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Abstract
With the development of generative models, abused Deepfakes have aroused public concerns. As a defense mechanism, face
forgery detection methods have been intensively studied. Remote photoplethysmography (rPPG) technology extract heartbeat
signal from recorded videos by examining the subtle changes in skin color caused by cardiac activity. Since the face forgery
process inevitably disrupts the periodic changes in facial color, rPPG signal proves to be a powerful biological indicator for
Deepfake detection.Motivated by the key observation that rPPG signals produce unique rhythmic patterns in terms of different
manipulation methods, we regard Deepfake detection also as a source detection task. The Multi-scale Spatial–Temporal PPG
map is adopted to further exploit heartbeat signal from multiple facial regions. Moreover, to capture both spatial and temporal
inconsistencies, we propose a two-stage network consisting of a Mask-Guided Local Attention module (MLA) to capture
unique local patterns of PPG maps, and a Temporal Transformer to interact features of adjacent PPG maps in long distance.
Abundant experiments on FaceForensics + + and Celeb-DF datasets prove the superiority of our method over all other
rPPG-based approaches. Visualization also demonstrates the effectiveness of the proposed method.

Keywords Digital video forensics · Deepfake · PPG · CNN

1 Introduction

Deepfake refers to a type of face manipulation or replace-
ment methods based on deep learning.With the development
of generative models [1–3], the technical barrier for face
forgery is getting lower and lower, and anyone can easily
create realistic face forged contents by ready-made models
or tools. Deepfakes may also be exploited by malicious users
to create false political information and spread pornographic
content.

As a defense mechanism, face forgery detection has been
proposed to respond to the challenge brought by Deepfake.
The task of face forgery detection is commonly defined as a
real-fake binary classification problem.According to the face
forgery generation procedure, two helpful conclusions can be
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drawn to detect Deepfakes, including (1) pixel modification
occurs only in local regions of the face,which inevitably leads
to spatial inconsistencies such as blending boundaries, and
(2) since the forged video is generated frame by frame, tem-
poral inconsistency across frames like facial position jittering
cannot be eliminated. Frame-level detection methods mainly
focus on the first observation, while video-level approaches
based on the second.

Face forgery detection via biological signals provides
another way of thinking. Heartbeat signal is a typical bio-
logical signal. Photoplethysmography (PPG) is a heart rate
monitoring technology used in biomedicine [4]. As the
hemoglobin level changes due to periodic heartbeats, the
skin’s absorption rate of light changes accordingly. The
development of remote photoplethysmography (rPPG) [5]
technology makes it possible to capture the subtle changes
in skin color from recorded videos. Since facial pixel mod-
ifications and inter-frame discrepancies inevitably disrupt
periodic changes in skin color, previous work [6, 7] has
proved that the rPPG signal is a powerful biological indi-
cator for face forgery detection.

In this paper, the Multi-scale Spatial–Temporal represen-
tation of PPG is adopted to further exploit heartbeat signal
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Fig. 1 An example of Multi-scale
PPG maps (second row) and
rPPG signals (third row)
generated from real videos and
various manipulations, i.e.,
Deepfakes, Face2Face,
FaceSwap, and NeuralTextures.
Each forgery method presents
unique rhythmic patterns of
rPPG signals

calculated from different facial regions. As shown in Fig. 1,
the key observation is that consistent rPPG signals are not yet
preserved in Deepfakes, and pseudo signals produce unique
rhythmic patterns in terms of different generation methods.
Therefore, not only do we regard face forgery detection as
a binary classification problem, but also as a source detec-
tion task for the recognition of different generation methods
behind fake videos. To utilize both spatial and temporal infor-
mation, a two-stage network is designed for face forgery
detection and categorization. TheMask-Guided Local Atten-
tion module (MLA) is proposed to highlight the modified
regions of PPG maps and guide the network to better detect
the unique rhythmic patterns of different manipulation meth-
ods.Moreover, Transformer [8] is introduced to fully interact
high-level temporal features between adjacent video clips
in long distance. Abundant experiments prove the superi-
ority of the proposed method, which outperforms all other
rPPG-based methods in both face forgery detection and cat-
egorization. Extension experiment demonstrates the strong
generalization ability of the proposed methods against newly
added manipulation sources. To show the effectiveness of
each component, we also conduct detailed ablation study on
various setups for comparison.

