-
ized mean face model is computed from a large dataset of
3D facial scans containing low-dimensional representations
of the face shape and texture. The 3D facemodel is then fitted
to an image through a series of optimization calculations so
that the image generated by projecting the resulting 3D face
model onto a 2D plane is as similar as possible to the input
image. The most widely used models are based on 3DMM
[1,11]. Blanz and Vetter [11] proposed the first morphable
3D face model in 1999, using principal component analysis
(PCA) for dimensionality reduction decomposition. Subse-
quently, many derivatives of 3DMM have appeared, such as
the basel face model (BFM) [2], a widespread model that
can fit any 3D face and store its 3DMM parameters. The
first BFM is unable to adjust facial expressions. A typical
strategy is to join the expression basis from FaceWarehouse
[14], such as the methods of [5] and [7]. The integrated BFM
has 199-dimensional shape vectors, 199-dimensional texture
vectors, and 29-dimensional expression vectors.

In general, the core of statistical model fitting methods
is to find the optimal solution to 3DMM parameters that
minimizes the difference between each input and rendered
image. Piotraschke and Blanz [15] reconstructed a 3D face
from a set of face images by reconstructing each face indi-
vidually and then combining them into a final shape based
on the accuracy of each reconstructed part. Jin et al. [16]
took two images of a person’s front and side view as input
to develop a deformable nonnegative matrix factorization
(NMF) part-based 3D face model and used an automated
iterative reconstruction method to obtain a high-fidelity 3D
face model. In contrast, both Jiang et al. [17] and Liu et al.
[18] proposed 3D face reconstructionmethods based on a sin-
gle image. The former used a bilinear face model and local
corrected deformation fields to reconstruct high-quality 3D
face models, while the latter improved accuracy by updating
contour landmarks and self-occluded landmarks. However,
these methods have obvious shortcomings. Building such
a 3DMM model by computing a nonlinear error function
requires expensive iterative optimization. It also tends to get
stuck in local minima so that its accuracy and authenticity
cannot be guaranteed. Aldrian and Smith [19,20] suggested
a solution that used linear methods to recover shape and
texture separately. In addition, Schönborn et al. [21] pro-
posed a different model fitting method, regarding the 3DMM
fitting process as a probabilistic reasoning problem. They
interpreted 3DMM as a generative Bayesian model and used
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random forests as noisy detectors. The two were then com-
bined using a data-drivenMarkov chainMonte Carlomethod
(DDMCMC) based on the Metropolis–Hastings algorithm.

2.2 Learning-basedmethods

Thanks to the rapid development of deep learning, a 3D face
model can be recovered from a single image by using a con-
volutional neural network (CNN) to encode prior knowledge
in the weights of the trained network. Nonetheless, there are
numerous challenges in reconstructing 3D face models from
images.

First, the problems of training data should be fixed,
mainly in terms of data volume and data diversity. Many
3D face reconstruction methods often perform poorly on
images where the facial features are partially occluded or
self-occluded due to large poses because of the reduction
of valid features. One solution is to expand the training
data [5,6,22,23]. Richardson et al. [22] randomly modified
3DMM and rendered them onto a 2D plane to generate syn-
thetic 2D images. Zhu et al. [5] proposed synthesizing 3D
faces by directly regressing the 3DMM parameters from the
input images. The other solution is generally through strong
regularization of shape [24]. Focusing on occlusion and pose
problems, Ruan et al. [25] proposed a self-aligned dual-face
regression network combined with an attention mechanism
to solve them.

The second problem is improving accuracy and robust-
ness. Deng et al. [26] proposed an accurate 3D face
reconstruction by introducing a differentiable renderer and
designing a hybrid loss function for weakly supervised train-
ing. Sanyal et al. [27] used multiple images of the same
subject and an image of a different subject to learn shape
consistency and inconsistency during training to enhance
robustness. Recent studies [28–30] have demonstrated that
GCNs [13,31,32] contribute to the recovery of facial details.
Lin et al. [28] obtained high-fidelity 3D facemodels by utiliz-
ing a GCN to decode the features extracted from single face
images and then produce detailed colours for the face mesh
vertices. Lee and Lee [29] introduced an uncertainty-aware
mesh encoder as well as a decoder that combined a GCN
with a generative adversarial network (GAN), to solve the
problems of occlusion and blur. Based on GCNs, Gao et al.
[30] proposed decoding the identity and expression features
extracted from a CNN to recover 3D face shape and albedo,
respectively.