In summary, the contributions of this paper are listed as
three-fold:

(1) A two-stage network is designed to detect both spa-
tial and temporal inconsistencies, which consists of a
Mask-Guided Local Attention module (MLA) to high-
light local regions of PPG maps and a Transformer to
interact temporal adjacent features in long distance.

(2) We utilize the Multi-scale Spatial–Temporal represen-
tation of PPG which contains information of multiple
facial regions. The visualization shows that unique pat-
terns of PPGmaps can be identified in terms of different
generationmethodswith the help ofMask-GuidedLocal
Attention module (MLA).

(3) Extensive experiments on various datasets are con-
ducted to demonstrate the effectiveness and extension
capability of the proposed method, which outperforms
all other rPPG-based methods in terms of both forgery
detection and categorization tasks.

2 Related work

2.1 Deepfake generation

Deepfake has been receiving more and more attention over
the past decades. Variational Autoencoders (VAE) [9] and
Generative Adversarial Networks (GAN) [1] are mainly
adopted to generate Deepfakes in recent approaches. The
existing facial manipulation methods can be divided into
two major categories: facial identity manipulation and facial
expression manipulation. Deepfakes (DF) refers to a type
of facial identity manipulation method that was spread via
online forums such as FakeApp which adopts two VAEmod-
els and a shared encoder to train and reconstructs the source
and target faces. Poisson blending [10] and color transform
algorithm [11, 12] are also used to mix the source face image
with the background, which also applies to popular Deepfake
open-source tools such asDeepFaceLab [13]. FaceSwap (FS)
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is a graphics-based approach to transfer the face region froma
source video to a target video based on sparse detected facial
landmarks and 3D template model. FaceShifter (FSH) [14] is
a novel two-stage framework designed for high fidelity and
occlusion aware facial identity manipulation. On the other
hand, Face2Face (F2F) [15] and NeuralTextures (NT) [16]
are two typical facial expression manipulation methods. F2F
is a facial reenactment system that manipulates the target
video with the expressions of the source video while keep-
ing the target person’s facial identity unchanged. NT adopts
the rich signal stored in learned neural textures of the target
person and performs facial reenactment by deferred neural
renderer. However, regardless of the manipulation method,
there will be spatial texture inconsistencies in each frame
since the video background is constant. Meanwhile, since
the video tampering is operated frame by frame, Deepfake
inevitably contains temporal discrepancies.

2.2 Deepfake detection based on CNN

Early researches [17–20] mainly use hand-crafted features to
distinguish real and fake videos. With the rise of deep learn-
ing and the continuous upgrading of face forgery technology,
Convolutional Neural Network (CNN) has become themain-
stream of Deepfake detection. A number of well-designed
backbone networks are used to extract crucial features, such
as Mesonet [21], CapsuleNet [22], and Xception [23]. In
addition to replacing the backbone, another kind of methods
focuses more on the local spatial inconsistency within the
forged frame. For example, FaceXray [24] detects forgery
by revealing the blending boundaries of Deepfakes. Dang
et al. [25] propose a plug-in local attention module to high-
light features in the modified regions. PRRNet [26] fuses
pixel-wise similarity and region-level similarity to learn local
differences by spatial attention mechanism. Chen et al. [27]
measure the similarity between different local areas by cal-
culating Multi-scale Patch Similarity, and fuse frequency
informationwithRGBchannels to obtain amore comprehen-
sive representation of local features. However, thesemethods
only focus on frame-level forgery traces and tend to ignore
cross-frame information at the video level.

On the other hand, many works use 3D CNN or Recurrent
Neural Networks (RNN) to explore the temporal inconsis-
tency of Deepfakes. Lima et al. [28] transfer the 3D network
pre-trained on the action recognition task for video classifi-
cation.Montserrat et al. [29] propose aweightingmechanism
that automatically selects relevant frames and combine CNN
with GRU [30] to extract both spatial and temporal features.
With the success of ViT [8] in the field of computer vision,
Transformer [31] has also been introduced to detect Deep-
fakes. Zheng et al. [32] propose a hybrid network combining
a fully temporal convolution networkwith a Temporal Trans-
former. Xu et al. [33] fuse the visual semantic sequence with

the contexture feature sequence extracted by Transformer.
Khan et al. [34] utilize both RGB image and UV texture map
as two-stream inputs for Transformer to learn the fused fea-
tures. These methods demonstrate the effectiveness of the
long-distance self-attention mechanism of the Transformer
architecture inDeepfake detection. The proposedmethod uti-
lizes spatiotemporal representation of PPG, combines CNN
with Transformer, and adopts the local attention mechanism.
In other words, we take both the spatial and temporal incon-
sistency of Deepfake into account.

2.3 Deepfake detection based on explainable
methods

In addition to using pure CNN, another kind of method
explores a variety of explainable methods. Malolan et al.
[35] make use of explainable AI (XAI) techniques including
Local Interpretable Model-Agnostic Explanations (LIME)
and Layer-Wise Relevance Propagation (LRP) to provide
clear visualizations of the salient regions of the image
focused on by the model. Jayakumar et al. [36] propose a
model-agnostic high precision explainer named “Anchors”
XAI to visually explain the predictions of a deepfake detec-
tor and obtain better performance than LIME.

Benefit from their clear physical meanings, biological sig-
nals provide another scope of the explainable approaches.
Early attempts adopt biological signals such as eye blinking
[37], head posture [38], and lip movement [39]. The devel-
opment of rPPGmakes it possible to estimate heart rate from
recorded face videos, and rPPG signals are also used inDeep-
fake detection. FakeCatcher [7] first introduces heartbeat sig-
nal into Deepfake detection and proposed a spatial–temporal
map of chromatic-based PPG and its power spectral density
(PSD). Ciftci et al. [6] adopt the same form of PPGmaps and
demonstrate that different manipulation methods generate
their own unique heartbeat rhythms. Boccignone et al. [40]
calculate path-wise rPPG signals and spectrums, and mea-
sures both intra-patch and inter-patch coherence of rPPG.
DeepRhythm [41] uses Motion-Magnified Spatial–Tempo-
ral Representation (MMSTR) of PPG to enhance facial color
changes and amplify heartbeat signals. This work also adopts
prior predictions from face-based network to weight the
input features. Liang et al. [42] further study the interaction
between adjacent PPG maps. All these PPG-based methods
prove that Deepfakes are not yet capable of maintaining con-
sistent heartbeat signals, which is a strong and explainable
evidence to detect forgery videos. However, these methods
do not focus on the detailed local discrepancy between PPG
maps generated by different manipulation sources. Without
any prior knowledge, we adopt theMulti-scale Spatial–Tem-
poral representation of PPG to comprehensively represent
facial skin color changes caused by heartbeat activity. In
addition, a two-stage network is proposed. On the one hand,
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the Mask-Guided Local Attention module (MLA) is used to
focus on the spatial local regions of PPG maps. On the other
hand, the Temporal Transformer is utilized to further explore
long-distance interactions between adjacent clips within a
complete video.

3 Methods

In this section, we introduce the proposed overall framework
illustrated in Fig. 2, including the generation of Multi-scale
Spatial–Temporal PPG map, the two-stage network, and the
loss function.

3.1 Multi-scale spatial–temporal representation
of PPG

Since the heartbeat signal is sensitive to head movements,
light changes, and other disturbances, the untreated face
image cannot be directly used to represent the rPPG sig-
nal. In order not to be constrained by prior information on
ROI selection, inspired by [43], we adopt Multi-scale Spa-
tial–Temporal representation of PPG to fuse multi-region
pixel information. As shown in Fig. 3, we first divide a full
video into several T - frame video clips with the step size ω.
For each video clip, face alignment is performed to obtain
facial landmarks. According to the landmarks, set of sub-
ROIs Rt = {R1t , R2t , . . . , Rnt } is obtained by selecting n
informative regions of face such as cheeks, forehead, and
jaw. Then, the average pixel values are calculated for all
the non-empty subsets of Rt in C color channels. T - frame
temporal sequences of averaged pixel values from the same
sub-ROI region or combination are arranged into a row.
Finally, a max–min normalization is applied to all the tempo-
ral sequences in each channel to scale the values into [0,255].
The size of the Multi-scale Spatial–Temporal PPG map is
(2n − 1) × T × C for each video clip.