A further concern is the speed and cost of 3D face
reconstruction. Most of the above methods regress 3DMM
parameters based on a deep convolutional neural network
(DCNN). The size of the trained network is usually large,
with numerous parameters and computations, resulting in
slow inference andmemory consumption. The inference time
would be much longer on a CPU alone, or the huge amount

of computing could not even be handled by a CPU core.
To overcome these shortcomings, solutions can be found by
reducing the 3DMMparameters for regression [8] or using an
image-to-image CNN instead of a regression network [6,33].
Feng et al. [6] designed a novel method to record the 3D
shape of a face using a UV position map, which enabled
fast reconstruction. Koizumi and Smith [33] estimated the
correspondence from an image to a face model based on
an image-to-image CNN without ground truth or landmarks.
Guo et al. [8] reduced the dimensions of 3DMM parameters
and performed fast and stable 3D face reconstruction based
on a lightweight CNN.

3 Proposedmethod

In this section, we introduce our work in detail. First, we
describe the composition of 3DMM. We then detail each
component of the proposed network architecture. Specifi-
cally, there are two modules: one for fast feature extraction
based on a lightweight network and the other for parame-
ter regression combined with an attention mechanism and a
GCN. After that, we introduce three loss functions used in
training. Our framework is shown in Fig. 1.

3.1 3DMMparameter regression

The face shape and texture of 3DMM can be defined as:

Smodel = S̄ + Bshpαshp,

Tmodel = T̄ + Btexαtex, (1)

where Smodel andTmodel are the face shape vector and texture
vector, respectively; S̄ and T̄ are the mean face shape and
texture, respectively;Bshp andBtex are the PCA bases of face
shape and texture, respectively; and αshp and αtex represent
the corresponding parameters.

Typically, a full 3DMMparameter regression still needs to
estimate pose parameters, illumination parameters, and cam-
era parameters, so that the outputmodel can be projected onto
a plane and compared for similarity with the input image. For
the purpose of fast 3D face reconstruction, we remove some
of the parameters and reduce the dimensions of the remaining
parameters, referring to previous studies [5,7,8]. Therefore,
we only learn the 3DMM parameters of shape, expression,
and pose in the regression task. Here, the 3D shape in Eq. 1
is described as:

Smodel = S̄ + Bshpαshp + Bexpαexp, (2)

where the 3Dexpression baseBexp and corresponding param-
eters αexp are added. Given a face image, the network
estimates a vector with 62 dimensions (T,αshp,αexp) ∈ R

62,
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Fig. 1 Framework of the proposed method

where T ∈ R
3×4 is a transformation matrix representing the

face pose. αshp ∈ R
40 and αexp ∈ R

10 are the 3DMMparam-
eters of shape and expression, respectively. After regression,
the 3D face can be computed with Eq. 2.

3.2 Network architecture

As shown in Fig. 1, we propose a fast parameter regres-
sion strategy based on a lightweight network, combined with
an attention mechanism and a GCN. First, we employ a
lightweight network, i.e. MobileNet [34], to extract features
from images quickly. According to Eq. 2, constructing a 3D
facemodelmainly depends on the estimation of shape param-
eters and expression parameters, which influence the final
performance of the face model. As a result, we then separate
the 3DMM parameters into two parts for regression. One is
the parameter regression of shape and expression, where the
attention mechanism and GCN are introduced to improve
robustness and stability. The other is the regression of pose
parameters, performed by a fully connected layer.

3.2.1 Fast feature extraction

Adopting a lightweight network enables fast and stable fea-
ture extraction. In this regard, we choose MobileNet [34]
to extract features from images. Instead of standard convo-
lutions, MobileNet introduces depthwise separable convolu-
tions.When performing convolutions, a standard convolution
kernel considers all channels in the corresponding image
region simultaneously,which increases the computationmul-

tiplicatively. The depthwise separable convolution factorizes
a convolution into a depthwise convolution and a pointwise
convolution, decoupling channel correlation and spatial cor-
relation. In this way, both the number of parameters and
computational cost are greatly reduced, but accuracy is still
guaranteed. The feature extraction network is a modification
of MobileNet-V1 [34], where the last fully connected layer
is replaced with two branches for the next regression step.