3.2 Overall framework

Our approach is based on the following two assumptions: (1)
various video manipulation methods modify different facial
regions, and these modifications are also reflected in the PPG
map composed of multi-scale facial regions. Highlighting
the modified local area may lead the network to better learn
the unique rhythmic patterns of each manipulation method
and help the network to distinguish between real and fake
videos. (2) A single video contains multiple PPG clips, and
sufficient interaction of the features from adjacent maps may
yield more global information. Therefore, we propose a two-
stage network consisting of a Mask-Guided Local Attention
module (MLA) to focus on the modified local regions of

the PPG map and a Temporal Transformer to exploit long-
distance information between adjacent clips.

3.2.1 Mask-guided local attention module

Due to the unique patterns of rPPG signals, we regard Deep-
fake detection not only as a real-fake discrimination problem,
but also as a categorization task of different manipulation
methods. To be specific, face swapping methods change
the pixels of the entire face area, while expression manip-
ulation methods only modify the pixels of local regions,
such as the mouth area. Since the spatial dimension of the
PPG maps is arranged by the combination of different facial
regions, the spatial–temporal representation of PPG can also
reflect the regional discrepancies between each face manipu-
lation method. This assumption is often ignored by previous
approaches. Inspired by [25], we proposed a plug-in Mask-
Guided Local Attention module (MLA) to highlight the
position in the feature map of PPG that corresponds to the
modified regions of the face image.

Concretely, the proposed MLA consists of the follow-
ing steps. As shown in Fig. 3, given a PPG clip X ∈
RC×(2n−1)×T , where T denotes the clip length, n is the
number of face sub-ROIs, and C represents the number of
inputted channels. The mid-level feature map Fm derived
from the mid-layer of backbone fmid can be formulated
as Fm = fmid(X) ∈ RC ′×H×W where H , W , C ′ denote
the height, width and channel numbers of the feature map,
respectively. Then, with Fm as the input, the attention mask
Amask = φ(Fm) ∈ RH×W can be generated. The weighted
feature F ′ = Amask � Fm is the input of the remaining net-
work layer fhigh , where� denotes pointwise multiplication.
Specifically, φ(·) consists of a convolution operation Conv(·)
for compressing channel dimension and a Sigmoid activation
operation Sigmoid(·) to decide attention weights, which can
be formulated as follows:

φ(Fm) = Sigmoid(Conv(Fm)) (1)

In order to approximate the attention mask Amask with the
ground truth manipulation mask Agt , we train the MLA in a
supervised manner and add an extra L1 loss function Lmask:

Lmask = ∣
∣Amask − Agt

∣
∣
1 (2)

Given a pseudo PPG map which is generated from fake
videos, its ground truth manipulation mask Agt is calculated
from its corresponding original map as a pair. To be elabo-
rate, we first calculate the absolute pixel-wise difference of
the PPG map pair in RGB channels to obtain a residual map.
Then, the residual map is converted into grayscale, normal-
ized to [0,1] and resized to the same scale of Amask. Finally, a
threshold of 0.1 is selected to determine the map as a binary
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Fig. 2 Proposed pipeline of the two-stage network. � denotes pointwise multiplication

Fig. 3 An illustration of the generation process of the Multi-scale PPG map from an input face video clip of T frames. The procedure includes face
alignment, sub-ROI combination, pixel average, and normalization. The final size of the Multi-scale PPG map is (2n − 1) × T × C

mask Agt. As for an original PPG map which is generated
from real videos, its Agt is set to all zeros because there is no
manipulation occurred.

3.2.2 Temporal transformer

Although a single PPGmap contains the temporal dimension,
we believe that there is still potentially mutually reinforcing
information in several adjacent PPGmaps of the same video.
In order to further mine temporal information, ViT [8] is
utilized to interact adjacent clip features with each other in
long distance.

As shown in Fig. 4, K adjacent PPG maps are inputted
into the backbone network which has been well-trained in
stage one, and the high-level features derived from the last
convolutional layer of the backbone are denoted as Fh . Then,
average pooling and linear operation are performed on Fh to
obtain K vectors as D-dimension embedded features xi ∈
RD , i = 1, 2, . . . , K . Similar to the settings of ViT
[8], an extra learnable class-token (Z0

0 = xclass) is added
to the embedding sequence, whose output is responsible for
the final prediction. Meanwhile, the standard 1D learnable
position embedding (Epos ∈ R(K+1)×D) is used to record
the temporal order of K adjacent feature vectors. The input
sequence of the Temporal Transformer can be formulated as

follows:

Z0 = [xclass , x1, x2, . . . , xi ]
T + Epos, i = 1, 2, . . . , K

(3)

The Temporal Transformer consists of L Transformer
encoder blocks [31], and each encoder block includes a
Multi-head Self-Attention operation (MSA) [31] and a Feed-
Forward network (FF). The commonly used LayerNorm
(LN) is applied before each block. And the structure of the
residual connections [44] is utilized after every block. Acti-
vation function GELU is also used to ensure nonlinearity.
The forward process of the l - th layer can be formulated as
follows:

Z ′
l = MSA(LN(Zl−1)) + Zl−1, l = 1, 2, . . . , L (4)

Zl = FF
(

LN
(

Z ′
l

)) + Z ′
l (5)

To obtain the final prediction score y,MLP head is applied
on the class-token output of the last layer (LN

(

Z0
l

)

), which
can be formulated as follows:

y = MLP
(

LN
(

Z0
l

))

(6)
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Fig. 4 Structure of the Temporal Transformer. ⊕ denotes sum operation

Table 1 Comparison with other methods on the sub-datasets of FF + +
Method Binary Face Forgery Detection (real-fake) Multi-category Source Detection (5

categories)

DF F2F FS NT FSH Real DF F2F FS NT Avg

Xception [23] 99.75 98.53 96.14 91.46 99.97 99.84 99.59 98.55 92.76 89.62 97.11

Ciftci el al. [6] – – – – – 97.29 94.66 91.66 92.33 81.93 93.39

FakeCatcher [7] 94.87 96.37 95.75 89.12 – – – – – – –

Boccignone et al. [40] 90.68 94.46 95.39 87.57 98.88 – – – – – –

DeepRhythm [41] 100.00 99.50 100.00 – – – – – – – –

Liang et al. [42] 100.00 99.50 100.00 97.10 100.00 97.59 99.66 97.59 98.62 96.55 98.33

Our method 100.00 100.00 100.00 98.00 99.28 100.00 99.55 99.33 99.67 98.33 99.38

Bold values indicate the best results
The left part denotes the results of binary classification task, and the right half is the source detection experiment of 5 categories and the averaged
outcome. The metric is accuracy (%), and the best results are highlighted

3.3 Loss function

In the first stage training of the backbone and MLA with-
out the inclusion of ViT, we formulated joint loss function
L total including the softmax cross-entropy loss Lce and the
attention mask loss Lmask as follows:

L total = Lce + λLmask (7)

where λ is the hyperparameter for balancing classification
task and mask regression task. In the second stage, we freeze
parameters of the backbone layers and MLA, only use the
cross-entropy loss to train the Temporal Transformer.

4 Experiments

In this section, elaborate evaluations are provided to test
the effectiveness of the proposed method. First, our method
is compared with six benchmark methods on binary face

forgery detection and multi-category source detection tasks.
Then, detailed ablation studies are performed to show the
impact of each component.Moreover, extension experiments
are conducted to show the expandability of the proposed
method against new manipulation sources. Finally, experi-
ments of video clip length and video compression are also
performed for supplement.

4.1 Settings

4.1.1 Dataset

To illustrate the effectiveness of the proposed method on
face forgery detection and source detection tasks, we select
the most widely used FaceForensics + + (FF + +) dataset
[45]. FF + + is a relatively large dataset containing 1000
real videos and 4000 fake videos generated by five dif-
ferent face manipulation methods, i.e., Deepfakes (DF),
Face2Face (F2F), FaceSwap (FS), NeuralTextures (NT), and
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FaceShifter (FSH). In terms of the modified regions, DF, FS,
and FSH swap the whole face, F2F focuses on smaller areas,
transfers expressions while keeping the identity of the target
face consistent, and NT operates only around the mouth area
of the target face. There are three video quality versions in
FF+ + , correspond to different compression rate, i.e., RAW
(c0), HQ (c23), and LQ (c40). In addition, to demonstrate the
extension capability of the proposedmethod, experiments on
Celeb-DF(v2) dataset [46] are also conducted. Celeb-DF is
a more challenging dataset which contains 590 real celebrity
videos. 59 subjects swapping faces in pairs to generate 5,639
high-quality fake videos. The forged faces in Celeb-DF are
more detailed and convincing because of the usage of a more
advanced synthetic process.