3.2.2 Enhanced attention to facial features

An attention mechanism is introduced with the aim of
concentrating on the context-aware representation of facial
features from the extracted feature map and suppressing
other useless information, such as image backgrounds. With
reference to [35], we generate attention masks M and the
transformed feature map X from the extracted features. The
attention masks M are treated as weights of different chan-
nels, which are then multiplied by the transformed feature
mapX to construct the final content-awarematrixHc. Specif-
ically, the formula can be defined as:

Hk
c =

h∑

i=1

w∑

j=1

mk
i jxi j , (3)

where mk
i j denotes the kth weight of the attention mask, xi j

denotes the feature vector of the transformed feature map X
at (i, j), and h and w represent the height and width of the
input image, respectively.
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3.2.3 Graph convolutional network for robust parameter
regression

Unlike CNNs, GCNs can perform convolution operations on
non-Euclidean structured data. Accordingly, we introduce a
static GCN and a dynamic GCN [35] to help restore unstruc-
tured details of the face model.

For the static GCN, any static graph convolutional layer
can be defined as:

Hl+1 = σ(AHlW), (4)

where Hl and W are the input nodes and weight matrix of
the lth layer, respectively,A is the adjacencymatrix, and σ(·)
denotes the nonlinear activation function. Here, H0 = Hc is
the input nodes of the single-layer static GCN, which comes
from Eq. 3. Thus, the formula of the static GCN is defined
as:

Hs = σ(AsHcWs), (5)

where Hs denotes the updated nodes, As and Ws are the
adjacency matrix and the weight matrix of the static GCN,
respectively, and the activation functionσ(·) is LeakyReLU .
The multiplication of the adjacency matrix As with the fea-
tures Hc is equivalent to the sum of the features of the
neighbouring nodes of a node. In this way, each node can
use the information of neighbours to update the state.

Comparedwith the static GCN, a significant characteristic
of the dynamicGCN is the dynamic adjacencymatrix update.
Since the adjacency matrix As of the static GCN is fixed,
it is unreasonable to use the same adjacency matrix for all
inputs. The dynamic GCN can overcome this weakness by
adaptively constructing the adjacency matrix Ad according
to the input features. Intuitively, recalculating the adjacency
matrix for each input can better spread information between
similar structures and speed up the learning of local semantic
information. Specifically, the dynamic GCN can be defined
as:

Hd = σ(AdHsWd), (6)

whereHd are the output 3DMM parameters,Wd is the state-
updateweightmatrix of the dynamicGCN, and the adjacency
matrix Ad of the dynamic GCN is defined as:

Ad = δ(WaH′
s), (7)

where δ(·) is the Sigmoid activation function, Wa is the
weightmatrix obtained by convolution, andH′

s is constructed
by concatenating Hs with its global expression.

3.3 Loss functions

During training, we adopt three loss functions to handle the
optimizer: fast weighted parameter distance cost (fWPDC)
[8], vertex distance cost (VDC) [5], and landmark loss.

3.3.1 Fast weighted parameter distance cost

Generally, theWPDC[5] is used to constrain the loss between
the predicted parameters and ground truth. The WPDC sets
different weights for each parameter. The formula can be
defined as:

Lwpdc = ‖w · (p − pgt )‖2, (8)

where w = (w1, w2, . . . , w62) denotes the weight of each
parameter, p = (p1, p2, . . . , p62) is the predicted 3DMM
parameter, andpgt = (pgt1 , pgt2 , . . . , pgt62) is the ground truth.
To simplify the calculation, fWPDC [8] separates the param-
eters into two parts for calculation. That is,p = [T,α], where
T is a transformation matrix from the predicted pose param-
eters and α = [αshp,αexp] are the predicted shape parameter
and expression parameter. Equation 8 is changed to:

L fwpdc = ‖wT · (T − Tgt )‖2 + ‖wα · (α − αgt )‖2, (9)

where wT and wα are the weights of the corresponding
parameters, and Tgt and αgt refer to the ground truth of the
corresponding parameters.

3.3.2 Vertex distance cost

The VDC [5] minimizes the vertex distances between the
reconstructed 3D face shapes and the ground truth. The ver-
tices of a 3D face model are generated by the predicted
3DMM parameters p. The formula is defined as:

Lvdc = ‖V3d(p) − V3d(pgt )‖2, (10)

where V3d(·) is the reconstructed vertices calculated by:

V3d(p) = T ∗
[
Smodel

1

]
, (11)

where T is the same as that in Eq. 9 and Smodel is from Eq. 2.

3.3.3 Landmark loss

To improve the robustness of face reconstruction, we adopt
sparse landmark loss to constrain the 3DMM parameters to
better fit the input.We additionally detect 68 facial landmarks
{qgtn } of each input image as ground truth. During training,
we obtain 2D landmarks {qn} by projecting the 3D landmark
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vertices of the reconstructed model onto images. Then, the
loss is formulated as:

L lmk = 1

N

N∑

n=1

‖qn − qgtn ‖. (12)

Here, N is 68. We obtain the loss values by means of
Euclidean distance computation.