4.1.2 Implementation

For the real-fake binary classification task, the training set,
test set and validation set of each sub-dataset are divided in
the ratio of 8:1:1. As for the source detection task, the dataset
is split in the ratio of 7:3, consistentwith previousworks [6, 7,
42].We adopt an open-source face detector OpenFace [47] to
detect 68 facial landmarks. Following the setting of [43], the
number of ROI sub-regions n is 6, and both RGB and YUV
color space are used to generate PPGmaps; therefore,C is 6.
Unless otherwise noted, the video clip length T is 64, the step
size ω is 16, and the loss balancing hyperparameter λ = 10.
EfficientNetV2-M [48] pre-trained on ImageNet is adopted
as the backbone. The MLA is inserted after the third stage of
the backbone. Adjacent PPG clip number K , self-attention
heads number, and the embedded features dimension D are
set to 5, 8, and 256, respectively. The batch size is set to
32. SGD is used as our optimizer with the initial learning
rate of 0.01. The total epoch number is 30. All models are
implemented based on PyTorch framework and trained on
GTX-1080Ti.

4.1.3 Prediction aggregation

Since a full video contains several video clips, we predict
each clip of the video and count the number of real or fake
clips. If the number of real clips is greater than fake ones,
we identified the video as real and vice versa. As for source
detection, majority vetoing is adopted to determine the pre-
dict source of each video. All results are based on video
classification accuracy.

4.2 Comparison

In order to make a fair and comprehensive comparison, we
consider both face-based methods and rPPG-based methods
for the selection of baseline. Among face-based approaches,

Table 2 Ablation experiments of our method by progressively adding
the Multi-scale PPG Spatial–Temporal map (Multi-scale), the Mask-
Guided Local Attention module (MLA), and the Temporal Transformer

Method Avg Acc

POS [49] 85.77

MMSTR [41] 85.65

Multi-scale 98.29

Multi-scale + MLA 99.00

Multi-scale + MLA + LSTM 99.28

Multi-scale + MLA + Self-attention 99.28

Multi-scale + MLA + Transformer 99.38

Bold values indicate the best results
POS and MMSTR are two previous representations of the rPPG signal.
The metric is average categorization accuracy (%)

we choose the popular Xception [23]. And all methods uti-
lizing rPPG are included for comparison, i.e., Ciftci et al. [6],
FakeCatcher [7], Boccignone et al. [40], DeepRhythm [41],
and Liang et al. [42]. Meanwhile, to demonstrate the abil-
ity of the proposed method to detect different manipulation
sources, other than conventional real-fake binary classifica-
tion, we also examined the source detection performance
with five categories (1 real—4 fakes). All the comparison
experiments are conducted on the FF+ + dataset. As shown
in Table 1, the proposed method achieves the best results in
DF, F2F, FS, and NT sub-datasets of binary face forgery task
and achieves the state-of-art performance among all rPPG-
based methods on the source detection, which is sufficient
to demonstrate the effectiveness of the proposed method.
Compared with the baseline method using cropped faces as
input, our method has more obvious advantages on catego-
rization tasks. In terms of the source detection results on FS
and NT categories, our method achieves 99.67 and 98.33%
while Xception [23] with face inputs only reaches 92.76 and
89.62%, respectively. This result once again proves the strong
ability of PPGmaps to preserve the unique rhythmic patterns
of differentmanipulationmethods.Moreover, comparedwith
other methods using rPPG, the proposed method has bet-
ter performance on four categories, indicating the superior
capacity of our method for exploiting information of the
rPPG signal.