4 Experiment

4.1 Datasets and evaluationmetrics

In this study, we aim to produce fast and robust 3D face
reconstruction from a single image without the use of accu-
rate 3D training data. As a result, 300W-LP [5] is chosen as
the training dataset. 300W-LP is composed of synthesized
3D faces with large poses from 300W [36], which includes
the annotated faces in the wild (AFW) [37], labeled face
parts in the wild (LFPW) [38], HELEN [39], IBUG [36],
and extended Multi-Modal Verification for Teleservices and
Security Applications (XM2VTS) [40] datasets. Practically,
the training dataset we used consists of over 600,000 still
images, extended byGuo et al. [8]. Since the extended dataset
does not contain ground truth of facial landmarks, we adopt
a face align network (FAN) [41] to extract 68 2D facial land-
marks of each image as ground truth. During the collection of
landmarks, we remove the samples that failed to be detected.
In total, there are 626,088 as the training set as well as 50,807
for validation.

To evaluate the performance of our method on 3D face
reconstruction, we employ the not quite in the wild (NoW)
[27] dataset. The NoW dataset contains 2,054 2D images
of 100 subjects, with a 3D face scan for each subject. The
images are categorized into four cases: neutral, expression,
occlusion, and selfie. We follow the NoW benchmark [27] to
evaluate the performance of 3D face reconstruction. Specif-
ically, the benchmark calculates the scan-to-mesh distance
between the ground truth scan and the reconstructed mesh.
The median distance, mean distance, and standard deviation
are then recorded, as well as a cumulative error plot for all
distances.

Most methods of face reconstruction support face yaw
angles of less than 45◦ or when all facial landmarks are visi-
ble, which is not able to align faces in extreme cases such as
large poses up to 90◦. To test the performance of our method
on images with large poses, we evaluate sparse face align-
ment accuracy with small, medium, and large yaw angles
(i.e. yaw angle ψ corresponding to 0◦ ≤ ψ ≤30◦, 30◦ < ψ

≤60◦, and 60◦ < ψ ≤90◦, respectively) using the normalized
mean error (NME) by bounding box size on AFLW2000-3D

according to [5]. AFLW2000-3D consists of fitted 3D face
models of the first 2,000 samples from the annotated facial
landmarks in the wild (AFLW) [42] and corresponding 68
3D facial landmarks.

Additionally, we introduce the CelebFaces Attribute
(CelebA) [43] dataset in the qualitative analysis. The CelebA
dataset contains 202,599 face images with 10,177 celebrities
and 40 attribute annotations, including large poses, occlu-
sion, blur, and background clutter. We group the images by
certain attributes based on experimental needs. Then, we
evaluate the quality of the 3D facemodels reconstructed from
the images with different attributes.

4.2 Implementation details

We perform experiments mainly based on PyTorch. For fea-
ture extraction, we utilize MobileNet-V1 [34] with a width
multiplier of 1.0 but remove the last fully connected layer
and output a feature map with a channel of 1024. For
3DMM parameter regression, we adopt the activation func-
tion LeakyReLU in the GCN, with a negative slope value set
to 0.2. The input image size is 120×120 and is normalized
according to [8].We train our network with a batch size of 64
on anNVIDIAGeForce RTX 3080GPU. The initial learning
rate is 0.01, but we set a warmup in the first 5 epochs with
a learning rate of 0.002. During training, we use stochas-
tic gradient descent (SGD) as the optimizer with a weight
decay of 0.0005 and a momentum of 0.9. In addition, we add
gradient clipping to avoid gradient explosion. First, we con-
duct experiments with the fWPDC computed to observe the
joint effect of the attention mechanism and GCN. Second,
we adjust the training loss functions to obtain the best and
most stable results. As stated in Guo et al. [8], using VDC
from scratchmay obtain higher vertex error, but better results
can be achieved by using VDC from fWPDC or combining
VDC and fWPDC. Thus, we conduct separate experiments
using three different combinations of loss functions. The first
combination strategy is to train our network using fWPDC
and landmark loss:

L1 = L fwpdc + wlmkL lmk, (13)

where wlmk ≈ 10mfwpdc−mlmk is the training weight used to
balance the two losses, and mfwpdc and mlmk indicate the
magnitude of each loss. The second is to calculate three loss
functions simultaneously:

L2 = L fwpdc + wvdcLvdc + wlmkL lmk, (14)

where wvdc ≈ 10mfwpdc−mvdc has the same effect as wlmk

and mvdc indicates the magnitude of VDC. The last strategy
is to divide the training into two stages, with different loss
functions calculated for each stage. The first stage is to train
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the network using Eq. 13. When the training converges to fit,
we adjust the loss combination in the second stage to:

L3 = wvdc′Lvdc + L lmk, (15)

where wvdc′ ≈ 10mlmk−mvdc .

4.3 Ablation study

We conduct comparative experiments with different schemes
to verify the effectiveness of the proposed method. In our
experiments, we combine the modified MobileNet, atten-
tion mechanism, and GCN for training and search for the
best result with different training strategies. The original
MobileNet-V1 is employed as a baseline.

4.3.1 Evaluation on the NoW validation set

We perform experiments on the NoW [27] validation set in
ablation experiments, and the results are shown in Table 1.
Obviously, the combined network we proposed is effective.
As shown in the first and second rows of Table 1, perfor-
mance improves when the attention mechanism and GCN
are applied, where the median error, mean error, and stan-
dard deviation error are reduced by 0.07 mm, 0.08 mm, and
0.07 mm, respectively, on the NoW validation set. Through-
out the three strategies we proposed, the effect is generally
enhanced when other loss functions are added. When joined
by landmark loss (i.e. using L1), the effect is not significant.
However, when experimenting with the network trained with
three loss functions together (i.e. using L2), the errors are
reduced, dropping by 0.04 mm on the median error and 0.03
mm on the mean error, compared with using L1. Finally, we
achieve the best results using the third strategy to train the
network, namely, using L1 with L3 fine-tuning. Compared
with using fWPDC only, the median error is reduced by 0.06
mm, the mean error is reduced by 0.06 mm, and the standard
deviation error is reduced by 0.02 mm.

4.3.2 Evaluation on AFLW2000-3D

Similar results are obtained in the evaluation of sparse face
alignment on AFLW2000-3D [5], and the results can be
seen in Table 2. Compared with the baseline, the combined
network we proposed performs better, with a mean NME
reduction of 0.20%when using the same loss function. How-
ever, unlike the above 3D face reconstruction evaluation
results, there is a significant reduction in errors with the addi-
tion of landmark loss (i.e. using L1), decreasing the mean
NME by 0.41%. The trained network with L2 performs best
at yaw angles ranging from 0◦ to 30◦, but does not perform as
well as the network trained by L1 with L3 fine-tuning when

yaw angles exceed 30◦. They differ from each other in the
mean error by 0.02%.

To show the effect of the attention mechanism and GCN
more clearly, we visualize the sparse alignment results of
the model trained with and without the attention mechanism
and GCN in Fig. 2. In the demonstrated cases, the model
with the attention mechanism and GCN obtains more accu-
rate alignment results. In the first example with the attention
mechanism and GCN, the facial contour landmarks fit the
input face much more precisely. In the second example, the
landmarks labelled in the nose region are more correctly
located. In the third example, the labelling of the mouth’s
openness is more appropriate. In the last example, in the
case of a relatively large yaw of the face pose, the result with
the added module performs better.

4.3.3 Visualization of feature maps

To demonstrate the utility of using an attention mecha-
nism to capture facial features, we visualize images from
AFLW2000-3D [5] with their corresponding learned feature
maps based on class activation mapping (CAM) [44]. Some
samples are shown in Fig. 3. The heatmaps of the images
are generated from MobileNet-V1 and the attention mod-
ule of the proposed method in the case of using the same
training loss functions. We note that the attention mecha-
nism we employ is capable of paying attention to the face
region. Comparing the third, fourth, fifth, and sixth columns
of Fig. 3, our method shows robustness for images with dif-
ferent poses. Even for images with extremely large poses, the
proposed attention module still focuses on the crucial parts.
Moreover, as shown in the last two columns of Fig. 3, our
method improves attention to nonocclusion regions.

4.4 Comparison with prior art

4.4.1 Qualitative analysis

For qualitative evaluation, we compare the resulting 3D
shapes reconstructed from images of different properties on
AFLW2000-3D [5] and CelebA [43] using different meth-
ods. Specifically, we compare our method with PRNet [6]
and 3DDFA-V2 [8], which proposed fast 3D face reconstruc-
tionwithout accurate 3D training data, similar to ourmethod.
Some of the results are shown in Fig. 4.