4.3 Ablation experiments

To demonstrate the effectiveness of each component of
our method, i.e., Multi-scale Spatial–Temporal PPG map,
Mask-Guided Local Attention module (MLA), and Tempo-
ral Transformer, we conducted detailed ablation experiments
of source detection. And the results are shown in Table 2.
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Fig. 5 VisualizationofMask-GuidedLocalAttention (MLA)onvarious
face manipulation methods. The second and the fourth row show the
PPGmaps and their correspondingmasks ofmodified regions. The third
row is the heat maps of high-level features withoutMLA in the network,
and the last row shows the heat maps when MLA is inserted into the
network

4.3.1 Effectiveness of multi-scale PPGmap

For a better comparison of the Multi-scale PPG map, two
other forms of PPG map from previous works are imple-
mented, i.e., POS [49] and Motion-Magnified Spatial–Tem-
poral Representation (MMSTR) [41]. The first is based on
assumptions of skin optic model, and the second utilizes
motion magnification algorithm [50]. The amount of data
and backbone training settings is the same for three forms
of PPG maps. As shown in Table 2, the averaged categoriza-
tion accuracy by adopting the Multi-scale PPG map is 13%
higher than the other two, which proves that the multi-scale
combination of facial regions contains more sufficient rhyth-
mic information. Without prior calculation, the Multi-scale
Spatial–Temporal representation of PPG can better copewith
the deep learning framework in a fully data-driven manner.

4.3.2 Effectiveness of MLA

We then conducted experiments to demonstrate the effective-
ness of the MLA which utilizes local attention mechanism.
According to the mask examples shown in Fig. 5, the distri-
bution of white pixels which represents the modified regions
varies with different face manipulation methods. Mask cal-
culated formDF shows awidermodified area thanNT,which

is consistent with our hypothesis that PPG maps can reflect
spatial and regional differences between each face forgery
method.

To present an intuitive interpretation of how MLA works,
we also visualize heatmaps of high-level features utilizing
Grad-CAM [51]. As shown in Fig. 5, without the mask
and local attention operation, the network would focus on
the large area near the upper right corner of the PPG map
while ignoring the regional differences between specific face
forgery methods. After adding MLA into the backbone, the
strong-response area successfully converges at specific loca-
tions guided by the mask; thus, the rhythmic patterns of
each face manipulation method are further distinguished.
The average categorization accuracy also improves 0.71%
by utilizingMLA. And it is worth noting that the accuracy of
NT category, which is usually difficult to classify, improved
by 1.33%. This result proves the effectiveness of MLA for
detecting local discrepancies.

4.3.3 Effectiveness of temporal transformer

In order to explore the proper temporal model for inter-
acting adjacent feature vectors, we select one layer of the
widely used Bidirectional Long Short Term Memory (Bi-
LSTM) networks and single head self-attention [31] (denoted
as Self-attention) to compare with the standard Transformer
encoder [31]. The result in Table 2 shows that the average
detection accuracy of utilizing Bi-LSTM is 0.28% higher
than not, proving our second assumption that adjacent PPG
clips contain temporal-correlated information. Intriguingly,
one layer of single head self-attention can be on par with
the conventional RNN structure in performance. This result
indicates that the recurrent structure is constrained by the
contextual order of the sequence, while self-attention mech-
anism completely relying on the long-distance dependencies
of input tokens.With the full structure ofMSA and FF block,
the Temporal Transformer fully exploits the global informa-
tion between adjacent features and improves the accuracy by
0.38%. To better demonstrate the effectiveness of the Tem-
poral Transformer over LSTM, we conduct real-fake binary
face forgery detection experiments on five sub-datasets of
the c23 (HQ) version of FF + + , respectively. As shown
in Fig. 6, by adopting Transformer, the accuracy of all five
sub-datasets increased by an average of 0.84% in comparison
of utilizing LSTM. It should be noted that the superiority of
ViT over LSTM is more evident on F2F, FS, and NT sub-
datasets, with accuracy improvements of 1.15%, 1.7%, and
0.65%, respectively. These results provide stronger evidence
of the superiority of the global attention and long-distance
dependencies mechanism of ViT over the local contextual-
constrained LSTM.

In addition, the impact of using different numbers of
Transformer encoders blocks is also investigated. As shown

123



Local attention and long-distance interaction of rPPG for deepfake detection 1091

Fig. 6 Binary Face forgery detection (real-fake) accuracy (%) on five sub-datasets of FF + + (c23), including DF, F2F, FS, NT, and FSH, of using
different temporal modules

Fig. 7 Average categorization accuracy (%) of using different layers of
Transformer encoders

in Fig. 7, without the pre-trained parameters to initialize
the second-stage model, adding more layers of Transformer
encoder causes additional training parameters, but does not
improve the outcome. In the other hand, compared with other
scenarios of adopting ViT, the number of embedded features
K is much more limited in our work; thus, single layer of the
Transformer structure is sufficient.