First, we reconstruct the images with different yaw angles
on AFLW2000-3D [5], classifying yaw angles into small,
medium, and large angles. As shown in the first four rows of
Fig. 4, both the proposed method and other methods obtain
reasonable results. In comparison, our method shows better
robustness in the case of imageswith large yaw angles.When
the yaw angle increases to 60◦ or even more (the second col-
umn of the third and fourth rows of Fig. 4), the reconstructed
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Table 1 Reconstruction error
on the NoW validation set

Network Loss functions Median (mm) Mean (mm) Stda (mm)

Baselineb L fwpdc 1.40 1.73 1.44

MobileNet + attention & GCN L fwpdc 1.33 1.65 1.37

L1 1.32 1.66 1.42

L2 1.29 1.62 1.37

L1 + L3 fine-tune 1.27 1.59 1.35

The best results are highlighted in bold
a Std denotes the standard deviation
bThe baseline indicates using the original MobileNet-V1

Table 2 NME (%) of 68 landmarks with different yaw angles ψ on AFLW2000-3D

Network Loss functions 0◦ ≤ ψ ≤30◦ 30◦ < ψ ≤60◦ 60◦ < ψ ≤90◦ Mean

Baseline L fwpdc 3.48 4.42 5.66 4.52

MobileNet + attention & GCN L fwpdc 3.36 4.26 5.33 4.32

L1 3.02 3.80 4.92 3.91

L2 2.73 3.53 4.51 3.59

L1 + L3 fine-tune 2.76 3.46 4.49 3.57

The best results are highlighted in bold

Fig. 2 Comparison for sparse
alignment on AFLW2000-3D.
Partial face regions are
magnified for better visual
comparison

without Attention & GCN with Attention & GCNInput

3D face shape of PRNet [6] is slightly distorted with asym-
metry between the left and right of the face. In the fourth
row, the mouth of the input face image is tightly closed, but
the mouth cannot be closed in the reconstruction results of
3DDFA-V2 [8].

We then conduct experiments on images with different
attributes from CelebA [43], and the results are shown in the

last five rows of Fig. 4. Based on the annotated attributes
on CelebA, we group the images by the following cases:
blur, occlusion (coverage by sunglasses or bangs), insuffi-
cient light, and uneven light. For the case of blurry images,
as seen in the fifth row of Fig. 4, the proposed method is not
affected by the quality of images. Compared to 3DDFA-V2
[8] (the third result in the fifth row), our reconstructed 3D
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Fig. 3 Visualization of the
learned feature maps. The
images in the first row are the
input images, the images in the
second row are heatmaps
generated by MobileNet-V1,
and the images in the third row
are heatmaps generated by the
attention module of our method

Fig. 4 Visual comparison with different methods on AFLW2000-3D
and CelebA. a Input images. b PRNet [6]. c 3DDFA-V2 [8]. d Our
method

face shapes fit the input images better, especially the chin
part. For images with facial occlusions, such as those with

sunglasses or bangs, ourmethod allows for reasonable recon-
struction of the occluded parts, as shown in the last column
of the sixth and seventh rows of Fig. 4. The performance of
3D-from-2D face reconstruction can also be easily affected
when the input image is insufficiently or unevenly illumi-
nated. However, it is clear that our method does not suffer
from light problems. As shown in the last two rows of Fig. 4,
the reconstructed 3D face shapes of the proposed method
(the last column) achieve better results than both methods
(the second and third columns).

In particular, ourmethod canmaintain a correct face shape
even if the input image is in poor condition. In contrast
to PRNet [6], our method reconstructs a more detailed and
clearer contour of the 3D face shape, especially the area in
and around the eyes and mouth. In comparison with the two
state-of-the-art methods, ourmethod shows better robustness
in extreme cases.

In comparison with 3DDFA-V2 [8], we conduct a more
qualitative analysis, as shown in Fig. 5. We visualize the
reconstructed 3D face models under the same conditions as
3DDFA-V2 [8] on CelebA [43]. Subtle changes are difficult
to visualize, so we focus on the facial region of the mouth
where the comparative results are more obvious. In the first
example, it is obvious that our method is much more pro-
found in portraying the expression of the mouth. In addition,
the curvature of the cheek is better. In the second and third
examples with our method, the mouths are more appropri-
ately depicted, in contrast to the open mouths in 3DDFA-V2
[8]. Overall, we can conclude that our method is able to pro-
vide more suitable facial details than 3DDFA-V2 [8].

4.4.2 Quantitative analysis

For quantitative evaluation, we perform comparative exper-
iments of 3D face reconstruction on the NoW [27] dataset
and sparse face alignment on AFLW2000-3D [5].

Evaluation of 3D face reconstruction We compare our
method with the state of the art by means of the NoW
[27] benchmark. The results of the comparison are shown in
Table 3 and the cumulative error plot in Fig. 6. As shown in
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Fig. 5 More comparison of our
method with 3DDFA-V2 [8] on
CelebA. The facial regions
around the mouth are magnified
to show the results more
distinctly. The results are shown
for transparency of alpha = 0.5
and alpha = 0.8

alpha = 0.8

Input alpha = 0.5 alpha = 0.5 alpha = 0.8

3DDFA-V2 Our Method

Table 3, it is obvious that our method achieves smaller recon-
struction errors than 3DMM-CNN [45], UMDFA [33], and
PRNet [6], where the median error is reduced by 0.55 mm,
0.23 mm, and 0.21 mm, respectively. Figure 6 also shows
that the cumulative error of our method is lower than those
of the three methods. A conclusion can be drawn that recon-
structing 3D face models by image-to-image methods is less
effective. The performance of our reconstructed 3D shapes
is slightly worse than that of Dib et al. [46], 3DDFA-V2 [8],
Deng et al. [26], and RingNet [27], where the median error
differs by only approximately 0.03 mm to 0.08 mm, and the
cumulative error is slightly higher but close to these compar-
ative approaches. The main reason is that most of them chose
to regress more 3DMM parameters to obtain more accurate
results, whichmeansmore time andmemory consuming pro-
cesses. Dib et al. [46], Deng et al. [26], and RingNet [27] all
employed a deep residual network [47] with equal to or more
than 50 layers. The network would run slowly or even fail
to run on typical CPUs. In contrast, our method is based
on a lightweight CNN, which supports fast reconstruction
on a single CPU core. Compared to 3DDFA-V2 [8], both
of us adopt MobileNet to increase the speed of reconstruc-
tion. However, we target different objects of training data.
We consider the case where only a single image is avail-
able as a training input, while 3DDFA-V2 [8] proposed a
3D aided short-video-synthesis strategy to allow the method
to be suitable for video data. Our method is therefore more
challenging in the training phase.

Evaluation of sparse face alignment We evaluate the per-
formance of different methods in sparse face alignment by
comparing the NME of 68 landmarks on AFLW2000-3D
[5], and the results are shown in Table 4. This shows that our
method achieves relatively good performance in face align-
ment for images with large poses. Overall, the mean NME of
our method is smaller than that of most methods, except for
3DDFA-V2 [8]. As shown in the last three rows of Table 4,
compared with 3DDFA-V2 [8] trained without the short-
video-synthesis strategy, our method obtains lower errors
than theirs when yaw angles are greater than 30◦ (3.46% vs.
3.49%/4.49% vs. 4.53%). When compared with the entire

Fig. 6 Cumulative error curves of differentmethods on theNoWdataset

3DDFA-V2 [8], our method differs by 0.13% at yaw angles
from 0◦ to 30◦ but by only 0.04% and 0.01% at yaw angles
from 30◦ to 60◦ and 60◦ to 90◦, respectively. This indicates
that the proposed method performs with greater robustness
when training data are more challenging, as we train the net-
work based on only single images.

User study To measure the user preference for the recon-
struction results generated by our method and 3DDFA-V2
[8], we conduct a user study. We first divide AFLW2000-
3D [5] into three categories based on yaw angle ranges:
small (0◦ ≤ ψ ≤30◦), medium (30◦ < ψ ≤60◦), and large
(60◦ < ψ ≤90◦). An equal number of images are randomly
selected from each category to be reconstructed using our
method and 3DDFA-V2 [8] separately. To facilitate presen-
tation and comparison, we then re-project the reconstructed
models onto the corresponding input images. In total, 120
pairs of generated images are created and evenly distributed
into 10 groups. In total, we have 135 participants, each choos-
ing a group at random and answering 12 questions. For each
question, participants should decide which generated image
represents the input image more closely, or it is difficult to
choose one or the other. The results show that on average
our method is preferred when compared with 3DDFA-V2

123



Fast 3D face reconstruction from a single image combining attention mechanism and graph… 5557

Table 3 Reconstruction error of different methods on the NoW dataset and the dimensions of the 3DMM parameters regressed by each method

Method Median (mm) Mean (mm) Std (mm) Dimensions of 3DMM parameters for regression
Shape Texture Expression Pose Camera Light Total