4.4 Extension experiments

Deepfake generation methods upgrade rapidly, which
demands that our method have extension ability against
new face forgery methods. Thus, we conducted extension
experiments by adding a new category of Celeb-DF (CD)
to illustrate generalization performance of the proposed
method. 1000 fake videos are selected from Celeb-DF(v2)
[46], and PPG maps of each video clip is computed along
with their correspondingmasks to generate the sixth class for
source detection. As shown in Table 3, our method is capa-
ble of tracking new sources and the average categorization

accuracy of six classes exceeds other two previous methods
[6, 42], which confirms the excellent extension ability of the
proposed method.

4.5 Video clip length

We also conducted experiments to explore the balance
between the length of a single clip and the amount of train-
ing data. We assume that the number of PPG maps that can
be obtained from a complete video will be large when the
clip length is relatively short, but the information contained
in individual clips may also be limited. On the other hand,
an excessively long clip would greatly reduce the amount of
data available for training. Thus, we test the proposedmethod
with different clip length T = {32, 64, 128, 256}. For a fair
comparison, the step size ω is set as 1/4 T to obtain all PPG
maps from a full video. As results shown in Table 4, the accu-
racy reaches the highest score at T = 64, but drops sharply
at T = 256. Not surprisingly, the length of video clips too
long results in the limited data size and negative impact on
our data-driven approach.

4.6 Video compression

To test the performance of the proposedmethod against video
compression, experiments are conducted on different video
quality of FF + + , i.e., HQ (c23) and LQ (c40). As shown
in Table 5, the proposed method still reaches the average
source detection accuracy of 90.52% on video quality HQ,
which demonstrates the robustness against light compres-
sion. However, due to the loss of subtle facial color changes
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Table 3 Results of extension
experiment Method Real DF F2F FS NT CD Avg

Cifci et al. [6] 96.89 94.66 91.66 92.66 92.66 92.17 93.69

Liang et al. [42] 95.45 100.00 98.86 96.59 97.73 98.89 97.57

Our method 97.07 99.58 98.04 99.18 96.96 100.00 98.65

Bold values indicate the best results
1000 videos from Celeb-DF(v2) are added as the sixth category. The metric is forgery categorization accuracy
(%)

Table 4 Accuracy of
categorization in different video
clip length

Clip Length Real DF F2F FS NT Avg

32 99.06 100.00 97.90 99.00 96.22 98.43

64 100.00 99.55 99.33 99.67 98.33 99.38

128 96.83 100.00 99.33 99.64 96.51 98.64

256 97.47 100.00 100.00 94.44 94.12 97.21

Bold values indicate the best results

Table 5 Accuracy of
categorization in different
compression rate

Compression Real DF F2F FS NT Avg

HQ (c23) 87.67 98.08 90.48 88.05 88.32 90.52

LQ (c40) 49.55 80.10 50.50 54.18 50.50 56.96

results from the severe compression, the rPPG signal is dis-
rupted under LQ version, which leads to the accuracy of
merely 56.96%.

5 Conclusion

In this paper, the Multi-scale Spatial–Temporal PPG map
is adopted to further exploit heartbeat signal from multi-
ple facial regions. Motivated by the key observation that
rPPG signals produce unique rhythmic patterns in terms
of different manipulation methods, a two-stage network is
proposed for both face forgery detection and categoriza-
tion. Concretely, the Mask-Guided Local Attention module
(MLA) is designed to locate spatial inconsistencies of mod-
ified facial regions reflected on PPG maps. The Temporal
Transformer is also adopted to exploit long-distance informa-
tion between adjacent video clips. Abundant experiments on
FaceForensics + + and Celeb-DF(v2) datasets demonstrate
the superiority of the proposedmethodwhich outperforms all
other rPPG-based approaches. Moreover, extension experi-
ment confirms the excellent generalization capability of the
method against newly added manipulation model. Further-
more, detailed ablation study and visualization illustrate the
effectiveness of each component and different settings.
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