3DMM-CNN [45] 1.84 2.33 2.05 � � 198

UMDFAa [33] 1.52 1.89 1.57 –

PRNeta [6] 1.50 1.98 1.88 –

Dib et al. [46] 1.26 1.57 1.31 � � � � � 484

3DDFA-V2 [8] 1.23 1.57 1.39 � � � 62

Deng et al. [26] 1.23 1.54 1.29 � � � � � 239

RingNet [27] 1.21 1.53 1.31 � � � � 159

Our method 1.29 1.63 1.41 � � � 62

aUMDFA [33] and PRNet [6] use image-to-image methods instead of parameter regression

Table 4 NME (%) comparison
of images with different yaw
angles ψ on AFLW2000-3D

Method 0◦ ≤ ψ ≤30◦ 30◦ < ψ ≤60◦ 60◦ < ψ ≤90◦ Mean

3DDFA [5] 3.78 4.54 7.93 5.42

3DDFA + SDM [5] 3.43 4.24 7.17 4.94

CMD [23] – – – 3.90

SPDT [24] 3.56 4.06 4.11 3.88

3DDFA-TPAMI [7] 2.84 3.57 4.96 3.79

3D-FAN [41] 3.15 3.53 4.60 3.76

PRNet [6] 2.75 3.51 4.61 3.62

3DDFA-V2 without svs.a [8] 2.75 3.49 4.53 3.59

3DDFA-V2 [8] 2.63 3.42 4.48 3.51

Our method 2.76 3.46 4.49 3.57

asvs. denotes short-video-synthesis strategy

[8] (39.56% vs. 35.58%). The remaining 24.37% of par-
ticipants think both methods are equally effective, while
0.49% say neither is similar. It is generally accepted that
our method is better for reconstruction of the mouth region.
However, in some examples, although the reconstruction of
the facial features by our method fits the input image better,
the reconstruction of the facial contours is not as good as by
3DDFA-V2 [8].

4.4.3 Model complexity and running time

Since ourmethod is based on a lightweight network, the num-
ber of parameters in our network is only 7.6M, with an input
of a 120×120 size image and an output of 62-dimensional
parameters. It is significantly less than other commonly used
neural networks, such as ResNet-50, which has approxi-
mately 23.6Mparameterswith the same input size and output
size. It is worth mentioning that the multiply–accumulate
operations (MACs) of our network are 298.0M, compared
with 6190M of PRNet [6]. Table 5 shows the model sizes of
different methods.We note that the model size of our method
is approximately 29MB, which is much smaller than most
other methods. The model size of 3DDFA-V2 [8] is smaller

than that of ours, because they only useMobileNet-V1, while
we introduce an attention mechanism and a GCN. Neverthe-
less, our method enables fast reconstruction even when the
number of parameters increases. As shown in Table 5, we
compare the inference speed of our method and 3DDFA-V2
[8] on a personal laptopwith anNVIDIAGeForceGTX1650
Ti GPU and an AMD Ryzen 7 4800H with Radeon Graphics
CPU @ 2.90 GHz. Our method takes 4.1 ms on a GPU or
20.7 ms on a CPU to regress 3DMM parameters, increasing
by only 0.8ms on the GPU and 6.3 ms on the CPU compared
with 3DDFA-V2 [8].

5 Conclusion

In this study,wepropose a learning-basedmethod that aims to
achieve fast and robust 3D face reconstruction from a single
image.We combine the lightweight network, attentionmech-
anism, and GCN, and demonstrate the performance of the
combination in experiments. The method not only demon-
strates the improvement in reconstruction speed andmemory
consumption but also guarantees the robustness of the recon-
structed 3D models. In inference, only a single image is

123



5558 Z. Deng et al.

Table 5 Model size and running
time of different methods

Method Model size (MB) Running time

PRNet [6] 153 –

CMD [23] 93 –

Deng et al. [26] 92 –

SADRNet [25] 60 –

3DDFA-V2 [8] 13 3.3 ms (GPU)/14.6 ms (CPU)

Our method 29 4.1 ms (GPU)/20.9 ms (CPU)

required as input, and no landmarks or other information
is needed.

However, there are some limitations to our method. Since
we cut a large number of 3DMM parameters, our method
improves the speed of reconstruction but sacrifices the accu-
racy of the reconstructed model. If the parameter size is
expanded, more refined 3D face models will be obtained.
Furthermore, the albedo of the face and the illumination of
the images have not been considered in our work. These are
the steps we will take next. In the future, we will focus on
reconstructing more detailed and realistic face models in a
fast way, and try to put them into actual production, e.g. as
an auxiliary tool for 3D animation or face recognition.
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